Transforming Agriculture: Empirical Insights into How the Digital Economy Elevates Agricultural Productivity in China
Abstract
:1. Introduction
2. Literature Review
2.1. Digital Economy and Agricultural Technical Efficiency
2.2. Marketization of Agricultural Elements
2.3. The Impact of Digital Economy on the Convergence of Agricultural Technical Efficiency
3. Materials and Methods
3.1. Digital Economy
3.2. Calculation of Agricultural Technical Efficiency Based on the DEA
3.3. Econometric Model
3.4. Data Sources
4. Results
4.1. Examination of Cross-Sectional Dependency
4.2. Verifying the Stationarity of Panel Data
4.3. Digital Economy’s Effect on Agricultural Technical Efficiency
5. Robustness Tests
5.1. Replacing the Dependent Variable
5.2. The Asymmetric Effect
6. Discussion
6.1. Heterogeneity Analysis
6.2. Mechanism Analysis
6.2.1. Potential Mechanisms
6.2.2. Results of the Mediation Effect Analysis
6.3. Further Discussion
7. Conclusions and Policy Implications
- The visualization revealed disparities between eastern and central/western regions, which appeared to narrow from 2013 to 2019 due to government efforts. Notably, a preliminary positive correlation between DE and ATE was observed;
- DE significantly and positively impacts ATE and has been tested differently to prove that such conclusions obtained in this study are robust. The development of the digital economy is advantageous to agricultural productivity, and considering the disparity in natural resources and economic development, it follows that the impact is more pronounced in the southern region;
- In addition, this study discusses the mechanisms. We found that marketization is a mediation impact mechanism while DE impacts ATE. Based on the statistical results, OFW, AFS, and ALT are all the mechanism variables of DE, which means that DE will impact ATE by influencing OFW, AFS, and ALT;
- Finally, we are concerned about the impact of the digital economy on the convergence of agricultural technical efficiency. Due to the development of digital information technology, marketization and the digitalization of agricultural production, as a result, agricultural technical efficiency has been improved. It means that the digital economy fosters the convergence of agricultural technical efficiency.
- The government should (1) deepen agricultural marketization reforms, (2) optimize agricultural industrial structures, (3) encourage the transfer of rural labor to non-agricultural sectors, (4) facilitate the transfer of arable land, and (5) optimize agricultural farming structures. These initiatives will enhance the thorough integration of the digital economy and agricultural markets, further releasing agricultural productivity;
- With the development of digital information technology and the digitization of agricultural production, agricultural technical efficiency has been significantly improved. The government should focus on balanced improvements in agricultural technical efficiency, particularly providing more support to technologically backward regions and resource-scarce areas;
- For southern cities, enhancing the integration of the digital economy (DE) with existing agricultural practices and leveraging their superior natural resources and climate conditions to foster agricultural growth and improve agricultural technical efficiency (ATE) should be prioritized. Given the conducive environment for agricultural development, the progression of DE in these regions can significantly contribute to the optimization of agricultural input allocation and overall technical efficiency.
