Suitable Integrated Farming System Models in Terms of Energetics, Greenhouse Gas Emissions and Employment Generation for the Small and Marginal Farmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Situation
2.2. The Climate
2.3. Experiment Details
2.4. Agronomic Practices
2.5. Economic Analysis
System Economic Efficiency
2.6. Energetics
2.7. Greenhouse Gas Emissions
Eco-Efficiency Index
2.8. Employment Generation (Man-Days ha−1 Year−1)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Economic Indicators of Different IFS Models
3.2. Energy Budgeting of Different IFS Models
3.3. Greenhouse Gas Emissions
3.4. Carbon Footprints in System Productivity (CFSP)
3.5. Eco-Efficiency Index
3.6. Employment Generation
4. Conclusions
- To identify better greenhouse gas (GHG) mitigation strategies.
- To identify the more energy-efficient practices in an integrated farming system.
- To work on the same model across Telangana and compare the results.
- To establish a comprehensive understanding of farming systems, it is essential to create a database encompassing various types of farming systems, infrastructure details, economic aspects, and sustainability indicators.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agricultural Statistics at a Glance; Oxford University Press: New Delhi, India, 2015.
- United Nations, Department of Economic and Social Affairs. World Population Prospects; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Thorve, P.V.; Galgalikar, V.D. Economics of Diversification of Farming with Dairy Enterprises. Indian J. Agric. Econ. 1985, 40, 317–323. [Google Scholar]
- Behera, U.K.; France, J. Integrated Farming Systems and the Livelihood Security of Small and Marginal Farmers in India and Other Developing Countries. Adv. Agron. 2016, 138, 235–282. [Google Scholar]
- Laxmi Gupta, N.; Singh, M.; Sharma, R.P. Evaluation of integrated horticulture-cum- fish farming in Malwa region of Madhya Pradesh, India. Curr. World Environ. 2015, 10, 667–671. [Google Scholar] [CrossRef]
- Goverdhan, M.; Pasha, M.d.L.; Sridevi, S.; Kumari, C.P. Integrated Farming Approaches for Doubling the Income of Small and Marginal Farmers. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 3353–3362. [Google Scholar] [CrossRef]
- Karthik, R.; Dhaker, D.; Raising, L. Performance of cereals under need based nitrogen management strategies: A review. Agric. Rev. 2022, 43, 320–326. [Google Scholar] [CrossRef]
- Dasgupta, P.; Goswami, R.; Ali, M.; Chakraborty, S.; Saha, S. Multifunctional role of integrated farming system in developing countries. Int. J. Bio-Resour. Stress Manag. 2015, 6, 424–432. [Google Scholar] [CrossRef]
- Fatima, A.; Singh, V.K.; Babu, S.; Singh, R.K.; Upadhyay, P.K.; Rathore, S.S.; Kumar, B.; Hasanain, M.; Parween, H. Food production potential and environmental sustainability of different integrated farming system models in northwest India. Front. Sustain. Food Syst. 2023, 7, 959464. [Google Scholar] [CrossRef]
- Dubey, P.K.; Singh, G.S.; Abhilash, P.C. Adaptive Agricultural Practices: Building Resilience in a Changing Climate; Springer: Cham, Switzerland, 2020; Volume 132. [Google Scholar]
- IPCC. Land-climate interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Summary for Policy makers; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Patel, K.M.; Patel, P.K.; Desai, L.J.; Patel, K.N.; Patel, S.A.; Chaudhary, H.L. Integrated farming systems for livelihood security of small and marginal farmers. Multilogic Sci. 2020, 10, 600–603. [Google Scholar]
- Available online: https://www.google.com/maps (accessed on 3 September 2024).
- Karthik, R.; Ramana, M.V.; Kumari, C.P.; Prakash, T.R.; Goverdhan, M.; Naik, D.S.; Chandra, M.S.; Kumar, M.S.; Kumar, N.V.; Raising, L.P.; et al. Designing a productive, profitable integrated farming system model with low water footprints for small and marginal farmers of Telangana. Sci. Rep. 2024, 14, 17066. [Google Scholar] [CrossRef]
- Subash, N.; Dutta, D.; Ravisankar, N. IFS-GHG Estimation Tool Ver. 1.0. A Green House Gases Estimation Tool for Integrated Farming System Models; AICRP-IFS, ICAR-IIFSR: Modipuram, Meerut, India, 2018. [Google Scholar]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories—2006; Prepared by the National Greenhouse Gas Inventories, Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; pp. 1–20. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 3 September 2024).
