Dynamics of Zinder’s Urban Landscape: Implications for Sustainable Land Use Management and Environmental Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Image Processing and Classification
- ( Kappa coefficient.
- is the number of rows in the matrix.
- is the number of observations in row and column .
- and are marginal totals for row and column i, respectively.
- is the total number of observations.
2.4. Analysis of Land Use and Land Cover Change
2.5. Urban Growth Patterns
- = the density of the ring .
- the built-up area of the ring .
- The area of the ring .
2.6. Urban Growth Types
- = length of the shared edge.
- = perimeter of the new object.
3. Results
3.1. Assessment of LULC Change
3.2. Analysis of Urban Growth Types
3.3. Analysis of Urban Growth Direction and Pattern
4. Discussion
4.1. The Dynamics of LULC
4.2. Urban Growth Types and Patterns
4.3. Policy Implications
4.4. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, Z.; Yang, G.; Zhong, Y.; Zhao, Y. Spatiotemporal change analysis and future scenario of lulc using the CA-ANN approach: A case study of the greater bay area, China. Land 2021, 10, 584. [Google Scholar] [CrossRef]
- Olorunfemi, I.E.; Fasinmirin, J.T.; Olufayo, A.A.; Komolafe, A.A. GIS and remote sensing-based analysis of the impacts of land use/land cover change (LULCC) on the environmental sustainability of Ekiti State, southwestern Nigeria. Environ. Dev. Sustain. 2020, 22, 661–692. [Google Scholar] [CrossRef]
- Kumar, K.S.; Kumari, K.P.; Bhaskar, P.U. Application of Markov chain & cellular automata based model for prediction of Urban transitions. In Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT, Chennai, India, 3–5 March 2016; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2016; pp. 4007–4012. [Google Scholar]
- Adhikari, S.; Southworth, J. Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: A remote sensing approach. Remote Sens. 2012, 4, 3215–3243. [Google Scholar] [CrossRef]
- Shikary, C.; Rudra, S. Measuring Urban Land Use Change and Sprawl Using Geospatial Techniques: A Study on Purulia Municipality, West Bengal, India. J. Indian Soc. Remote Sens. 2020, 49, 433–448. [Google Scholar] [CrossRef]
- Attri, P.; Chaudhry, S.; Sharma, S. Remote sensing & GIS based approaches for LULC change detection—A review. Int. J. Curr. Eng. Technol. 2015, 5, 12. [Google Scholar]
- Cheruto, M.; Kauti, M.; Kisangau, D.; Kariuki, P. Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. J. Remote Sens. GIS 2016, 5, 4. [Google Scholar] [CrossRef]
- Barros, J.X. Urban Growth in Latin American Cities Exploring Urban Dynamics Through Agent-Based Simulation; University College London: London, UK, 2004. [Google Scholar]
- Stephens, C.M.; Lall, U.; Johnson, F.M.; Marshall, L.A. Landscape changes and their hydrologic effects: Interactions and feedbacks across scales. Earth Sci. Rev. 2021, 212, 103466. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2018; pp. 9–31. [Google Scholar]
- Bharath, H.A.; Chandan, M.C.; Vinay, S.; Ramachandra, T.V. Modelling urban dynamics in rapidly urbanising Indian cities. Egypt. J. Remote Sens. Space Sci. 2018, 21, 201–210. [Google Scholar] [CrossRef]
- Ibn, A.R.; Rudith, I.; King, S. The Contribution of Rural Urban Migration to Migrants’ Economic Development in Tamale. Res. Humanit. Soc. Sci. 2017, 7, 76. [Google Scholar]
- Selod, H.; Shilpi, F. Rural-urban migration in developing countries: Lessons from the literature. Reg. Sci. Urban Econ. 2021, 91, 103713. [Google Scholar] [CrossRef]
- Lall, S.V.; Selod, H.; Shalizi, Z. Rural-Urban Migration in Developing Countries: A Survey of Theoretical Predictions and Empirical Findings; World Bank Publications: Chicago, IL, USA, 2006. [Google Scholar]
