Biosorption Capability of Chitosan for Removal of Cs-137 and/or Co-60 from Radioactive Waste Solution Simulates
Abstract
:1. Introduction
2. Experimental Approach
2.1. Materials
2.2. Characterization of the CS under Consideration
2.2.1. Elemental Analysis
2.2.2. Fourier Transform Infrared Spectroscopy (FT-IR)
2.2.3. Thermal Analysis
2.2.4. Scanning Electron Microscope (SEM)
- -
- Homogeneous spreading of CS particles that reflects the distinguishing nature of CS.
- -
- Great porous construction with extra flat pores (dark spots).
- -
- The average pore size varied from 243.2 to 708.2 nm. A near-round structure for pores was observed, which provides an extra surface area for effective biosorption.
- -
- Repeated compact arrangements were found.
2.3. Biosorption Experiments
3. Results and Discussion
3.1. Biosorption of Cs-137 and/or Co-60 from Spiked Wastewater with CS
3.2. Consequence Chemical Mechanism of CS Biosorption Capability
3.3. Effect of Radio-ion Species
3.4. Influence of Interaction Time
3.5. Effect of pH of the Treated Spiked Solution
3.6. Effect of Treatment Temperature
3.7. Effect of Biosorbent Dosage
3.8. Impact of Initial Radioactivity Content in the Treated Solution
3.9. Biosorption Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adamantiades, A.; Kessides, I. Nuclear Power for Sustainable Development: Current Status and Future Prospects. Energy Policy 2009, 37, 5149–5166. [Google Scholar] [CrossRef]
- Valdovinos, V.; Monroy-Guzman, F.; Bustos, E. Treatment Methods for Radioactive Wastes and Its Electrochemical Applications. In Environmental Risk Assessment of Soil Contamination; IntechOpen: London, UK, 2014; ISBN 953511235X. [Google Scholar]
- Igberase, E.; Osifo, P.; Ofomaja, A. The Adsorption of Copper (II) Ions by Polyaniline Graft Chitosan Beads from Aqueous Solution: Equilibrium, Kinetic and Desorption Studies. J. Environ. Chem. Eng. 2014, 2, 362–369. [Google Scholar] [CrossRef]
- Fan, C.; Li, K.; He, Y.; Wang, Y.; Qian, X.; Jia, J. Evaluation of Magnetic Chitosan Beads for Adsorption of Heavy Metal Ions. Sci. Total Environ. 2018, 627, 1396–1403. [Google Scholar] [CrossRef]
- Ramos, S.N.d.C.; Xavier, A.L.P.; Teodoro, F.S.; Elias, M.M.C.; Gonçalves, F.J.; Gil, L.F.; de Freitas, R.P.; Gurgel, L.V.A. Modeling Mono-and Multi-Component Adsorption of Cobalt (II), Copper (II), and Nickel (II) Metal Ions from Aqueous Solution onto a New Carboxylated Sugarcane Bagasse; Part I: Batch Adsorption Study; RIUFIP: Fresno, CA, USA, 2015. [Google Scholar]
- Dawoud, M.M.A.; Hegazi, M.M.; Saleh, H.M.; El Helew, W.K. Removal of Stable and Radio Isotopes from Wastewater by Using Modified Microcrystalline Cellulose Based on Taguchi L16. Int. J. Environ. Sci. Technol. 2022, 20, 1289–1300. [Google Scholar] [CrossRef]
- Reda, S.M.; Saleh, H.M. Calculation of the Gamma Radiation Shielding Efficiency of Cement-Bitumen Portable Container Using MCNPX Code. Prog. Nucl. Energy 2021, 142, 104012. [Google Scholar] [CrossRef]
- Saleh, H.M.; Bondouk, I.I.; Salama, E.; Mahmoud, H.H.; Omar, K.; Esawii, H.A. Asphaltene or Polyvinylchloride Waste Blended with Cement to Produce a Sustainable Material Used in Nuclear Safety. Sustainabilitiy 2022, 14, 3525. [Google Scholar] [CrossRef]
- Shwita, F.; El-Faramawy, N.; Ramadan, W.; Ramadan, M. Investigation of the Mechanical Properties, Morphology and the Attenuation Behavior of Gamma Rays for OPC Pastes Mingled with Two Different Glass Wastes. Constr. Build. Mater. 2021, 313, 125475. [Google Scholar] [CrossRef]
- Machado, N.C.F.; de Jesus, L.A.M.; Pinto, P.S.; de Paula, F.G.F.; Alves, M.O.; Mendes, K.H.A.; Mambrini, R.V.; Barrreda, D.; Rocha, V.; Santamaría, R. Waste-Polystyrene Foams-Derived Magnetic Carbon Material for Adsorption and Redox Supercapacitor Applications. J. Clean. Prod. 2021, 313, 127903. [Google Scholar] [CrossRef]
- Saleh, H.M.; Eskander, S.B. Innovative Cement-Based Materials for Environmental Protection and Restoration. In New Materials in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 613–641. [Google Scholar]