- Babu, S.; Das, A.; Singh, R.; Mohapatra, K.P.; Kumar, S.; Rathore, S.S.; Yadav, S.K.; Yadav, P.; Ansari, M.A.; Panwar, A.S.; et al. Designing an energy efficient, economically feasible, and environmentally robust integrated farming system model for sustainable food production in the Indian Himalayas. Sustain. Food Technol. 2023, 1, 126–142. [Google Scholar] [CrossRef]
- Babu, S.; Mohapatra, K.P.; Das, A.; Yadav, G.S.; Tahasildar, M.; Singh, R.; Panwar, A.S.; Yadav, V.; Chandra, P. Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize–fallow land of the Eastern Himalayas. Sci. Total Environ. 2020, 722, 137874. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.A.; Gomez, A. Statistical Procedure for Agricultural Research—Hand Book; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Gopinath, P.P.; Parsad, R.; Joseph, B.; Adarsh, V.S. GRAPES: General R-Shiny Based Analysis Platform Empowered by Statistics. Version 1.0.0. 2020. Available online: https://www.kaugrapes.com/home (accessed on 3 September 2024).
- Shyam, C.S.; Shekhawat, K.; Rathore, S.S.; Babu, S.; Singh, R.K.; Upadhyay, P.K.; Dass, A.; Fatima, A.; Kumar, S.; Sanketh, G.D.; et al. Development of Integrated Farming System Model—A Step towards Achieving Biodiverse, Resilient and Productive Green Economy in Agriculture for Small Holdings in India. Agronomy 2023, 13, 955. [Google Scholar] [CrossRef]
- Ray, S.K.; Chatterjee, D.; Rajkhowa, D.J.; Baishya, S.K.; Hazarika, S.; Paul, S. Effects of integrated farming system and rainwater harvesting on livelihood improvement in North-Eastern region of India compared to traditional shifting cultivation: Evidence from action research. Agrofor. Syst. 2020, 94, 451–464. [Google Scholar] [CrossRef]
- Shankar, D.; Banjare, C.; Sahu, M.K. Tuber Crops Based Integrated Farming System Studies in Bastar and Kondagaon Districts of Chhattisgarh. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1650–1658. [Google Scholar] [CrossRef]
- Kharche, P.P.; Surve, U.S.; Pokharkar, V.G.; Patil, S.C.; Salgar, S.B. Yield, Productivity and Economics of Integrated Farming System under Irrigated Conditions of Western Maharashtra. Curr. J. Appl. Sci. Technol. 2022, 41, 13–20. [Google Scholar] [CrossRef]
- Negi, S.C.; Pathania, P.; Sharma, S.K.; Rana, S.S.; Katoch, M. Integrated farming system approach for enhancing the livelihood security and productivity of hill farmers. Indian J. Econ. Dev. 2019, 7, 1–6. [Google Scholar]
- Kumar, S.; Shivani Dey, A.; Kumar, U.; Kumar, R.; Mondal, S.; Kumar, A.; Manibhushan. Location-specific integrated farming system models for resource recycling and livelihood security for smallholders. Front. Agron. 2022, 4, 75–90. [Google Scholar] [CrossRef]
- Pasha, M.d.L.; Reddy, G.K.; Sridevi, S.; Govardhan, M.; Ali Baba Md Rani, B. Energy use efficiency and greenhouse gas emissions from integrated crop-livestock systems in semi-arid ecosystem of Deccan Plateau in Southern India. J. Exp. Biol. Agric. Sci. 2020, 8, 98–110. [Google Scholar] [CrossRef]
- Channabasavanna, A.S.; Biradar, D.P.; Prabhudev, K.N.; Hegde, M. Development of profitable integrated farming system model for small and medium farmers of Tungabhadra project area of Karnataka. Karnataka J. Agric. Sci. 2009, 22, 25–27. [Google Scholar]