- Manu, A.; Twumasi, Y.A.; Lu, K.S.; Coleman, T.L. Predicting urban growth of a developing country city using a statistical modeling approach. Int. J. Geomat. Geosci. 2015, 5, 603–613. [Google Scholar]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.P.; Dobigny, G. Urban Landscape Structure of a Fast-Growing African City: The Case of Niamey (Niger). Urban Sci. 2019, 3, 63. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Bhattacharya, R.K.; Das Chatterjee, N.; Das, K. Land use and Land Cover change and its resultant erosion susceptible level: An appraisal using RUSLE and Logistic Regression in a tropical plateau basin of West Bengal, India. Environ. Dev. Sustain. 2021, 23, 1411–1446. [Google Scholar] [CrossRef]
- Watson, K.E.; Gardiner, K.M.; Singleton, J.A. The impact of extreme heat events on hospital admissions to the Royal Hobart Hospital. J. Public Health 2020, 42, 333–339. [Google Scholar] [CrossRef]
- Wald, A.; Demorest, S. Race to Beat the Heat: Climate Change Impacts Physical Activity. J. Nurse Pract. 2022, 18, 388–394. [Google Scholar] [CrossRef]
- Hussain, S.; Lu, L.; Mubeen, M.; Nasim, W.; Karuppannan, S.; Fahad, S.; Tariq, A.; Mousa, B.G.; Mumtaz, F.; Aslam, M. Spatiotemporal Variation in Land Use Land Cover in the Response to Local Climate Change Using Multispectral Remote Sensing Data. Land 2022, 11, 595. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Zhong, C.; Zhang, Z.; Liu, Q. Mapping Typical Urban LULC from Landsat Imagery without Training Samples or Self-Defined Parameters. Remote Sens. 2017, 9, 700. [Google Scholar] [CrossRef]
- Derdouri, A.; Wang, R.; Murayama, Y.; Osaragi, T. Understanding the links between LULC changes and sushi in cities: Insights from two-decadal studies (2001–2020). Remote Sens. 2021, 13, 3654. [Google Scholar] [CrossRef]
- OECD. Land Cover Monitoring 2011. Available online: http://oe.cd/land-cover (accessed on 9 November 2022).
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Mishra, G.K.; Deshmukh, A.M. Urban Sprawl in the context of proximity factors using Shannon’s Entropy Index and fractal dimensions: A case of Lucknow. J. Spat. Sci. 2024, 69, 1–27. [Google Scholar] [CrossRef]
- Rahaman, M.; Dutta, S.; Sahana, M.; Das, D.N. Analysing urban sprawl and spatial expansion of Kolkata urban agglomeration using geospatial approach. In Applications and Challenges of Geospatial Technology: Potential Future Trends; Springer: Cham, Switzerland, 2018; pp. 205–221. [Google Scholar]
- Diksha; Kumar, A. Analysing urban sprawl and land consumption patterns in major capital cities in the Himalayan region using geoinformatics. Appl. Geogr. 2017, 89, 112–123. [Google Scholar] [CrossRef]
- Dhanaraj, K.; Angadi, D.P. Urban expansion quantification from remote sensing data for sustainable land-use planning in Mangaluru, India. Remote Sens. Appl. 2021, 23, 100602. [Google Scholar]
- Sudhira, H.S.; Ramachandra, T.V.; Jagadish, K.S. Urban sprawl: Metrics, dynamics and modelling using GIS. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 29–39. [Google Scholar] [CrossRef]
- Akın, A.; Erdoğan, M.A. Analysing temporal and spatial urban sprawl change of Bursa city using landscape metrics and remote sensing. Model Earth Syst. Environ. 2020, 6, 1331–1343. [Google Scholar] [CrossRef]
- Robert, S.; Fox, D.; Boulay, G.; Grandclément, A.; Garrido, M.; Pasqualini, V.; Prévost, A.; Schleyer-Lindenmann, A.; Trémélo, M.-L. A framework to analyse urban sprawl in the French Mediterranean coastal zone. Reg. Environ. Chang. 2019, 19, 559–572. [Google Scholar] [CrossRef]
- Africa’s Fastest Growing Cities 2020–2035|Statista. Available online: https://www.statista.com/statistics/1234653/africa-s-fastest-growing-cities/ (accessed on 4 November 2024).