- Our study was constrained by the availability of data, limiting our analysis to a specific timeframe and geographic scope. To keep pace with the rapid evolution of the digital economy, future research endeavors should strive to collect and analyze updated datasets. This will not only allow for a more contemporary examination of the DE–ATE relationship but also enable researchers to capture any emerging trends or shifts in this dynamic landscape;
- Despite discussing heterogeneity within our provincial-level analysis, substantial variation still exists within our sample. To address this, future research could endeavor to construct more granular datasets, potentially shifting the focus to a municipal or even more refined perspective. Such an approach would provide deeper insights into the nuanced impacts of the digital economy on agricultural productivity across diverse regions;
- Our study identified areas for improvement in the construction of the digital economy index. The precision and comprehensiveness of this index are crucial for accurately identifying and analyzing economic issues related to the digital economy. Future research should strive to enhance the development of the digital economy index, incorporating a broader range of indicators and employing more sophisticated methodologies to ensure a more precise and nuanced representation of the digital economy’s multifaceted impacts on agricultural productivity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Level 1 Indicators | Level 2 Indicators | Measurement | Weighting |
---|---|---|---|
Informatization Development (INF) | Informatization Foundation | Fiber optic density | 0.0628 |
Mobile phone base station density | 0.0684 | ||
Percentage of information technology employees | 0.0275 | ||
Influence of Informatization | Total telecoms business | 0.1125 | |
Software business income | 0.1695 | ||
Internet Development (INT) | Fixed End Internet Foundation | Internet access port density | 0.0634 |
Mobile Internet Foundation | Mobile internet penetration | 0.0294 | |
Fixed End Internet Impact | Share of broadband internet users | 0.0357 | |
Mobile Internet Impact | Share of mobile internet users | 0.0116 | |
Digital Industry (DI) | Digital Industry Foundation | Number of websites per 100 businesses | 0.0174 |
Use of computers in business | 0.0426 | ||
Percentage of e-commerce businesses | 0.0481 | ||
Digital Trading | E-commerce sales | 0.1403 | |
Online retail sales | 0.1707 |
Var Name | Obs | Mean | SD | Min | Max |
---|---|---|---|---|---|
LnATE | 240 | −0.424 | 0.351 | −1.544 | 0.222 |
LnDE | 240 | −1.633 | 0.501 | −2.617 | −0.264 |
LnWRA | 240 | −2.146 | 1.202 | −4.923 | 0.571 |
LnAEE | 240 | 3.196 | 1.279 | 0.583 | 5.939 |
LnND | 240 | −2.294 | 1.036 | −7.169 | 0.964 |
LnERI | 240 | −6.200 | 0.914 | −10.02 | −3.709 |
LnINF | 240 | −2.727 | 0.582 | −3.863 | −1.191 |
LnINT | 240 | −2.629 | 0.378 | −3.576 | −1.959 |
LnDI | 240 | −2.939 | 0.659 | −4.343 | −1.019 |
LnECEt-1 | 240 | −3.335 | 2.318 | −10.45 | 0.671 |
LnCP | 240 | 1.721 | 2.063 | 0 | 6.730 |
LnOFW | 240 | −0.387 | 0.198 | −0.898 | −0.0301 |
LnAFS | 240 | −2.047 | 0.824 | −4.720 | 0.711 |
LnALT | 240 | −1.178 | 0.511 | −3.061 | −0.0931 |
Region | Provinces |
---|---|
North (15 provinces) | Beijing, Hebei, Tianjin, Inner Mongolia, Shanxi, Jilin, Liaoning, Heilongjiang, Henan, Shandong, Gansu, Shaanxi, Ningxia, Qinghai, Xinjiang |
South (15 provinces) | Shanghai, Jiangsu, Hainan, Fujian, Hubei, Jiangxi, Guangxi, Hunan, Guangdong, Sichuan, Guizhou, Chongqing, Zhejiang, Anhui, Yunnan |
Region | Provinces |
---|---|
Hight (10 provinces) | Beijing, Fujian, Guangdong, Jiangsu, Shandong, Shanghai, Sichuan, Zhejiang, Liaoning, Shaanxi. |
Middle (10 provinces) | Hebei, Hubei, Inner Mongolia, Tianjin, Anhui, Qinghai, Hainan, Xinjiang, Hunan, Chongqing. |
Low (10 provinces) | Shanxi, Jilin, Heilongjiang, Henan, Gansu, Ningxia, Jiangxi, Guangxi, Guizhou, Yunnan. |
References
- Fund, S. Sustainable Development Goals. 2015. Available online: https://www.un.org/sustainabledevelopment/inequality (accessed on 10 March 2024).