- Palsaniya, D.R.; Kumar, S.; Das, M.M.; Kumar, T.K.; Kumar, S.; Chaudhary, M.; Chand, K.; Rai, S.K.; Ahmed, A.; Sahay, C.S.; et al. Integrated multi-enterprise agricultural system for sustaining livelihood, energy use and resource recycling: A case study from semi-arid tropics of central India. Agrofor. Syst. 2021, 95, 1619–1634. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Dey, A. Energy budgeting of crop livestock-poultry integrated farming system in irrigated ecologies of Eastern India. Indian J. Agric. Sci. 2019, 89, 1017–1022. [Google Scholar] [CrossRef]
- Shekinah, D.E.; Jayanthi, C.; Sankaran, N. Physical indicators of sustainability—A farming systems approach for the small farmer in the rainfed vertisols of the Western zone of Tamil Nadu. J. Sustain. Agric. 2005, 25, 43–65. [Google Scholar] [CrossRef]
- Swarnam, T.P.; Velmurugan, A.; Subramani, T.; Ravisankar, N.; Subash, N.; Pawar, A.S.; Perumal, P.; Jaisankar, I.; Dam Roy, S. Climate smart crop-livestock integrated farming as a sustainable agricultural strategy for humid tropical islands. Int. J. Agric. Sustain. 2024, 22, 2298189. [Google Scholar] [CrossRef]
- Meena, L.R.; Kochewad, S.A.; Prusty, A.K.; Bhanu, C.; Kumar, S.; Meena, A.L.; Meena, L.K.; J, R.K.; Kumar, D.; Subash, N.; et al. Sustainable integrated farming system model for small farm holders of Uttar Pradesh. Indian J. Agric. Sci. 2022, 92, 1080–1085. [Google Scholar] [CrossRef]
- Islam, A.H.M.S.; Barman, B.K.; Murshed-e-Jahan, K. Adoption and impact of integrated rice–fish farming system in Bangladesh. Aquaculture 2015, 447, 76–85. [Google Scholar] [CrossRef]
- Li, Z.; Sui, P.; Wang, X.; Yang, X.; Long, P.; Cui, J.; Yan, L.; Chen, Y. Comparison of net GHG emissions between separated system and crop-swine integrated system in the North China Plain. J. Clean. Prod. 2017, 149, 653–664. [Google Scholar] [CrossRef]
- Purnomo, S.H.; Sari, A.I.; Emawati, S.; Rahayu, E.T. Factors influencing the adoption of integrated crop-livestock to support land conservation of organic agriculture in Mojosongo area, Karanganyar, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 724, 012049. [Google Scholar] [CrossRef]
IFS Model | C1 | C2 | C3 | C4 | G | H | N | P | S1 | S2 |
---|---|---|---|---|---|---|---|---|---|---|
M1 | ‡ | |||||||||
M2 | ‡ | ‡ | ‡ | |||||||
M3 | ‡ | ‡ | ‡ | ‡ | ‡ | |||||
M4 | ‡ | ‡ | ‡ | ‡ | ‡ | |||||
M5 | ‡ | ‡ | ‡ | ‡ | ‡ | |||||
M6 | ‡ | ‡ | ‡ | ‡ | ||||||
M7 | ‡ | ‡ | ‡ | ‡ | ‡ | ‡ | ‡ |
IFS Model | Components | Area |
---|---|---|
M1 | Rice with Groundnut | 4000 sq.m |
M2 | Rice – Groundnut Pigeonpea + Sweetcorn (1:3) − Pearl millet Bt cotton and greengram in a 1:2 ratio with maize | 1000 sq.m 1000 sq.m 2000 sq.m |
M3 | Rice with Groundnut Pigeonpea with Sweetcorn (1:3) − Pearl millet Pigeonpea with Maize (1:3) − Sunhemp Napier grass | 1500 sq.m 1000 sq.m 1000 sq.m 500 sq.m |
M4 | Rice with Groundnut Pigeonpea with Sweetcorn (1:3) − Pearl millet Pigeonpea with Maize (1:3) − Sunhemp Bt cotton and greengram in a 1:2 ratio with maize | 1000 sq.m 1000 sq.m 1000 sq.m 1000 sq.m |
M5 | Guava Hedge lucerne Napier grass Bt cotton and greengram in a 1:2 ratio with maize | 2000 sq.m 500 sq.m 500 sq.m 1000 sq.m |
M6 | Guava Bt cotton and greengram in a 1:2 ratio with maize Rice − Groundnut | 2000 sq.m 1000 sq.m 1000 sq.m |