- Leslie, R.C.C. Zinder, Point de Chute des Réfugiés Face à Boko Haram. Le Monde, 17 February 2015. Available online: https://www.lemonde.fr/afrique/video/2015/02/17/niger-zinder-point-de-chute-des-refugies-face-a-boko-haram_4578250_3212.html (accessed on 5 August 2024).
- Zinder Population. World Population Review. 2024. Available online: https://worldpopulationreview.com/world-cities/zinder-population (accessed on 31 July 2024).
- Khan, A.; Sudheer, M. Machine learning-based monitoring and modeling for spatio-temporal urban growth of Islamabad. Egyptian J. Remote Sens. Space Sci. 2022, 25, 541–550. [Google Scholar] [CrossRef]
- Rokni, K. Investigating the Impact of Pan Sharpening on the Accuracy of Land Cover Mapping in Landsat Oli Imagery. GeCar 2023, 49, 12–18. [Google Scholar] [CrossRef]
- Mushore, T.D.; Mutanga, O.; Odindi, J.; Sadza, V.; Dube, T. Pansharpened landsat 8 thermal-infrared data for improved Land Surface Temperature characterization in a heterogeneous urban landscape. Remote Sens. Appl. 2022, 26, 100728. [Google Scholar] [CrossRef]
- Lin, C.; Wu, C.C.; Tsogt, K.; Ouyang, Y.C.; Chang, C.I. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random Forests and Decision Trees. Int. J. Comput. Sci. Issues 2012, 9, 272. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Albertini, C.; Gioia, A.; Iacobellis, V.; Petropoulos, G.P.; Manfreda, S. Assessing multi-source random forest classification and robustness of predictor variables in flooded areas mapping. Remote Sens. Appl. 2024, 35, 101239. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIsci Remote Sens. 2019, 57, 1–20. [Google Scholar] [CrossRef]
- Pradhan, B.; Al-sharif, A.A.A.; Abdullahi, S. Urban Sprawl Assessment. In Spatial Modeling and Assessment of Urban Form—Analysis of Urban Growth: From Sprawl to Compact Using Geospatial Data; Springer: Cham, Switzerland, 2017; pp. 61–92. [Google Scholar]
- Acheampong, R.A.; Agyemang, F.S.K.; Abdul-Fatawu, M. Quantifying the spatio-temporal patterns of settlement growth in a metropolitan region of Ghana. GeoJournal 2017, 82, 823–840. [Google Scholar] [CrossRef]
- Wei, G.; He, B.J.; Sun, P.; Liu, Y.; Li, R.; Ouyang, X.; Luo, K.; Li, S. Evolutionary trends of urban expansion and its sustainable development: Evidence from 80 representative cities in the belt and road initiative region. Cities 2023, 138, 104353. [Google Scholar] [CrossRef]
- Ren, P.; Gan, S.; Yuan, X.; Zong, H.; Xie, X. Spatial Expansion and Sprawl Quantitative Analysis of Mountain City Built-Up Area. Commun. Comput. Inf. Sci. 2013, 398, 166–176. [Google Scholar]
- Sapena, M.; Ruiz, L.A. Analysis of urban development by means of multi-temporal fragmentation metrics from LULC data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 1411–1418. [Google Scholar] [CrossRef]
- Crawford, C.J.; Roy, D.P.; Arab, S.; Barnes, C.; Vermote, E.; Hulley, G.; Gerace, A.; Choate, M.; Engebreston, C.; Micijevic, E.; et al. The 50-year Landsat collection 2 archive. Sci. Remote Sens. 2023, 8, 100103. [Google Scholar] [CrossRef]
- Mosammam, H.M.; Nia, J.T.; Khani, H.; Teymouri, A.; Kazemi, M. Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. Egypt. J. Remote Sens. Space Sci. 2017, 20, 103–116. [Google Scholar]
- AlQadhi, S.; Mallick, J.; Talukdar, S.; Bindajam, A.A.; Shohan, A.A.A.; Shahfahad. Quantification of urban sprawl for past-to-future in Abha City, Saudi Arabia. CMES Comput. Model. Eng. Sci. 2021, 129, 755–786. [Google Scholar] [CrossRef]
- Illiassou, A.S.; Boubacar, M.M.; Abou Soufianou, S.; Ali, M.; Mahamane, S. Dynamics of a third world city: Case of Niamey, Niger. J. Geogr. Reg. Plan. 2015, 8, 120–130. [Google Scholar]
- Institut National de la Statistique du Niger. Rapport «Agriculture et Conditions de vie des Ménages. Available online: https://www.stat-niger.org/?publication_recente=rapport-agriculture-et-conditions-de-vie-des-menages (accessed on 11 July 2024).