- Li, H.; Lin, Q.; Jian, Z.; Li, S. An Analysis of the Internal Relationship between the Digital Economy and Resource Allocation in Manufacturing Enterprises. J. Ind. Manag. Optim. 2024, 21, 335–355. [Google Scholar] [CrossRef]
- Li, H.; Qi, H. The Research on the Promotion Path of Digital Elements to Digital Economy. In Proceedings of the 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 24–26 September 2021; pp. 299–302. [Google Scholar]
- Yuan, H.; Peng, G.; Song, C.; Wang, L.; Lu, S. Enhancing Digital Economy: Optimizing Export Enterprise Markup and Resource Allocation Efficiency. J. Knowl. Econ. 2024, 1–36. [Google Scholar] [CrossRef]
- Abate, M.; Assefa, N.; Alemayehu, T. Knowledge, Attitude, Practice, and Determinants Emergency Contraceptive Use among Women Seeking Abortion Services in Dire Dawa, Ethiopia. PLoS ONE 2014, 9, e110008. [Google Scholar] [CrossRef]
- Ma, W.; Renwick, A.; Yuan, P.; Ratna, N. Agricultural Cooperative Membership and Technical Efficiency of Apple Farmers in China: An Analysis Accounting for Selectivity Bias. Food Policy 2018, 81, 122–132. [Google Scholar] [CrossRef]
- Duvivier, C. Does Urban Proximity Enhance Technical Efficiency? Evidence from Chinese Agriculture. J. Reg. Sci. 2013, 53, 923–943. [Google Scholar] [CrossRef]
- Tian, Q.; Yu, Y.; Xiang, Z.; Li, C. Agricultural Technical Education, Interpersonal Trust, and Pesticide Use by Vegetable Farmers in China. J. Agric. Educ. Ext. 2021, 27, 211–227. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, B.; Wang, Y.; Zhou, Y. Will Land Transfer Always Increase Technical Efficiency in China?— A Land Cost Perspective. Land Use Policy 2019, 82, 414–421. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, X.; Heerink, N.; Ma, X. The Effect of Land Tenure Governance on Technical Efficiency: Evidence from Three Provinces in Eastern China. Appl. Econ. 2019, 51, 2337–2354. [Google Scholar] [CrossRef]
- Chang, M.; Liu, J.; Shi, H.; Guo, T. The Effect of Off-Farm Employment on Agricultural Production Efficiency: Micro Evidence in China. Sustainability 2022, 14, 3385. [Google Scholar] [CrossRef]
- Shi, H. Performance of Community-Based Water-Saving Technology under Land Fragmentation: Evidence from Groundwater Overexploitation in the North China Plain. Water Policy 2021, 23, 1542–1555. [Google Scholar] [CrossRef]
- Zewdie, M.C.; Moretti, M.; Tenessa, D.B.; Ayele, Z.A.; Nyssen, J.; Tsegaye, E.A.; Minale, A.S.; Van Passel, S. Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach. Land 2021, 10, 246. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W.; Wang, F.; Li, G. Does Internet Use Improve Technical Efficiency of Banana Production in China? Evidence from a Selectivity-Corrected Analysis. Food Policy 2021, 102, 102044. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, W.; Zheng, F. Effects of Industrial Air Pollution on the Technical Efficiency of Agricultural Production: Evidence from China. Environ. Impact Assess. Rev. 2020, 83, 106407. [Google Scholar] [CrossRef]
- Khatun, T.; Afroze, S. Relationship between Real GDP and Labour & Capital by Applying the Cobb-Douglas Production Function: A Comparative Analysis among Selected Asian Countries. Dhaka Univ. J. Bus. Stud. 2016, 37, 113–129. [Google Scholar]