M7 | Rice − Groundnut Pigeonpea with Sweetcorn (1:3) − Pearl millet Pigeonpea and Maize in a 1:3 ratio, accompanied by Sunhemp. Napier grass Hedge lucerne | 1000 sq.m 1000 sq.m 1000 sq.m 500 sq.m 500 sq.m |
S.No. | Name of the Crop | Season | Seed Rate acre−1 | Fertilizer Dose acre−1 (N:P:K) | Variety |
---|---|---|---|---|---|
1 | Rice | Rainy season | 10 | 48:24:16 | RNR 21278 |
2 | Groundnut | Winter | 60 | 8:20:12 | K-6 |
3 | Pigeonpea | Rainy season | 2 | 8:20:12 | WRG-97 |
4 | Sweetcorn | Rainy season | 4 | 80:24:16 | Sugar 75 |
5 | Pearl millet | Summer | 1.5 | 33:16:12 | MPMH 21 |
6 | Bt Cotton | Rainy season | 1 | 60:24:24 | Magna (RCH 530 BG II) |
7 | Greengram | Rainy season | 6 | 8:20:12 | WGG 42 |
8 | Maize | Winter | 8 | 96:33:24 | Pioneer 3396 |
9 | Pigeonpea | Rainy season | 2 | 8:20:12 | WRG-97 |
10 | Maize | Rainy season | 8 | 96:33:24 | Pioneer 3396 |
11 | Sunhemp | Summer | 16 | 4:8:0 | Local |
Fodder crops | |||||
11 | Hedge Lucerne | Perennial | 8 kg | 12:24:8 | RL-88 |
12 | Hybrid napier | Perennial | 7408 cuttings | 75:24:24 | Super napier |
Horticultural crops | |||||
13 | Guava | Perennial | 40:16:40 | Allahabad Safeda |
IFS Models | Input Energy (MJ) | Output Energy (MJ) | Net Energy Gain (MJ) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
M1: C1 | 21,172 | 21,512 | 21,342 | 98,896 | 104,364 | 101,630 | 77,724 | 82,852 | 80,288 |
M2: C1 + C2 + C3 | 22,764 | 22,725 | 22,745 | 116,080 | 131,544 | 123,812 | 93,316 | 108,819 | 101,068 |
M3: C1 + C2 + C4 +N + S1 | 34,392 | 56,204 | 45,298 | 222,106 | 234,951 | 228,529 | 187,715 | 178,747 | 183,231 |
M4: C1 + C2 + C3 + C4 + P | 28,506 | 28,676 | 28,591 | 129,101 | 142,213 | 135,657 | 100,595 | 113,537 | 107,066 |
M5: G + H + N + C3 + S2 | 28,587 | 60,087 | 44,337 | 169,466 | 183,753 | 176,610 | 140,880 | 123,666 | 132,273 |
M6: G + C1 + C3 + P | 20,311 | 20,461 | 20,386 | 52,589 | 57,496 | 55,043 | 32,278 | 37,035 | 34,657 |
M7: C1 + C2 + C4 + H + N + S2 + P | 43,369 | 75,158 | 59,263 | 247,863 | 268,503 | 258,184 | 204,495 | 193,345 | 198,920 |
SEm (±) | 1630 | 2329 | - | 6613 | 6878 | - | 5323 | 5166 | - |
C.D (p = 0.05) | 5021 | 7177 | - | 20,378 | 21,193 | - | 16,403 | 15,918 | - |
IFS Models | Energy Use Efficiency | Energy Productivity (kg MJ−1) | Specific Energy (MJ kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
M1: C1 | 4.67 | 4.85 | 4.76 | 0.228 | 0.229 | 0.229 | 4.38 | 4.36 | 4.37 |
M2: C1 + C2 + C3 | 5.10 | 5.79 | 5.44 | 0.204 | 0.232 | 0.218 | 4.90 | 4.32 | 4.59 |
M3: C1 + C2 + C4 + N + S1 | 6.46 | 4.18 | 5.05 | 0.223 | 0.141 | 0.172 | 4.49 | 7.07 | 5.81 |
M4: C1 + C2 + C3 + C4 + P | 4.53 | 4.96 | 4.74 | 0.210 | 0.223 | 0.216 | 4.76 | 4.49 | 4.62 |
M5: G + H + N + C3 + S2 | 5.93 | 3.06 | 3.98 | 0.225 | 0.125 | 0.157 | 4.44 | 7.99 | 6.35 |
M6: G + C1 + C3 + P | 2.59 | 2.81 | 2.70 | 0.223 | 0.236 | 0.231 | 4.49 | 4.25 | 4.34 |
M7: C1 + C2 + C4 + H + N + S2 + P | 5.72 | 3.57 | 4.36 | 0.219 | 0.139 | 0.168 | 4.57 | 7.18 | 5.94 |
SEm (±) | 0.18 | 0.16 | - | - | 0.008 | - | - | 0.24 | - |
C.D (p = 0.05) | 0.56 | 0.51 | - | NS | 0.026 | - | NS | 0.75 | - |
IFS Models | Source (kg CO2 eq.) | System Productivity (kg) | CFSP (kg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | 2021–2022 | 2022–2023 | Mean | |