- PDC. Plan de Developpement Communal (PDC) 3ème Arrondissement de la ville de Zinder; PDC: Essex, UK, 2015. [Google Scholar]
- Fonds International de Développement Agricole. Programme Spécial pour le Niger (PSN). Available online: https://www.ifad.org/en/w/projects/1100000441 (accessed on 11 July 2024).
- Doulay, K.; Diouf, A.; Sadda, A.S.; Yakubu, I.B. Landuse/landcover change process in a tropical semi-arid zone: Case of two rural communes (Chadakori and Saé-Saboua) in Maradi region, Republic of Niger. Landsc. Environ. 2019, 13, 1–12. [Google Scholar]
- Das, S.; Angadi, D.P. Land use land cover change detection and monitoring of urban growth using remote sensing and GIS techniques: A micro-level study. GeoJournal 2021, 87, 2101–2123. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Y. The Coupling between Urban Expansion and Population Growth: An Analysis of Urban Agglomerations in China (2005–2020). Sustainability 2021, 13, 7250. [Google Scholar] [CrossRef]
- Banai, R. Urban sprawl: Definitions, data, methods of measurement, and environmental consequences. J. Sustain. Educ. 2014, 7, 1–15. [Google Scholar]
- Ismael, H.M. Urban form study: The sprawling city—Review of methods of studying urban sprawl. GeoJournal 2021, 86, 1785–1796. [Google Scholar] [CrossRef]
- Chettry, V. A Critical Review of Urban Sprawl Studies. J. Geovisualiz. Spat. Anal. 2023, 7, 28. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.F.; Lv, Z.Q.; Yao, N.; Wei, J.B. Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 409–417. [Google Scholar] [CrossRef]
- Wilson, E.H.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a geospatial model to quantify, describe and map urban growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995, 10, 133–142. [Google Scholar] [CrossRef]
- Jun, H.J.; Kim, D.; Kim, J.H.; Heo, J.P. Detection of infill development and contributing factors using deep learning and multilevel modeling. Cities 2024, 150, 105019. [Google Scholar] [CrossRef]
- Heimlich, R.E.; Anderson, W.D. Development at the Urban Fringe and Beyond: Impacts on Agriculture and Rural Land; Dedication; Economic Research Service (ERS) of the U.S. Department of Agriculture (USDA): Washington, DC, USA, 2001.