- Nakamura, K.; Kaihatsu, S.; Yagi, T. Productivity Improvement and Economic Growth: Lessons from Japan. Econ. Anal. Policy 2019, 62, 57–79. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital Economy: An Innovation Driver for Total Factor Productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Liu, S. Impact of Agricultural Informatisation on Total Factor Productivity in Agriculture. Soc. Sci. 2021, 9, 79–85. [Google Scholar]
- Qi, W.; Teng, Y.; Li, Z. Digital financial inclusion and agricultural total factor productivity: A study of driving paths and heterogeneity. Businesses Econ. Rev. 2023, 24, 60–78. [Google Scholar] [CrossRef]
- Sun, G.; Li, T.; Mo, Y. The Impact of the Digital Economy on Total Factor Productivity in Chinese Agriculture. Rev. Econ. Manag. 2023, 39, 92–103. [Google Scholar] [CrossRef]
- Di, L.; Wang, J. Impact of the digital economy on driving total factor productivity in agriculture. J. Langfang Teach. Univ. (Nat. Sci. Ed.) 2022, 22, 71–77. [Google Scholar]
- Gao, K.; Yuan, Y. Does Market-Oriented Reform Make the Industrial Sector “Greener” in China? Fresh Evidence from the Perspective of Capital-Labor-Energy Market Distortions. Energy 2022, 254, 124183. [Google Scholar] [CrossRef]
- Deichmann, U.; Goyal, A.; Mishra, D. Will Digital Technologies Transform Agriculture in Developing Countries? Agric. Econ. 2016, 47, 21–33. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Li, Y. The Impact of the Digital Economy on the Total Factor Productivity of Manufacturing Firms: Empirical Evidence from China. Technol. Forecast. Soc. Chang. 2024, 207, 123604. [Google Scholar] [CrossRef]
- Liang, G.; Zhang, Z.; Wu, P.; Zhang, Z.; Shao, X. Analysis of Business Risk Measurement and Factors Influencing Plantation-Based Farming Cooperatives: Evidence from Guizhou Province, China. Sustainability 2024, 16, 2194. [Google Scholar] [CrossRef]
- Hu, J. Green Productivity Growth and Convergence in Chinese Agriculture. J. Environ. Plan. Manag. 2024, 67, 1775–1804. [Google Scholar] [CrossRef]
- Yao, W.; Sun, Z. The Impact of the Digital Economy on High-Quality Development of Agriculture: A China Case Study. Sustainability 2023, 15, 5745. [Google Scholar] [CrossRef]
- Yang, C.; Ji, X.; Cheng, C.; Liao, S.; Obuobi, B.; Zhang, Y. Digital Economy Empowers Sustainable Agriculture: Implications for Farmers’ Adoption of Ecological Agricultural Technologies. Ecol. Indic. 2024, 159, 111723. [Google Scholar] [CrossRef]
- Zangiacomi, A.; Pessot, E.; Fornasiero, R.; Bertetti, M.; Sacco, M. Moving towards Digitalization: A Multiple Case Study in Manufacturing. Prod. Plan. Control 2020, 31, 143–157. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Blomsma, F.; Mikalef, P.; Li, J. The Smart Circular Economy: A Digital-Enabled Circular Strategies Framework for Manufacturing Companies. J. Bus. Res. 2020, 120, 241–261. [Google Scholar] [CrossRef]
- Tien, J.M. The next Industrial Revolution: Integrated Services and Goods. J. Syst. Sci. Syst. Eng. 2012, 21, 257–296. [Google Scholar] [CrossRef]
- Park, Y.; Geum, Y.; Lee, H. Toward Integration of Products and Services: Taxonomy and Typology. J. Eng. Technol. Manag. 2012, 29, 528–545. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.; Wan, X.; Yao, Y. Study on the Effect of Digital Economy on High-Quality Economic Development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef]
