Enhancing the Performance of a Hazardous Waste Incineration Facility through the Usage of a Dedicated Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Issues of Conducting the Thermal Process in a Rotary Kiln
- calorific value and elemental composition,
- content of chlorine and other halogens,
- content of alkaline salts and other compounds of this nature,
- pH, flammability and reactivity.
- usage of the kiln lining,
- emissions exceeding standards,
- temporary retention of the material in the kiln.
- Action of alkaline compounds:
- Action of acidic compounds:
2.2. Proposed Optimization Solution
- enable compatibility with systems used in waste incineration plants,
- ensure flexibility in selecting the mixture,
- ensure the stability of the solution, consistent with the adopted assumptions,
- enable different modes of use.
2.3. Algorithm for Selecting Components for the Mixture
- —mass of particular components,
- n—number of components,
- —reference value of the parameter,
- —weight of individual components,
- —weighted average of the parameter with index i, which is defined as:
- —mass of the j-th component of the mixture,
- —value of the parameter i for mixture component j.
2.4. Functionality of the Application
- selecting waste included in the mixture and its mass,
- generating the composition of subsequent portions of input material,
- updating of the mass of available waste,
- assigning weights to individual waste parameters,
- generating a report on the simulations performed.
3. Results and Discussion
3.1. Results of the Simulations—Stability of the Solution
3.2. Results of the Conducted Simulations—Introduction of Parameter Weights
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kowalski, Z.; Makara, A. Sustainable Systems for the Production of District Heating Using Meat-Bone Meal as Biofuel: A Polish Case Study. Energies 2022, 15, 3615. [Google Scholar] [CrossRef]
- Akpan, V.E.; Olukanni, D.O. Hazardous Waste Management: An African Overview. Recycling 2020, 5, 15. [Google Scholar] [CrossRef]
- Staroń, P.; Kowalski, Z.; Staroń, A.; Banach, M. Thermal treatment of waste from the meat industry in high scale rotary kiln. Int. J. Environ. Sci. Technol. 2017, 14, 1157–1168. [Google Scholar] [CrossRef]
- Iheukwumere-Esotu, L.O.; Yunusa-Kaltungo, A. Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant. Sustainability 2021, 13, 4619. [Google Scholar] [CrossRef]
- Bojanovský, J.; Máša, V.; Hudák, I.; Skryja, P.; Hopjan, J. Rotary Kiln, a Unit on the Border of the Process and Energy Industry—Current State and Perspectives. Sustainability 2022, 14, 13903. [Google Scholar] [CrossRef]
- Boateng, A.A. Rotary Kilns: Transport Phenomena and Transport Processes; Butterworth-Heinemann: Burlington, MA, USA, 2016; ISBN 978-0-12-803780-5. [Google Scholar]
- Richers, U. Thermische Behandlung von Abfällen in Drehrohröfen-eine Darstellung anhand der Literatur, Institut für Technische Chemie Projekt Schadstoff- und Abfallarme Verfahren; Forschungszentrum Karlsruhe GmbH: Karlsruhe, Germany, 1995. [Google Scholar]
- Liu, P.; Li, B.; Cheung, S.C.P.; Wu, W. Material and energy flows in rotary kiln-electric furnace smelting of ferronickel alloy with energy saving. Appl. Therm. Eng. 2016, 109, 542–559. [Google Scholar] [CrossRef]
- EUR-Lex Glossary. Available online: https://eur-lex.europa.eu/EN/legal-content/glossary/hazardous-waste.html (accessed on 8 January 2024).