- Abdoulaye, A. Croissance urbaine et dysfonctionnements: Cas de l’arrondissement communal Zinder III. Ann. De L’université De Parakou 2019, 2. [Google Scholar]
- Wu, D.; Zheng, L.; Wang, Y.; Gong, J.; Li, J.; Chen, Q. Urban expansion patterns and their driving forces analysis: A comparison between Chengdu-Chongqing and Middle Reaches of Yangtze River urban agglomerations. Environ. Monit Assess 2023, 195, 1121. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef]
Satellite | Sensor ID | Path/Row | Spatial Resolution | Cloud Cover (%) | Acquisition Date |
---|---|---|---|---|---|
Landsat 8 | OLI_TIRS | 188/51 | 30 m | 0.02 | 10 April 2022 |
Landsat 7 | ETM | 188/51 | 30 m | 0.00 | 20 April 2011 |
Landsat 7 | ETM | 188/51 | 30 m | 5.00 | 05 April 2000 |
Landsat 4 | TM | 188/51 | 30 m | 0.00 | 19 March 1988 |
Class Name | Class Description |
---|---|
Vegetation | Moderate vegetation cover, including shrubs, plantation, and tree gardens. |
Built-up | Residential areas, including urban, industrial, commercial, and all kinds of roads. |
Others | Bare land, rocks, and agricultural lands. |
2000 | |||||
---|---|---|---|---|---|
1988 | Vegetation | Built-up | Others | Total | |
Vegetation | 1.63 | 0.46 | 5.64 | 7.73 | |
Built-up | 0.00 | 2.51 | 0.00 | 2.51 | |
Others | 3.13 | 0.84 | 85.80 | 89.76 | |
Total | 4.76 | 3.80 | 91.44 | 100 | |
2011 | |||||
2000 | Vegetation | Built-up | Others | Total | |
Vegetation | 1.73 | 0.43 | 2.61 | 4.77 | |
Built-up | 0.00 | 3.80 | 0.00 | 3.80 | |
Others | 4.57 | 5.05 | 81.81 | 91.43 | |
Total | 6.30 | 9.28 | 84.42 | 100 | |
2022 | |||||
2011 | Vegetation | Built-up | Others | Total | |
Vegetation | 2.13 | 0.90 | 3.27 | 6.30 | |
Built-up | 0.00 | 9.28 | 0.00 | 9.28 | |
Others | 2.05 | 3.86 | 78.51 | 84.42 | |
Total | 4.18 | 14.04 | 81.78 | 100 |
Intermediate Period | T1 | T2 | T3 |
---|---|---|---|
Built-up area growth rate (%) | 51.66 | 141.15 | 33.90 |
Population growth rate 1 (%) | 39.16 | 78.44 | 82.21 |
Ring ID | T1 | T2 | T3 |
---|---|---|---|
1 | 0.78 | 1.76 | 0.91 |
2 | 0.01 | 0.05 | 1.00 |
3 | 0.00 | 0.00 | 0.17 |
4 | 0.01 | 0.01 | 0.08 |
5 | 0.00 | 0.00 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doulay Seydou, K.; Morenikeji, W.; Diouf, A.; Dicko, K.; Erdanaev, E.; Loewner, R.; Okhimamhe, A.A. Dynamics of Zinder’s Urban Landscape: Implications for Sustainable Land Use Management and Environmental Conservation. Sustainability 2024, 16, 10263. https://doi.org/10.3390/su162310263
Doulay Seydou K, Morenikeji W, Diouf A, Dicko K, Erdanaev E, Loewner R, Okhimamhe AA. Dynamics of Zinder’s Urban Landscape: Implications for Sustainable Land Use Management and Environmental Conservation. Sustainability. 2024; 16(23):10263. https://doi.org/10.3390/su162310263
Chicago/Turabian StyleDoulay Seydou, Kadiza, Wole Morenikeji, Abdoulaye Diouf, Kagou Dicko, Elbek Erdanaev, Ralf Loewner, and Appollonia Aimiosino Okhimamhe. 2024. "Dynamics of Zinder’s Urban Landscape: Implications for Sustainable Land Use Management and Environmental Conservation" Sustainability 16, no. 23: 10263. https://doi.org/10.3390/su162310263
APA StyleDoulay Seydou, K., Morenikeji, W., Diouf, A., Dicko, K., Erdanaev, E., Loewner, R., & Okhimamhe, A. A. (2024). Dynamics of Zinder’s Urban Landscape: Implications for Sustainable Land Use Management and Environmental Conservation. Sustainability, 16(23), 10263. https://doi.org/10.3390/su162310263