- Luo, S.; Yimamu, N.; Li, Y.; Wu, H.; Irfan, M.; Hao, Y. Digitalization and Sustainable Development: How Could Digital Economy Development Improve Green Innovation in China? Bus. Strategy Environ. 2023, 32, 1847–1871. [Google Scholar] [CrossRef]
- He, Y.; Jiao, Z.; Yang, J. Comprehensive Evaluation of Global Clean Energy Development Index Based on the Improved Entropy Method. Ecol. Indic. 2018, 88, 305–321. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Hosseinzadeh-Bandbafha, H.; Qasemi-Kordkheili, P.; Kouchaki-Penchah, H.; Riahi-Dorcheh, F. Applying Optimization Techniques to Improve of Energy Efficiency and GHG (Greenhouse Gas) Emissions of Wheat Production. Energy 2016, 103, 672–678. [Google Scholar] [CrossRef]
- Andersen, P.; Petersen, N.C. A Procedure for Ranking Efficient Units in Data Envelopment Analysis. Manag. Sci. 1993, 39, 1261–1264. [Google Scholar] [CrossRef]
- Zhou, L.-M.; Xie, X.-H.; Zhu, Z.-D.; Wang, L.-X.; Wu, J.-Y. Input-Output Efficiency of Agricultural Resources Based on the Water-Energy-Food Nexus. J. Agric. Resour. Environ. 2020, 16, e0257365. [Google Scholar]
- Weerasekara, S.; Wilson, C.; Lee, B.; Hoang, V.-N.; Managi, S.; Rajapaksa, D. The Impacts of Climate Induced Disasters on the Economy: Winners and Losers in Sri Lanka. Ecol. Econ. 2021, 185, 107043. [Google Scholar] [CrossRef]
- Chen, S.; Gong, B. Response and Adaptation of Agriculture to Climate Change: Evidence from China. J. Dev. Econ. 2021, 148, 102557. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Jat, H.S.; Singh, I.; Gora, M.; Kakraliya, M.; Bijarniya, D.; Sharma, P.C.; Jat, M.L. Energy and Economic Efficiency of Climate-Smart Agriculture Practices in a Rice–Wheat Cropping System of India. Sci. Rep. 2022, 12, 8731. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ding, S. Efficiency Improvement, Structural Change, and Energy Intensity Reduction: Evidence from Chinese Agricultural Sector. Energy Econ. 2021, 99, 105313. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, S.; Shi, H. Is It Possible to Reduce Agricultural Carbon Emissions through More Efficient Irrigation: Empirical Evidence from China. Water 2022, 14, 1218. [Google Scholar] [CrossRef]
- Shi, H.; Xu, H.; Gao, W.; Zhang, J.; Chang, M. The Impact of Energy Poverty on Agricultural Productivity: The Case of China. Energy Policy 2022, 167, 113020. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Schuermann, T.; Weiner, S.M. Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model. J. Bus. Econ. Stat. 2004, 22, 129–162. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The Lagrange Multiplier Test and Its Applications to Model Specification in Econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Frees, E.W.; Miller, T.W. Sales Forecasting Using Longitudinal Data Models. Int. J. Forecast. 2004, 20, 99–114. [Google Scholar] [CrossRef]
- Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Pesaran, M.H. A Simple Panel Unit Root Test in the Presence of Cross-Section Dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Su, L.; Ullah, A. Profile Likelihood Estimation of Partially Linear Panel Data Models with Fixed Effects. Econ. Lett. 2006, 92, 75–81. [Google Scholar] [CrossRef]
- Canay, I.A. A Simple Approach to Quantile Regression for Panel Data. Econom. J. 2011, 14, 368–386. [Google Scholar] [CrossRef]