- Kantorek, M.; Jesionek, K.; Polesek-Karczewska, S.; Ziółkowski, P.; Stajnke, M.; Badur, J. Thermal utilization of meat-and-bone meal using the rotary kiln pyrolyzer and the fluidized bed boiler—The performance of pilot-scale installation. Renew. Energy 2021, 164, 1447–1456. [Google Scholar] [CrossRef]
- Vermeulen, I.; Van Caneghem, J.; Block, C.; Dewulf, W.; Vandecasteele, C. Environmental impact of incineration of calorific industrial waste: Rotary kiln vs. cement kiln. Waste Manag. 2012, 32, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Rozporządzeniem Ministra Środowiska z dnia 21 stycznia 2016 w Sprawie Wymagań Dotyczących Prowadzenia Procesu Termicznego Przekształcania Odpadów Oraz Sposobów Postępowania z Odpadami Powstałymi w Wyniku Tego Procesu (Dz.U. 2016 Poz. 108). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160000108 (accessed on 4 December 2023).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. COM/2020/98, Brussels. 2020. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:9903b325-6388-11ea-b735-01aa75ed71a1.0017.02/DOC_1&format=PDF (accessed on 5 December 2023).
- Tsai, C.-H.; Shen, Y.-H.; Tsai, W.-T. Sustainable Material Management of Industrial Hazardous Waste in Taiwan: Case Studies in Circular Economy. Sustainability 2021, 13, 9410. [Google Scholar] [CrossRef]
- Poranek, N.; Łaźniewska-Piekarczyk, B.; Lombardi, L.; Czajkowski, A.; Bogacka, M.; Pikoń, K. Green Deal and Circular Economy of Bottom Ash Waste Management in Building Industry—Alkali (NaOH) Pre-Treatment. Materials 2022, 15, 3487. [Google Scholar] [CrossRef] [PubMed]
- Rozporządzenie Ministra Gospodarki z 16 lipca 2015 r. w Sprawie Dopuszczania Odpadów do Składowania na Składowiskach (Dz.U. z 2015 r., poz. 1277). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001277 (accessed on 4 December 2023).
- World Counts. Available online: https://www.theworldcounts.com/challenges/waste/hazardous-waste-statistics (accessed on 20 October 2023).
- Poranek, N.; Łaźniewska-Piekarczyk, B.; Czajkowski, A.; Pikoń, K. MSWIBA Formation and Geopolymerisation to Meet the United Nations Sustainable Development Goals (SDGs) and Climate Mitigation. Buildings 2022, 12, 1083. [Google Scholar] [CrossRef]
- Jaworski, T.; Wajda, A. Research on the Flow Parameters of Waste Motion in a Rotary Kiln with the Use of the Tracer Method. Sensors 2023, 23, 6526. [Google Scholar] [CrossRef]
- Beckmann, M.; Fontana, A.; Gehrmann, H.-J. Mathematical Modeling and Experimental Investigation of the Pyrolysis of Waste in Rotary Kilns. In Proceedings of the 4th International Symposium on Waste Treatment Technologies—Thermal, Non-Thermal and Gas Clean-Up, Sheffield, UK, 29 June–2 July 2003. [Google Scholar]
