How Does Artificial Intelligence Impact Green Development? Evidence from China
Abstract
:1. Introduction
2. Literature Review
2.1. Green Development
2.2. Artificial Intelligence Applications
2.3. Artificial Intelligence and Green Development
3. Mechanistic Analysis
3.1. Direct Impacts
3.2. Indirect Impacts
3.3. Spatial Spillover Effects of AI on Green Development
4. Materials and Methods
4.1. Modeling
4.2. Variable Selection
4.2.1. Explained Variables
4.2.2. Explanatory Variables
4.2.3. Mediating Variables
4.2.4. Control Variables
4.2.5. Data Sources and Descriptive Statistics
5. Results
5.1. Basic Regression Results
5.2. Robustness Test
5.3. Heterogeneity
6. Mechanism Analysis
7. Further Study: Space Overflow
8. Discussion, Conclusions, and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, H.T.; Hao, Y.; Ren, S.Y. How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China. Energy Econ. 2020, 91, 104880. [Google Scholar] [CrossRef]
- Xu, L.; Tan, J.L. Financial development, industrial structure and natural resource utilization efficiency in China. Resour. Policy 2020, 66, 101642. [Google Scholar] [CrossRef]
- Dolge, K.; Blumberga, D. Economic growth in contrast to GHG emission reduction measures in Green Deal context. Ecol. Indic. 2021, 130, 108153. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Goralski, M.A.; Tan, T.K. Artificial intelligence and poverty alleviation: Emerging innovations and their implications for management education and sustainable development. Int. J. Manag. Educ. Oxf. 2022, 20, 100662. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda. Technol. Forecast. Soc. Chang. 2021, 162, 120392. [Google Scholar] [CrossRef]
- Rammer, C.; Fernández, G.P.; Czarnitzki, D. Artificial intelligence and industrial innovation: Evidence from German firm-level data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Rock, D.; Syverson, C. Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 23–57. [Google Scholar]
- Lee, C.C.; Qin, S.; Li, Y.Y. Does industrial robot application promote green technology innovation in the manufacturing industry? Technol. Forecast. Soc. Chang. 2022, 183, 121893. [Google Scholar] [CrossRef]
- Lee, C.C.; Yuan, Z.H.; Wang, Q.R. How does information and communication technology affect energy security? International evidence. Energy Econ. 2022, 109, 105969. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, Y.R.; Pan, A.; Han, M.C.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Information and Communication Technology, electricity consumption and economic growth in OECD countries: A panel data analysis. Int. J. Elec. Power 2016, 76, 185–193. [Google Scholar] [CrossRef]
- Meadows, D.; Randers, J. The Limits to Growth: The 30-Year Update; Routledge: London, UK, 2004. [Google Scholar] [CrossRef]
- Fabozzi, F.J.; Focardi, S.; Ponta, L.; Rivoire, M.; Mazza, D. The economic theory of qualitative green growth. Struct. Chang. Econ. Dyn. 2022, 61, 242–254. [Google Scholar] [CrossRef]
- Garau, G. Total factor productivity and relative prices: The case of Italy. Natl. Acc. Rev. 2022, 4, 16–37. [Google Scholar] [CrossRef]
- Pittman, R.W. Multilateral Productivity Comparisons with Undesirable Outputs. Econ. J. 1983, 93, 883–891. [Google Scholar] [CrossRef]
- Chung, Y.H.; Fare, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Sahoo, S.; Lo, C.Y. Smart manufacturing powered by recent technological advancements: A review. J. Manuf. Syst. 2022, 64, 236–250. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Su, Y.; Fan, Q.M. Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China’s provinces. Technol. Forecast. Soc. Chang. 2022, 180, 121727. [Google Scholar] [CrossRef]
- Yang, Y.P.; Wu, D.; Xu, M.; Yang, M.T.; Zou, W.J. Capital misallocation, technological innovation, and green development efficiency: Empirical analysis based on China provincial panel data. Environ. Sci. Pollut. Res. 2022, 29, 65535–65548. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Chatterjee, C. Does environmental regulation indirectly induce upstream innovation? New evidence from India. Res. Policy 2017, 46, 939–955. [Google Scholar] [CrossRef]