- Feng, S.; Chong, Y.; Yang, Y.; Hao, X. Digitization and Total Factor Productivity: Evidence from China. Singap. Econ. Rev. 2022, 1–33. [Google Scholar] [CrossRef]
- Zhoufu, Y.; Fangwei, W.; Kaibin, Y. Labor Endowment Change, Technological Choice and Grain Planting Structure Adjustment. J. Financ. Econ. 2021, 47, 79–93. [Google Scholar]
- Govereh, J.; Jayne, T.S. Cash Cropping and Food Crop Productivity: Synergies or Trade-Offs? Agric. Econ. 2003, 28, 39–50. [Google Scholar]
- Achterbosch, T.J.; van Berkum, S.; Meijerink, G.W.; Asbreuk, H.; Oudendag, D. Cash Crops and Food Security: Contributions to Income, Livelihood Risk and Agricultural Innovation; LEI: Wageningen, the Netherlands, 2014. [Google Scholar]
- Gaetano, A.M. Off the Farm: Rural Chinese Women’s Experiences of Labor Mobility and Modernity in Post-Mao China (1984–2002); University of Southern California: Los Angeles, CA, USA, 2005. [Google Scholar]
- Long, H.; Liu, Y.; Li, X.; Chen, Y. Building New Countryside in China: A Geographical Perspective. Land Use Policy 2010, 27, 457–470. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Xu, Y.; Xue, Y. Decision-Making Mechanism of Farmers in Land Transfer Processes Based on Sustainable Livelihood Analysis Framework: A Study in Rural China. Land 2024, 13, 640. [Google Scholar] [CrossRef]
- Abate, M.C.; He, Z.; Cai, B.; Huang, Y.; Betelhemabraham, G.; Bayu, T.; Addis, A.K. Environmental Impact of Agricultural Land Transfer in China: A Systematic Review on Sustainability. Sustainability 2024, 16, 6498. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X. The impact of the digital economy on the behaviour of farmers in the transfer of farmland. Intell. Agric. Guide 2023, 3, 112–115. [Google Scholar] [CrossRef]
- Nie, X. Digital economy innovation, labour off-farm employment and shared prosperity. J. Tech. Econ. Manag. 2024, 40–45. [Google Scholar]
Variables | Observations | Mean | Standard Deviation | Min | Max |
---|---|---|---|---|---|
LnATE | 240 | −0.424 | 0.351 | −1.544 | 0.222 |
LnDE | 240 | −1.633 | 0.501 | −2.617 | −0.264 |
LnWRA | 240 | −2.146 | 1.202 | −4.923 | 0.571 |
LnAEE | 240 | 3.196 | 1.279 | 0.583 | 5.939 |
LnND | 240 | −2.294 | 1.036 | −7.169 | 0.964 |
LnERI | 240 | −6.200 | 0.914 | −10.022 | −3.709 |
Statistics | Probability | |
---|---|---|
Frees test | 3.307 *** | 0.0001 |
Friedman test | 40.956 * | 0.0695 |
Breusch–Pagan LM test | 604.41 *** | 0.0001 |
Pesaran CD test | 10.532 *** | 0.0001 |
Level | Difference of the First Order | Integration | |||
---|---|---|---|---|---|
I | I + T | I | I + T | ||
LLC test | |||||
LnATE | −0.31842 *** | −0.86594 *** | −1.24207 *** | −1.32299 *** | I (1) |
LnDE | −0.35841 | −0.94970 | −1.30371 *** | −1.36913 *** | I (1) |
LnWRA | −0.93447 | −1.11783 | −1.32972 *** | −1.42627 *** | I (1) |
LnND | −0.57860 | −0.85285 | −1.19507 *** | −1.38679 *** | I (1) |
LnAEE | −0.19917 | −0.64242 | −0.91364 *** | −1.13099 *** | I (1) |
LnERI | −0.79274 * | −1.22233 * | −1.50375 *** | −1.62972 *** | I (1) |
PP test | |||||
LnATE | −0.35129 *** | −0.98138 *** | −1.38976 *** | −1.49584 *** | I (1) |
LnDE | −0.40736 | −1.09469 | −1.47458 *** | −1.52114 *** | I (1) |
LnWRA | −1.06781 | −1.24955 | −1.47306 *** | −1.54437 *** | I (1) |
LnND | −0.63142 | −0.93365 ** | −1.33835 *** | −1.46378 *** | I (1) |