- Saleh, H.M. Some Applications of Clays in Radioactive Waste Management. In Clays and Clay Minerals: Geological Origin, Mechanical Properties and Industrial Applications; Wesley, L.R., Ed.; Nova Science Publication Inc.: New York, NY, USA, 2014; pp. 403–415. ISBN 9781631177804. [Google Scholar]
- Naushad, M.; Ahamad, T.; Alothman, Z.A.; Shar, M.A.; AlHokbany, N.S.; Alshehri, S.M. Synthesis, Characterization and Application of Curcumin Formaldehyde Resin for the Removal of Cd2+ from Wastewater: Kinetics, Isotherms and Thermodynamic Studies. J. Ind. Eng. Chem. 2015, 29, 78–86. [Google Scholar] [CrossRef]
- Panda, P.K.; Yang, J.-M.; Chang, Y.-H.; Su, W.-W. Modification of Different Molecular Weights of Chitosan by P-Coumaric Acid: Preparation, Characterization and Effect of Molecular Weight on Its Water Solubility and Antioxidant Property. Int. J. Biol. Macromol. 2019, 136, 661–667. [Google Scholar] [CrossRef]
- Al-Qodah, Z. Biosorption of Heavy Metal Ions from Aqueous Solutions by Activated Sludge. Desalination 2006, 196, 164–176. [Google Scholar] [CrossRef]
- Moattar, F.; Hayeripour, S. Application of Chitin and Zeolite Adsorbents for Treatment of Low Level Radioactive Liquid Wastes. Int. J. Environ. Sci. Technol. 2004, 1, 45–50. [Google Scholar] [CrossRef]
- Dziedzic, I.; Kertmen, A. Methods of Chitosan Identification: History and Trends. Lett. Appl. NanoBioSci 2023, 12, 94. [Google Scholar]
- Ssekatawa, K.; Byarugaba, D.K.; Wampande, E.M.; Moja, T.N.; Nxumalo, E.; Maaza, M.; Sackey, J.; Ejobi, F.; Kirabira, J.B. Isolation and Characterization of Chitosan from Ugandan Edible Mushrooms, Nile Perch Scales and Banana Weevils for Biomedical Applications. Sci. Rep. 2021, 11, 4116. [Google Scholar] [CrossRef]
- Davydova, V.N.; Yermak, I.M.; Gorbach, V.I.; Krasikova, I.N.; Soloveva, T.F. Interaction of Bacterial Endotoxins with Chitosan. Effect of Endotoxin Structure, Chitosan Molecular Mass, and Ionic Strength of the Solution on the Formation of the Complex. Biochem. C/C BIOKHIMIIA 2000, 65, 1082–1090. [Google Scholar]
- Hao, G.; Hu, Y.; Shi, L.; Chen, J.; Cui, A.; Weng, W.; Osako, K. Physicochemical Characteristics of Chitosan from Swimming Crab (Portunus Trituberculatus) Shells Prepared by Subcritical Water Pretreatment. Sci. Rep. 2021, 11, 1646. [Google Scholar] [CrossRef]
- Kucukgulmez, A.; Celik, M.; Yanar, Y.; Sen, D.; Polat, H.; Kadak, A.E. Physicochemical Characterization of Chitosan Extracted from Metapenaeus Stebbingi Shells. Food Chem. 2011, 126, 1144–1148. [Google Scholar] [CrossRef]
- Sahin, M.; Kocak, N.; Arslan, G.; Ucan, H.I. Synthesis of Crosslinked Chitosan with Epichlorohydrin Possessing Two Novel Polymeric Ligands and Its Use in Metal Removal. J. Inorg. Organomet. Polym. Mater. 2011, 21, 69–80. [Google Scholar] [CrossRef]
- Tan, W.; Li, Q.; Dong, F.; Zhang, J.; Luan, F.; Wei, L.; Chen, Y.; Guo, Z. Novel Cationic Chitosan Derivative Bearing 1, 2, 3-Triazolium and Pyridinium: Synthesis, Characterization, and Antifungal Property. Carbohydr. Polym. 2018, 182, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, H.; Song, Z.; Qian, X. Preparation and Application of Maleic Anhydride-Acylated Chitosan for Wet Strength Improvement of Paper. BioResources 2013, 8, 3901–3911. [Google Scholar] [CrossRef]
- Bulgariu, L.; Balan, C.; Bulgariu, D.; Macoveanu, M. Valorisation of Romanian Peat for the Removal of Some Heavy Metals from Aqueous Media. Desalin. Water Treat. 2014, 52, 5891–5899. [Google Scholar] [CrossRef]
- Shanmugapriya, A.; Hemalatha, M.; Scholastica, B.; Augustine, T.B. Adsorption Studies of Lead (II) and Nickel (II) Ions on Chitosan-G-Polyacrylonitrile. Der Pharma Chem. 2013, 5, 141–155. [Google Scholar]
- Gerente, C.; Lee, V.K.C.; Cloirec, P.L.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption—Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.-S.; Park, J.M. The Past, Present, and Future Trends of Biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Benavente, M. Adsorption of Metallic Ions onto Chitosan: Equilibrium and Kinetic Studies. 2008. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2:13755 (accessed on 27 May 2008).