- Cantú-Ortiz, F.J.; Sánchez, N.G.; Garrido, L.; Terashima-Marin, H.; Brena, R.F. An artificial intelligence educational strategy for the digital transformation. Int. J. Interact. Des. Manuf. 2020, 14, 1195–1209. [Google Scholar] [CrossRef]
- Borland, J.; Coelli, M. Are Robots Taking Our Jobs? Aust. Econ. Rev. 2017, 50, 377–397. [Google Scholar] [CrossRef]
- Yan, X.; Zhu, B.; Ma, C. Employment under robot impact: Evidence from China manufacturing. Stat. Res. 2020, 37, 74–87. [Google Scholar] [CrossRef]
- Afuah, A. Redefining firm boundaries in the face of the Internet: Are firms really shrinking? Acad. Manag. Rev. 2003, 28, 34–53. [Google Scholar] [CrossRef]
- Townsend, A.M. The Internet and the rise of the new network cities, 1969–1999. Environ. Plann. B 2001, 28, 39–58. [Google Scholar] [CrossRef]
- Beverelli, C.; Fiorini, M.; Hoekman, B. Services trade policy and manufacturing productivity: The role of institutions. J. Int. Econ. 2017, 104, 166–182. [Google Scholar] [CrossRef]
- Pisano, P.; Pironti, M.; Rieple, A. Identify Innovative Business Models: Can Innovative Business Models Enable Players to React to Ongoing or Unpredictable Trends? Entrep. Res. J. 2015, 5, 181–199. [Google Scholar] [CrossRef]
- Shao, B.B.M.; Lin, W.T. Measuring the value of information technology in technical efficiency with stochastic production frontiers. Inf. Softw. Tech. 2001, 43, 447–456. [Google Scholar] [CrossRef]
- Czernich, N.; Falck, O.; Kretschmer, T.; Woessmann, L. Broadband Infrastructure and Economic Growth. Econ. J. 2011, 121, 505–532. [Google Scholar] [CrossRef]
- Kuhn, P.; Skuterud, M. Internet job search and unemployment durations. Am. Econ. Rev. 2004, 94, 218–232. [Google Scholar] [CrossRef]
- Vu, K.M. ICT as a source of economic growth in the information age: Empirical evidence from the 1996-2005 period. Telecommun. Policy 2011, 35, 357–372. [Google Scholar] [CrossRef]
- Graetz, G.; Michaels, G. Robots at Work. Rev. Econ. Stat. 2018, 100, 753–768. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Polit. Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef]
- Yang, C.-H. How Artificial Intelligence Technology Affects Productivity and Employment: Firm-level Evidence from Taiwan. Res. Policy 2022, 51, 104536. [Google Scholar] [CrossRef]
- Sarkar, M.; Sarkar, B. How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system? J. Clean. Prod. 2020, 262, 121200. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.Y.; Ramsey, T.S.; Hewings, G.J.D. Will researching digital technology really empower green development? Technol. Soc. 2021, 66, 101638. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z. Intelligence and Green Total Factor Productivity Based on China’s Province-Level Manufacturing Data. Sustainability 2021, 13, 4989. [Google Scholar] [CrossRef]
- Masanet, E. How to stop data centres from gobbling up the worlds electricity. Nature 2018, 561, 163–166. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Wang, E.Z.; Lee, C.C.; Li, Y.Y. Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy Econ. 2022, 105, 105748. [Google Scholar] [CrossRef]
- Luan, F.S.; Yang, X.H.; Chen, Y.; Regis, P.J. Industrial robots and air environment: A moderated mediation model of population density and energy consumption. Sustain. Prod. Consum. 2022, 30, 870–888. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. J. Bus. Res. 2020, 121, 283–314. [Google Scholar] [CrossRef]
- Zhou, Y.; Zang, J.Y.; Miao, Z.Z.; Minshall, T. Upgrading Pathways of Intelligent Manufacturing in China: Transitioning across Technological Paradigms. Engineering 2019, 5, 691–701. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, Z.H. Chasing Green: The Synergistic Effect of Industrial Intelligence on Pollution Control and Carbon Reduction and Its Mechanisms. Sustainability 2023, 15, 6401. [Google Scholar] [CrossRef]