- Descoins, N.; Dirion, J.-L.; Howes, T. Solid transport in a pyrolysis pilot-scale rotary kiln: Preliminary results—Stationary and dynamic results. Chem. Eng. Process. Process Intensif. 2005, 44, 315–321. [Google Scholar] [CrossRef]
- Li, S.-Q.; Chi, Y.; Li, R.-D.; Yan, J.-H.; Cen, K.-F. Axial transport and residence time of MSW in rotary kilns: Part II. Theoretical and optimal analyses. Powder Technol. 2002, 126, 228–240. [Google Scholar] [CrossRef]
- Klose, W.; Schinkel, A.-P. Energy and mass transport process in the granular bed of an indirectly heated rotary kiln. China Particuology 2004, 2, 107–112. [Google Scholar] [CrossRef]
- Rogers, R.; Gardner, P.P. A Monte Carlo method for simulating dispersion and transport through horizontal rotating cylinder. Powder Technol. 1979, 23, 159–167. [Google Scholar] [CrossRef]
- Lemiuex, P.; Boe, T.; Tschursin, A.; Denison, M.K.; Davis, K.; Swensen, D. Computational simulation of incineration of chemically and biologically contaminated wastes. J. Air Waste Manag. Assoc. 2021, 71, 462–476. [Google Scholar] [CrossRef]
- Romanenka, D.; Stjernberg, J.; Jonsen, P. FEM investigation of global mechanisms affecting brick lining stability in a rotary kiln in cold state. Eng. Fail. Anal. 2016, 59, 554–569. [Google Scholar] [CrossRef]
- Stjernberg, J.; Ion, J.C.; Antti, M.-L.; Nordin, L.-O.; Lindblom, B.; Oden, M. Extended studies of degradation mechanisms in the refractory lining of a rotary kiln for iron ore pellet production. J. Eur. Ceram. Soc. 2012, 32, 1519–1528. [Google Scholar] [CrossRef]
- Gan, Y.; Cui, S.; Ma, X.; Guo, H.; Wang, Y. Preparation of Cu-Al/SiO2 Porous Material and Its Effect on NO Decomposition in a Cement Kiln. Materials 2020, 13, 145. [Google Scholar] [CrossRef] [PubMed]
- Slovikovskii, V.V. Rotary kiln corrosion-erosion-resistant linings. Refract. Ind. Ceram. 2008, 49, 99–102. [Google Scholar] [CrossRef]
- Brociek, R.; Chmielowska, A.; Słota, D. Comparison of the probabilistic ant colony optimization algorithm and some iteration method in application for solving the inverse problem on model with the Caputo type fractional derivative. Entropy 2020, 22, 555. [Google Scholar] [CrossRef] [PubMed]
- Brociek, R.; Słota, D. Application of real ant colony optimization algorithm to solve space and time fractional heat conduction inverse problem. Inf. Technol. Control 2017, 46, 5–16. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Values Range | Reference Value |
---|---|---|---|---|
Calorific value | P1 | MJ/kg | 14–22 | 18 |
pH | P2 | - | 5–10 | 7.5 |
Cl | P3 | % mas. | <10 | 1 |
Na, K, Ca salts | P4 | % mas. | <10 | 1 |
F, I, Br | P5 | % mas. | <1 | 0.1 |
Material | CV, MJ/kg | pH, - | Salts Na, K, Ca, % | Cl, % | Halogens, % |
---|---|---|---|---|---|
SIMULATION 1 | |||||
Waste 10 | 18 | 8 | 8 | 1.5 | 0.5 |
Waste 11 | 10 | 6.5 | 0.5 | 3.5 | 2 |