- Nouri, L.; Ghodbane, I.; Hamdaoui, O.; Chiha, M. Batch Sorption Dynamics and Equilibrium for the Removal of Cadmium Ions from Aqueous Phase Using Wheat Bran. J. Hazard. Mater. 2007, 149, 115–125. [Google Scholar] [CrossRef]
- Igberase, E.; Osifo, P. Equilibrium, Kinetic, Thermodynamic and Desorption Studies of Cadmium and Lead by Polyaniline Grafted Cross-Linked Chitosan Beads from Aqueous Solution. J. Ind. Eng. Chem. 2015, 26, 340–347. [Google Scholar] [CrossRef]
- Mekawy, Z.A.; Moussa, S.I.; Mousa, A.M.; Dakroury, G.A.; Allan, K.F. Sorption of 60Co (II) from Aqueous Solutions onto Biosynthesized Zinc Oxide Nanocomposites. J. Radioanal. Nucl. Chem. 2022, 331, 2331–2347. [Google Scholar] [CrossRef]
- Devi, B.; Goswami, M.; Rabha, S.; Kalita, S.; Sarma, H.P.; Devi, A. Efficacious Sorption Capacities for Pb (II) from Contaminated Water: A Comparative Study Using Biowaste and Its Activated Carbon as Potential Adsorbents. ACS Omega 2023, 8, 15141–15151. [Google Scholar] [CrossRef]
- Chadha, U.; Bhardwaj, P.; Selvaraj, S.K.; Kumari, K.; Isaac, T.S.; Panjwani, M.; Kulkarni, K.; Mathew, R.M.; Satheesh, A.M.; Pal, A. Retracted: Advances in Chitosan Biopolymer Composite Materials: From Bioengineering, Wastewater Treatment to Agricultural Applications. Mater. Res. Express 2022, 9, 52002. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.-M. Application of Chitosan, a Natural Aminopolysaccharide, for Dye Removal from Aqueous Solutions by Adsorption Processes Using Batch Studies: A Review of Recent Literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Evans, J.R.; Davids, W.G.; MacRae, J.D.; Amirbahman, A. Kinetics of Cadmium Uptake by Chitosan-Based Crab Shells. Water Res. 2002, 36, 3219–3226. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Immobilization of Pb (II), Cd (II) and Ni (II) Ions on Kaolinite and Montmorillonite Surfaces from Aqueous Medium. J. Environ. Manage. 2008, 87, 46–58. [Google Scholar] [CrossRef]
- Çoruh, S.; Ergun, O.N. Ni2+ Removal from Aqueous Solutions Using Conditioned Clinoptilolites: Kinetic and Isotherm Studies. Environ. Prog. Sustain. Energy Off. Publ. Am. Inst. Chem. Eng. 2009, 28, 162–172. [Google Scholar] [CrossRef]
- Al-Manhel, A.J.; Al-Hilphy, A.R.S.; Niamah, A.K. Extraction of Chitosan, Characterisation and Its Use for Water Purification. J. Saudi Soc. Agric. Sci. 2018, 17, 186–190. [Google Scholar] [CrossRef]
- Anitha, T. Synthesis of Nano-Sized Chitosan Blended Polyvinyl Alcohol for the Removal of Eosin Yellow Dye from Aqueous Solution. J. Water Process Eng. 2016, 13, 127–136. [Google Scholar]
- Salam, M.A.; Makki, M.S.I.; Abdelaal, M.Y.A. Preparation and Characterization of Multi-Walled Carbon Nanotubes/Chitosan Nanocomposite and Its Application for the Removal of Heavy Metals from Aqueous Solution. J. Alloys Compd. 2011, 509, 2582–2587. [Google Scholar] [CrossRef]
- Nga, N.K.; Chau, N.T.T.; Viet, P.H. Preparation and Characterization of a Chitosan/MgO Composite for the Effective Removal of Reactive Blue 19 Dye from Aqueous Solution. J. Sci. Adv. Mater. Devices 2020, 5, 65–72. [Google Scholar] [CrossRef]
- Marrakchi, F.; Hameed, B.H.; Hummadi, E.H. Mesoporous Biohybrid Epichlorohydrin Crosslinked Chitosan/Carbon–Clay Adsorbent for Effective Cationic and Anionic Dyes Adsorption. Int. J. Biol. Macromol. 2020, 163, 1079–1086. [Google Scholar] [CrossRef]