- Khan, W.Z.; Rehman, M.H.; Zangoti, H.M.; Afzal, M.K.; Armi, N.; Salah, K. Industrial internet of things: Recent advances, enabling technologies and open challenges. Comput. Electr. Eng. 2020, 81, 106522. [Google Scholar] [CrossRef]
- Dauvergne, P. Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Rev. Int. Polit. Econ. 2022, 29, 696–718. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J.; Kaboli, A.; Alahi, A. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ. Sci. Ecotech. 2024, 19, 100330. [Google Scholar] [CrossRef]
- Fink, L.; Yogev, N.; Even, A. Business intelligence and organizational learning: An empirical investigation of value creation processes. Inf. Manag. 2017, 54, 38–56. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sust. Energ. Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Gopalakrishnan, M.; Subramaniyan, M.; Skoogh, A. Data-driven machine criticality assessment—Maintenance decision support for increased productivity. Prod. Plan. Control. 2022, 33, 1–19. [Google Scholar] [CrossRef]
- Zhang, Z. The impact of the artificial intelligence industry on the number and structure of employments in the digital economy environment. Technol. Forecast. Soc. Chang. 2023, 197, 122881. [Google Scholar] [CrossRef]
- Serban, A.C.; Lytras, M.D. Artificial Intelligence for Smart Renewable Energy Sector in Europe—Smart Energy Infrastructures for Next Generation Smart Cities. IEEE Access 2020, 8, 77364–77377. [Google Scholar] [CrossRef]
- Fraga-Lamas, P.; Lopes, S.I.; Fernández-Caramés, T.M. Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case. Sensors 2021, 21, 5745. [Google Scholar] [CrossRef] [PubMed]
- Bashshur, R.L.; Reardon, T.G.; Shannon, G.W. Telemedicine: A new health care delivery system. Annu. Rev. Publ. Health 2000, 21, 613–637. [Google Scholar] [CrossRef] [PubMed]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Tang, R. Digital economy drives tourism development-empirical evidence based on the UK. Econ Res-Ekon Istraz 2022. [Google Scholar] [CrossRef]
- Binz, C.; Truffer, B. Global Innovation Systems-A conceptual framework for innovation dynamics in transnational contexts. Res. Policy 2017, 46, 1284–1298. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Wu, H.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Hao, Y.; Li, Y.; Guo, Y.X.; Chai, J.X.; Yang, C.X.; Wu, H.T. Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China? Energy Policy 2022, 164, 112912. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Schiederig, T.; Tietze, F.; Herstatt, C. Green innovation in technology and innovation management—An exploratory literature review. RD Manag. 2012, 42, 180–192. [Google Scholar] [CrossRef]
- Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Chang. 2019, 146, 297–303. [Google Scholar] [CrossRef]
- Wang, K.Y.; Wu, M.; Sun, Y.; Shi, X.P.; Sun, A.; Zhang, P. Resource abundance, industrial structure, and regional carbon emissions efficiency in China. Resour. Policy 2019, 60, 203–214. [Google Scholar] [CrossRef]
- Fan, G.; Wang, X.L.; Ma, G.R. The Contribution of Marketization to China’s Economic Growth*. China Econ. 2012, 7, 4–14. [Google Scholar]
- Shahbaz, M.; Song, M.L.; Ahmad, S.; Vo, X.V. Does economic growth stimulate energy consumption? The role of human capital and R&D expenditures in China. Energy Econ. 2022, 105, 105662. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y. How does high-speed railway affect green innovation efficiency? A perspective of innovation factor mobility. J. Clean. Prod. 2020, 265, 121623. [Google Scholar] [CrossRef]
- Loures, L.; Ferreira, P. Energy consumption as a condition for per capita carbon dioxide emission growth: The results of a qualitative comparative analysis in the European Union. Renew. Sustain. Energy Rev. 2019, 110, 220–225. [Google Scholar] [CrossRef]