M1: C1 | 1584 | 1616 | 1600 | 4836 | 4936 | 4886 | 0.328 | 0.327 | 0.327 |
M2: C1 + C2 + C3 | 967 | 980 | 974 | 4648 | 5264 | 4956 | 0.208 | 0.186 | 0.197 |
M3: C1 + C2 + C4 + N + S1 | 1639 | 2754 | 2197 | 7653 | 7948 | 7800 | 0.214 | 0.347 | 0.280 |
M4: C1 + C2 + C3 +C4 + P | 927 | 939 | 933 | 5987 | 6382 | 6185 | 0.155 | 0.147 | 0.151 |
M5: G + H + N+ C3 + S2 | 1069 | 2492 | 1781 | 6439 | 7524 | 6982 | 0.166 | 0.331 | 0.249 |
M6: G + C1 + C3 + P | 724 | 741 | 733 | 4520 | 4819 | 4670 | 0.160 | 0.154 | 0.157 |
M7: C1 + C2 + C4 + H + N + S2 + P | 1473 | 2897 | 2185 | 9493 | 10,468 | 9981 | 0.155 | 0.277 | 0.216 |
SEm (±) | 50.22 | 80.66 | - | 336 | 355 | - | 0.008 | 0.010 | - |
CD (p = 0.05) | 154.8 | 248.6 | - | 1035 | 1092 | - | 0.026 | 0.033 | - |
IFS Models | Employment Generation (Man-Days Year−1) | ||
---|---|---|---|
2021–2022 | 2022–2023 | Mean | |
M1: C1 | 84 | 92 | 88 |
M2: C1 + C2 + C3 | 85 | 91 | 88 |
M3: C1 + C2 + C4 + N + S1 | 97.5 | 123.5 | 110.5 |
M4: C1 + C2 + C3 + C4 + P | 87 | 89 | 88 |
M5: G + H + N + C3 + S2 | 62 | 94 | 78 |
M6: G + C1 + C3 +P | 57 | 62 | 59.5 |
M7: C1 + C2 + C4 + H + N + S2 + P | 98 | 127 | 112.5 |
SEm (±) | 3.89 | 4.57 | 4.35 |
CD (p = 0.05) | 12.01 | 14.10 | 13.4 |
Indicator | M1 | M2 | M3 | M4 | M5 | M6 | M7 |
---|---|---|---|---|---|---|---|
Net returns and System economic efficiency | 5 | 6 | 2 | 4 | 3 | 7 | 1 |
Net energy gain | 6 | 5 | 2 | 4 | 3 | 7 | 1 |
Energy use efficiency | 3 | 1 | 2 | 4 | 6 | 7 | 5 |
Net GHG emissions | 7 | 3 | 5 | 2 | 4 | 6 | 1 |
Carbon Footprints(SP) | 7 | 3 | 6 | 1 | 5 | 2 | 4 |
Eco Efficiency Index | 7 | 5 | 6 | 1 | 4 | 2 | 3 |
Employment generation | 3 | 3 | 2 | 3 | 6 | 7 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthik, R.; Ramana, M.V.; Kumari, C.P.; Prakash, T.R.; Goverdhan, M.; Naik, D.S.; Kumar, N.V.; Chandra, M.S.; Bhatt, R.; Elhindi, K.M.; et al. Suitable Integrated Farming System Models in Terms of Energetics, Greenhouse Gas Emissions and Employment Generation for the Small and Marginal Farmers. Sustainability 2024, 16, 10189. https://doi.org/10.3390/su162310189
Karthik R, Ramana MV, Kumari CP, Prakash TR, Goverdhan M, Naik DS, Kumar NV, Chandra MS, Bhatt R, Elhindi KM, et al. Suitable Integrated Farming System Models in Terms of Energetics, Greenhouse Gas Emissions and Employment Generation for the Small and Marginal Farmers. Sustainability. 2024; 16(23):10189. https://doi.org/10.3390/su162310189
Chicago/Turabian StyleKarthik, Rayapati, Maparla Venkata Ramana, Cheekati Pragathi Kumari, Tata Ram Prakash, Manthati Goverdhan, Danavath Saida Naik, Nallagatla Vinod Kumar, Mandapelli Sharath Chandra, Rajan Bhatt, Khalid M. Elhindi, and et al. 2024. "Suitable Integrated Farming System Models in Terms of Energetics, Greenhouse Gas Emissions and Employment Generation for the Small and Marginal Farmers" Sustainability 16, no. 23: 10189. https://doi.org/10.3390/su162310189
APA StyleKarthik, R., Ramana, M. V., Kumari, C. P., Prakash, T. R., Goverdhan, M., Naik, D. S., Kumar, N. V., Chandra, M. S., Bhatt, R., Elhindi, K. M., & Mattar, M. A. (2024). Suitable Integrated Farming System Models in Terms of Energetics, Greenhouse Gas Emissions and Employment Generation for the Small and Marginal Farmers. Sustainability, 16(23), 10189. https://doi.org/10.3390/su162310189