- Fatombi, J.K.; Idohou, E.A.; Osseni, S.A.; Agani, I.; Neumeyer, D.; Verelst, M.; Mauricot, R.; Aminou, T. Adsorption of Indigo Carmine from Aqueous Solution by Chitosan and Chitosan/Activated Carbon Composite: Kinetics, Isotherms and Thermodynamics Studies. Fibers Polym. 2019, 20, 1820–1832. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the Art for the Biosorption Process—A Review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef]
- Vidal, R.R.L.; Moraes, J.S. Removal of Organic Pollutants from Wastewater Using Chitosan: A Literature Review. Int. J. Environ. Sci. Technol. 2019, 16, 1741–1754. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Peng, H.; Wang, Z.; Wu, J.; Liu, Z. Dye Adsorption from Aqueous Solution by Cellulose/Chitosan Composite: Equilibrium, Kinetics, and Thermodynamics. Fibers Polym. 2018, 19, 340–349. [Google Scholar] [CrossRef]
- Pang, Y.L.; Tan, J.H.; Lim, S.; Chong, W.C. A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies, Kinetics, Isotherms and Thermodynamics. Polymers 2021, 13, 3009. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Dehghan, A.; Alidadi, H.; Dolatabadi, M.; Mehrabpour, M.; Converti, A. Removal of Methylene Blue Dye from Aqueous Solutions by a New Chitosan/Zeolite Composite from Shrimp Waste: Kinetic and Equilibrium Study. Korean J. Chem. Eng. 2017, 34, 1699–1707. [Google Scholar] [CrossRef]
- Jabar, J.M.; Odusote, Y.A.; Alabi, K.A.; Ahmed, I.B. Kinetics and Mechanisms of Congo-Red Dye Removal from Aqueous Solution Using Activated Moringa Oleifera Seed Coat as Adsorbent. Appl. Water Sci. 2020, 10, 136. [Google Scholar] [CrossRef]
Biosorbent | First Stage | Second Stage | Remain Chart after 800 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
Onset, °C | Offset, °C | Peak Max., °C | Mass Loss, % | Onset, °C | Offset, °C | Peak Max., °C | Mass Loss, % | ||
CS | 43.65 | 129 | 88.8 | −4.5 | 276 | 341 | 307 | −24 | ≈48% |
Contact Time, h | Biosorption Efficiency, % | |||
---|---|---|---|---|
Mixture * | ||||
Co-60 | Cs-137 | Co-60 | Cs-137 | |
1/2 | 17.62 | 93.63 | 93.93 | 54.17 |
1 | 32.95 | 94.04 | 95.83 | 57.74 |
2 | 59.77 | 94.24 | 97.53 | 62.50 |
3 | 88.51 | 94.35 | 98.40 | 66.67 |
4 | 90.04 | 92.28 | 98.70 | 69.05 |
24 | 90.42 | 92.57 | 98.77 | 70.24 |
48 | 92.91 | 92.72 | 98.87 | 70.60 |
72 | 93.30 | 92.83 | 98.97 | 71.13 |
96 | 93.87 | 92.96 | 99.07 | 71.54 |
120 | 93.06 | 93.07 | 99.17 | 72.62 |
144 | 94.25 | 93.17 | 99.23 | 72.92 |
168 | 99.52 | 93.26 | 99.3 | 73.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, H.H.; Eskander, S.B.; Saleh, H.M. Biosorption Capability of Chitosan for Removal of Cs-137 and/or Co-60 from Radioactive Waste Solution Simulates. Sustainability 2024, 16, 1104. https://doi.org/10.3390/su16031104
Mahmoud HH, Eskander SB, Saleh HM. Biosorption Capability of Chitosan for Removal of Cs-137 and/or Co-60 from Radioactive Waste Solution Simulates. Sustainability. 2024; 16(3):1104. https://doi.org/10.3390/su16031104
Chicago/Turabian StyleMahmoud, Hazem H., Samir B. Eskander, and Hosam M. Saleh. 2024. "Biosorption Capability of Chitosan for Removal of Cs-137 and/or Co-60 from Radioactive Waste Solution Simulates" Sustainability 16, no. 3: 1104. https://doi.org/10.3390/su16031104
APA StyleMahmoud, H. H., Eskander, S. B., & Saleh, H. M. (2024). Biosorption Capability of Chitosan for Removal of Cs-137 and/or Co-60 from Radioactive Waste Solution Simulates. Sustainability, 16(3), 1104. https://doi.org/10.3390/su16031104