LnAEE | −0.21908 | −0.73768 | −1.00202 *** | −1.22309 *** | I (1) |
LnERI | −0.87101 *** | −1.33499 ** | −1.62875 *** | −1.74869 *** | I (1) |
Estimating Static Panel | |||||
---|---|---|---|---|---|
OLS | FE | RE | GLS | FGLS | |
LnDE | 0.238 *** | 0.300 *** | 0.293 *** | 0.238 *** | 0.230 *** |
(0.0429) | (0.0232) | (0.0229) | (0.0423) | (0.0173) | |
LnWRA | 0.045 *** | 0.023 | 0.030 | 0.045 *** | 0.044 *** |
(0.0161) | (0.0240) | (0.0211) | (0.0159) | (0.0077) | |
LnAEE | 0.053 *** | −0.029 | −0.016 | 0.053 *** | 0.054 *** |
(0.0150) | (0.0175) | (0.0162) | (0.0148) | (0.0079) | |
LnND | −0.042 ** | −0.003 | −0.004 | −0.042 ** | −0.040 *** |
(0.0195) | (0.007) | (0.0076) | (0.0192) | (0.0089) | |
LnERI | −0.053 ** | −0.034 *** | −0.033 *** | −0.053 ** | −0.047 *** |
(0.0255) | (0.0119) | (0.0118) | (0.0252) | (0.0130) | |
Constant | −0.534 ** | −0.009 | −0.044 | −0.534 ** | −0.496 *** |
(0.2159) | (0.1235) | (0.1297) | (0.2132) | (0.1031) | |
Observations | 240 | 240 | 240 | 240 | 240 |
FGLS | 2SLS | |||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
LnINF | 0.200 *** | |||
(0.0140) | ||||
LnINT | 0.261 *** | |||
(0.0277) | ||||
LnDI | 0.168 *** | |||
(0.0154) | ||||
LnDE | 0.565 *** | |||
(0.1874) | ||||
LnWRA | 0.048 *** | 0.057 *** | 0.041 *** | 0.048 *** |
(0.0072) | (0.0079) | (0.0084) | (0.0179) | |
LnAEE | 0.054 *** | 0.058 *** | 0.053 *** | 0.021 |
(0.0070) | (0.0083) | (0.0090) | (0.0241) | |
LnND | −0.037 *** | −0.039 *** | −0.045 *** | −0.032 |
(0.0087) | (0.0100) | (0.0094) | (0.0222) | |
LnERI | −0.045 *** | −0.067 *** | −0.051 *** | 0.027 |
(0.0127) | (0.0130) | (0.0133) | (0.0527) | |
Constant | 0.300 *** | −0.276 ** | −0.432 *** | 0.630 |
(0.1038) | (0.1358) | (0.1152) | (0.6881) | |
Weak identification tests | 15.287 | |||
Observations | 240 | 240 | 240 | 240 |
LnATE | |||||
---|---|---|---|---|---|
Quantiles | |||||
q10 | q25 | q50 | q75 | q90 | |
LnDE | 0.378 *** | 0.279 *** | 0.189 *** | 0.226 *** | 0.230 *** |
(0.0572) | (0.0429) | (0.0421) | (0.0589) | (0.0643) | |
LnWRA | 0.125 *** | 0.069 *** | 0.033 | 0.003 | 0.003 |
(0.0203) | (0.0209) | (0.0235) | (0.0141) | (0.0111) | |
LnAEE | 0.090 *** | 0.060 *** | 0.043 *** | 0.013 | 0.020 * |
(0.0263) | (0.0195) | (0.0134) | (0.0184) | (0.0122) | |
LnND | −0.072 *** | −0.030 | −0.047 *** | −0.026 | −0.003 |
(0.0274) | (0.0198) | (0.0150) | (0.0231) | (0.0139) | |
LnERI | 0.090 * | −0.046 | −0.076 ** | −0.084 *** | −0.092 *** |
(0.0515) | (0.0387) | (0.0368) | (0.0249) | (0.0167) | |
Constant | 0.211 | −0.497 ** | −0.718 *** | −0.490 * | −0.407 * |
(0.3170) | (0.2412) | (0.2402) | (0.2821) | (0.2261) | |
R2 | 0.3010 | 0.3173 | 0.2676 | 0.2749 | 0.2842 |
Variables | North | South |
---|---|---|
LnDE | 0.259 *** | 0.300 *** |
(0.0429) | (0.0235) | |
LnWRA | 0.048 *** | 0.071 *** |
(0.0116) | (0.0163) | |
LnAEE | 0.149 *** | −0.015 |
(0.0145) | (0.0116) | |
LnND | −0.027 ** | −0.054 *** |
(0.0133) | (0.0135) | |
LnERI | −0.024 | −0.024 |
(0.0226) | (0.0207) | |
Constant | −0.563 *** | 0.018 |
(0.1954) | (0.1667) | |
Observations | 120 | 120 |
Variables | |||||||
---|---|---|---|---|---|---|---|
LnATE | LnOFW | LnAFS | LnALT | LnATE | LnATE | LnATE | |
LnOFW | 0.275 *** | ||||||
(0.0600) | |||||||
LnAFS | 0.129 *** | ||||||
(0.0165) | |||||||