- Lind, J.T.; Mehlum, H. With or Without U? The Appropriate Test for a U-Shaped Relationship. Oxf. Bull. Econ. Stat. 2010, 72, 109–118. [Google Scholar] [CrossRef]
- Xiang, X.; Yang, G.; Sun, H. The Impact of the Digital Economy on Low-Carbon, Inclusive Growth: Promoting or Restraining. Sustainability 2022, 14, 7187. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y. Does intellectual property protection stimulate digital economy development? J. Appl. Econ. 2022, 25, 723–730. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, P.; Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis. Energy Policy 2013, 56, 653–662. [Google Scholar] [CrossRef]
- Kopka, A.; Grashof, N. Artificial intelligence: Catalyst or barrier on the path to sustainability? Technol. Forecast. Soc. Chang. 2022, 175, 121318. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
Dependent variable | |
GEG | Super-SBM model |
Core independent variable | |
AI | Bartik instrumental variables |
Mediating variables | |
GPAs | Green patent applications |
GPG | Green patents authorization |
Ais | The ratio of value added in the tertiary industry to the value added in the secondary industry |
Thile | Thile model |
Control variable | |
Edu | The proportion of national education expenditure to local general budget expenditure |
Inf | Per capita urban road area |
Mark | The marketization index |
Urb | The proportion of the population in urban areas |
Ens | The proportion of coal consumption to total energy consumption |
Trade | The total imports and exports as a proportion of GDP |
Variables | N | Mean | Sd | Min | Max |
---|---|---|---|---|---|
GEG | 300 | 0.269 | 0.340 | 0.035 | 1.491 |
AI | 300 | 2.611 | 3.645 | 0.013 | 26.650 |
GPA | 300 | 7.808 | 1.358 | 3.434 | 10.800 |
GPG | 300 | 7.302 | 1.377 | 2.833 | 10.262 |
Ais | 300 | 0.033 | 0.412 | −0.694 | 1.642 |
Thile | 300 | −0.800 | 0.745 | −4.075 | 0.344 |
Edu | 300 | −1.822 | 0.163 | −2.313 | −1.504 |
Inf | 300 | 2.673 | 0.361 | 1.396 | 3.266 |
Mark | 300 | 2.018 | 0.268 | 1.212 | 2.442 |
Urb | 300 | 4.022 | 0.208 | 3.521 | 4.495 |
Ens | 300 | 4.244 | 0.590 | 0.593 | 5.265 |
Trade | 300 | −1.766 | 0.951 | −4.371 | 0.460 |
Variable | Re | Fe | ||
---|---|---|---|---|
Linear | Nonlinear | Linear | Nonlinear | |
AI | 0.012 *** | 0.054 *** | 0.203 *** | 0.030 *** |
(0.004) | (0.010) | (0.036) | (0.005) | |
AI2 | −0.002 *** | −0.002 *** | ||
(0.000) | (0.000) | |||
Edu | −1.396 | −0.564 | 1.561 ** | 2.597 ** |
(0.834) | (0.824) | (0.728) | (1.236) | |
Inf | 0.022 *** | 0.019 *** | 0.255 *** | 0.125 * |
(0.007) | (0.007) | (0.068) | (0.068) | |
Mark | 0.013 | 0.055 | 0.023 | 0.009 |
(0.140) | (0.136) | (0.013) | (0.023) | |
Urb | −0.010 ** | −0.017 *** | −2.617 *** | −0.067 *** |
(0.005) | (0.005) | (0.452) | (0.015) | |
Ens | −0.550 *** | −0.509 *** | −0.494 *** | −0.002 *** |
(0.045) | (0.044) | (0.039) | (0.000) | |
Tei | −0.064 | −0.068 * | 0.054 *** | −0.565 |
(0.043) | (0.041) | (0.017) | (0.347) | |
Cons | 0.834 ** | 0.860 ** | 9.788 *** | 1.047 |
(0.347) | (0.335) | (1.709) | (0.721) | |
Time effect | No | No | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes |
Hausman | 134.52 [0.000] | 64.48 [0.000] | ||
R2 | 0.4872 | 0.5453 | 0.6555 | 0.5454 |
N | 300 | 300 | 300 | 300 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
GEG | GEG | GEG | GEG | |
AI | 0.159 *** (0.020) | 0.034 ** (0.015) | 0.251 *** (0.047) | 0.107 *** (0.037) |
AI2 | −0.005 *** (0.001) | −0.023 * (0.013) | −0.001 *** (0.000) | −0.006 *** (0.002) |
cons | −2.305 ** (1.061) | 7.381 ** (3.128) | 3.112 ** (1.266) | |
AR(1) | 0.068 | |||
AR(2) | 0.244 | |||
Sargan test | 0.290 | |||
Controls | Yes | Yes | Yes | |
Time effect | Yes | Yes | Yes | |
Individual effect | Yes | Yes | Yes | |
N | 300 | 300 | 300 | 300 |
Variable | Capital-Intensive Area | Labor-Intensive Area | Technology-Intensive Area | Non-Technology-Intensive Area |
---|---|---|---|---|
AI | 1.720 ** (0.562) | 0.039 *** (0.009) | 0.999 *** (0.280) | 0.099 *** (0.015) |
AI2 | −0.001 *** (0.000) | −0.002 *** (0.000) | −0.001 *** (0.000) | −0.008 *** (0.002) |
Cons | 24.774 *** (5.693) | −0.712 *** (0.197) | 10.681 ** (3.503) | 8.011 ** (3.702) |
R2 | 0.779 | 0.515 | 0.694 | 0.505 |
Controls | Yes | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes |
N | 70 | 230 | 80 | 220 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
GPA | GEG | GPG | GEG | Ais | GEG | Thile | GEG | |
GPA | 0.056 *** (0.014) | |||||||
GPG | 0.133 *** (0.027) | |||||||
Ais | 0.183 ** (0.075) | |||||||
Thile | 0.049 *** (0.016) | |||||||
AI | 0.039 *** (0.004) | 0.059 *** (0.005) | 0.040 *** (0.003) | 0.084 *** (0.007) | 0.432 *** (0.106) | 0.020 ** (0.008) | 0.410 *** (0.040) | 0.020 *** (0.005) |
AI2 | −0.054 *** (0.005) | −0.002 *** (0.000) | −0.064 *** (0.006) | −0.003 *** (0.000) | −0.000 *** (0.000) | −0.001 *** (0.000) | −0.001 *** (0.000) | −0.001 *** (0.000) |
Cons | 1.103 (0.677) | 5.145 *** (1.302) | 2.054 (1.34) | 4.837 ** (1.742) | 3.108 *** (0.497) | 8.333 *** (2.682) | −0.862 (1.543) | −0.166 (0.216) |
R2 | 0.927 | 0.563 | 0.944 | 0.325 | 0.856 | 0.664 | 0.604 | 0.503 |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Time effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Individual effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Year | AI | GEG | ||||
---|---|---|---|---|---|---|
Moran’s I | Z-Statistic | p Value | Moran’s I | Z-Statistic | p Value | |
2010 | 0.124 | 1.413 | 0.079 | 0.246 | 2.664 | 0.004 |
2011 | 0.136 | 1.524 | 0.064 | 0.232 | 2.516 | 0.006 |
2012 | 0.130 | 1.470 | 0.071 | 0.223 | 2.419 | 0.008 |
2013 | 0.129 | 1.453 | 0.073 | 0.216 | 2.344 | 0.010 |
2014 | 0.121 | 1.381 | 0.084 | 0.207 | 2.274 | 0.011 |
2015 | 0.116 | 1.340 | 0.090 | 0.202 | 2.228 | 0.013 |
2016 | 0.116 | 1.338 | 0.091 | 0.199 | 2.203 | 0.014 |
2017 | 0.129 | 1.446 | 0.074 | 0.194 | 2.162 | 0.015 |
2018 | 0.114 | 1.298 | 0.097 | 0.188 | 2.113 | 0.017 |
2019 | 0.116 | 1.319 | 0.094 | 0.184 | 2.076 | 0.019 |
Model | W1 | W2 | |||
---|---|---|---|---|---|
Ind | Both | Ind | Both | ||
AI | Main | 0.061 *** (0.011) | 0.219 ** (0.098) | 0.043 *** (0.012) | 0.288 *** (0.099) |
Wx | 0.070 *** (0.023) | 0.110 ** (0.051) | 0.200 *** (0.059) | 2.795 *** (0.677) | |
Direct | 0.064 *** (0.012) | 0.221 ** (0.101) | 0.042 *** (0.012) | 0.239 ** (0.101) | |
Indirect | 0.087 *** (0.025) | 0.094 ** (0.045) | 0.194 *** (0.052) | 1.960 *** (0.575) | |
Total | 0.150 *** (0.031) | 0.315 *** (0.103) | 0.237 *** (0.058) | 2.199 *** (0.593) | |
AI2 | Main | −0.002 *** (0.000) | −0.000 *** (0.000) | −0.002 *** (0.000) | −0.001 *** (0.000) |
Wx | −0.003 *** (0.001) | −0.001 *** (0.000) | −0.008 *** (0.002) | −0.002 ** (0.001) | |
Direct | −0.002 *** (0.000) | −0.000 *** (0.000) | −0.002 *** (0.000) | −0.001 *** (0.000) | |
Indirect | −0.004 *** (0.001) | −0.001 ** (0.000) | −0.007 *** (0.002) | −0.001 * (0.000) | |
Total | −0.006 *** (0.001) | −0.001 *** (0.000) | −0.009 *** (0.002) | −0.001 ** (0.001) | |
Controls | Yes | Yes | Yes | Yes | |
sigma2_e | 0.021 *** (0.000) | 0.012 *** (0.001) | 0.018 *** (0.001) | 0.012 *** (0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Wang, S.; Wang, X. How Does Artificial Intelligence Impact Green Development? Evidence from China. Sustainability 2024, 16, 1260. https://doi.org/10.3390/su16031260
Chen M, Wang S, Wang X. How Does Artificial Intelligence Impact Green Development? Evidence from China. Sustainability. 2024; 16(3):1260. https://doi.org/10.3390/su16031260
Chicago/Turabian StyleChen, Mingyue, Shuting Wang, and Xiaowen Wang. 2024. "How Does Artificial Intelligence Impact Green Development? Evidence from China" Sustainability 16, no. 3: 1260. https://doi.org/10.3390/su16031260
APA StyleChen, M., Wang, S., & Wang, X. (2024). How Does Artificial Intelligence Impact Green Development? Evidence from China. Sustainability, 16(3), 1260. https://doi.org/10.3390/su16031260