LnALT | 0.038 * | ||||||
(0.0214) | |||||||
LnDE | 0.230 *** | 0.236 *** | 0.177 *** | 0.521 *** | 0.143 *** | 0.210 *** | 0.197 *** |
(0.0173) | (0.0128) | (0.0553) | (0.0378) | (0.0250) | (0.0172) | (0.0230) | |
LnWRA | 0.044 *** | −0.009 ** | 0.185 *** | −0.063 *** | 0.045 *** | 0.028 *** | 0.049 *** |
(0.0077) | (0.0041) | (0.0245) | (0.0115) | (0.0072) | (0.0076) | (0.0080) | |
LnAEE | 0.054 *** | 0.009 * | 0.080 *** | −0.082 *** | 0.047 *** | 0.037 *** | 0.055 *** |
(0.008) | (0.0051) | (0.0212) | (0.0123) | (0.0087) | (0.0086) | (0.0081) | |
LnND | −0.040 *** | −0.009 ** | −0.135 *** | 0.024 | −0.037 *** | −0.029 *** | −0.044 *** |
(0.0089) | (0.0041) | (0.0301) | (0.0182) | (0.0091) | (0.0085) | (0.0092) | |
LnERI | −0.047 *** | 0.014 ** | 0.011 | −0.069 *** | −0.054 *** | −0.037 *** | −0.051 *** |
(0.0130) | (0.0068) | (0.0430) | (0.0204) | (0.0128) | (0.0120) | (0.0134) | |
Constant | −0.496 *** | 0.017 | −1.748 *** | −0.551 *** | −0.532 *** | −0.177 * | −0.533 *** |
(0.1031) | (0.0652) | (0.3400) | (0.1691) | (0.1068) | (0.1023) | (0.1073) | |
Observations | 240 | 240 | 240 | 240 | 240 | 240 | 240 |
Unconditional β-Convergence Tests | Conditional β-Convergence Tests | |||||||
---|---|---|---|---|---|---|---|---|
All | Hight | Middle | Low | All | Hight | Middle | Low | |
L.lnATE | 0.9734 *** | 0.8604 *** | 1.1054 | 0.9477 *** | 0.7536 *** | 0.5038 *** | 0.8057 | 0.6634 *** |
(0.0374) | (0.0734) | (0.0977) | (0.0325) | (0.0664) | (0.1111) | (0.1590) | (0.0794) | |
L.lnDE | 0.0798 *** | 0.1500 ** | 0.0218 | 0.0954 | ||||
(0.0283) | (0.0489) | (0.0551) | (0.0672) | |||||
LnWRA | 0.0214 | −0.0057 | 0.0762 ** | −0.0062 | ||||
(0.0214) | (0.0355) | (0.0272) | (0.0415) | |||||
LnAEE | 0.0190 | −0.0254 | 0.0575 *** | 0.0839 | ||||
(0.0153) | (0.0283) | (0.0148) | (0.0486) | |||||
LnND | 0.0001 | 0.0002 | 0.0067 | −0.0124 | ||||
(0.0059) | (0.0151) | (0.0045) | (0.0093) | |||||
LnERI | −0.0135 | −0.0001 | −0.0262 * | −0.0103 | ||||
(0.0114) | (0.0211) | (0.0117) | (0.0346) | |||||
Intercept | 0.0450 ** | 0.0130 | 0.1044 ** | 0.0382 | −0.0318 | 0.2021 | −0.1481 | −0.3339 |
(0.0171) | (0.0155) | (0.0459) | (0.0224) | (0.1077) | (0.1665) | (0.1228) | (0.3504) | |
Observations | 210 | 70 | 70 | 70 | 210 | 70 | 70 | 70 |
Province | 30 | 10 | 10 | 10 | 30 | 10 | 10 | 10 |
Conclusion | con | con | di | con | con | con | con | con |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, P.; Ding, K. Transforming Agriculture: Empirical Insights into How the Digital Economy Elevates Agricultural Productivity in China. Sustainability 2024, 16, 10225. https://doi.org/10.3390/su162310225
Xu H, Wang P, Ding K. Transforming Agriculture: Empirical Insights into How the Digital Economy Elevates Agricultural Productivity in China. Sustainability. 2024; 16(23):10225. https://doi.org/10.3390/su162310225
Chicago/Turabian StyleXu, Hao, Peilin Wang, and Kai Ding. 2024. "Transforming Agriculture: Empirical Insights into How the Digital Economy Elevates Agricultural Productivity in China" Sustainability 16, no. 23: 10225. https://doi.org/10.3390/su162310225
APA StyleXu, H., Wang, P., & Ding, K. (2024). Transforming Agriculture: Empirical Insights into How the Digital Economy Elevates Agricultural Productivity in China. Sustainability, 16(23), 10225. https://doi.org/10.3390/su162310225