Waste 12 | 13 | 9 | 10 | 0 | 0 |
Mixture (W10, W11) | 15.52 | 7.53 | 5.7 | 2.1 | 0.97 |
SIMULATION 2 | |||||
Waste 11 | 10 | 6.5 | 0.5 | 3.5 | 2 |
Waste 15 | 14 | 5 | 4.5 | 0 | 0 |
Waste 22 | 22 | 6 | 0 | 1.5 | 0.5 |
Mixture (W11, W15, W22) | 18.37 | 5.68 | 1.64 | 1.1 | 0.42 |
SIMULATION 3 | |||||
Waste 46 | 19 | 7 | 4 | 1 | 0 |
Waste 47 | 14 | 7.5 | 4.5 | 1.5 | 0 |
Waste 48 | 14 | 5.5 | 0 | 9.5 | 0.5 |
Waste 49 | 12 | 6.5 | 1.5 | 6.5 | 0.5 |
Mixture (W46, W48, W49) | 17.97 | 6.86 | 3.51 | 2.1 | 0.08 |
SIMULATION 4 | |||||
Waste 32 | 8 | 10.5 | 13.5 | 0 | 0 |
Waste 33 | 18 | 2.5 | 0 | 20 | 5 |
Waste 34 | 16 | 9 | 12 | 0 | 0 |
Waste 35 | 29 | 7 | 3 | 0.5 | 0 |
Mixture (W32, W33, W35) | 20.66 | 7.74 | 6.3 | 2.3 | 0.51 |
SIMULATION 5 | |||||
Waste 18 | 28 | 11 | 15 | 0 | 0 |
Waste 19 | 14 | 3 | 0 | 18 | 4.2 |
Waste 20 | 9 | 4 | 0 | 14.5 | 2.1 |
Waste 21 | 21 | 12 | 17 | 0 | 0 |
Waste 25 | 6 | 8 | 6.5 | 2 | 0 |
Waste 26 | 12 | 9 | 7.8 | 0 | 0 |
Mixture (W18, W19, W20, W26) | 14.96 | 8.11 | 7.39 | 3.83 | 0.65 |
SIMULATION 6 | |||||
Waste 34 | 16 | 9 | 12 | 0 | 0 |
Waste 35 | 29 | 7 | 3 | 0.5 | 0 |
Waste 36 | 6 | 6.5 | 0.5 | 8 | 0.7 |
Waste 37 | 12 | 5 | 0 | 10.5 | 0.4 |
Waste 40 | 10 | 4 | 0 | 7 | 2.4 |
Waste 41 | 13 | 12 | 21 | 0 | 0 |
Mixture (W34, W35, W36, W40) | 18.87 | 6.7 | 2.42 | 3.56 | 0.43 |
SIMULATION 7 | |||||
Waste 13 | 23 | 6.5 | 0 | 2.5 | 0.5 |
Waste 14 | 9.5 | 9 | 3.5 | 1.2 | 0.5 |
Waste 15 | 14 | 5 | 4.5 | 0 | 0 |
Mixture (W13, W14, W15) | 17.98 | 7.26 | 1.42 | 1.93 | 0.47 |
SIMULATION 8 | |||||
Waste 21 | 21 | 12 | 17 | 0 | 0 |
Waste 22 | 22 | 6 | 0 | 1.5 | 0.5 |
Waste 23 | 11 | 8.5 | 9 | 1 | 1 |
Waste 24 | 15 | 4.5 | 0 | 10.5 | 2.75 |
Mixture (W22, W23, W24) | 18.96 | 6.65 | 2.41 | 1.48 | 0.66 |
SIMULATION 9 | |||||
Waste 14 | 9.5 | 9 | 3.5 | 1.2 | 0.5 |
Waste 15 | 14 | 5 | 4.5 | 0 | 0 |
Waste 18 | 28 | 11 | 15 | 0 | 0 |
Waste 19 | 14 | 3 | 0 | 18 | 4.2 |
Waste 20 | 9 | 4 | 0 | 14.5 | 2.1 |
Mixture (W14, W15, W18, W19) | 15.60 | 5.59 | 5.30 | 1.79 | 0.42 |
SIMULATION 10 | |||||
Waste 38 | 19 | 8.5 | 8 | 0.5 | 0 |
Waste 39 | 15 | 8 | 6.7 | 0 | 1.2 |
Waste 41 | 13 | 12 | 21 | 0 | 0 |
Waste 48 | 14 | 5.5 | 0 | 9.5 | 0.5 |
Waste 49 | 12 | 6.5 | 1.5 | 6.5 | 0.5 |
Waste 50 | 21 | 4.5 | 0 | 17 | 2.2 |
Mixture (W38, W39, W48) | 16.51 | 7.35 | 4.95 | 3.58 | 0.40 |
Material | CV, MJ/kg | pH, - | Salts Na, K, Ca, % | Cl, % | Halogens, % |
---|---|---|---|---|---|
SIMULATION 1 | |||||
Mixture (W10, W11) | 15.52 | 7.53 | 5.67 | 2.12 | 0.97 |
Mixture 2 (W10, W11) | 17.08 | 7.83 | 7.14 | 1.73 | 0.67 |
SIMULATION 2 | |||||
Mixture (W11, W15, W22) | 18.37 | 5.68 | 1.64 | 1.09 | 0.42 |
Mixture 2 (W11, W15, W22) | 18.07 | 5.68 | 1.69 | 1.12 | 0.44 |
SIMULATION 3 | |||||
Mixture (W46, W48, W49) | 17.97 | 6.86 | 3.51 | 2.06 | 0.08 |
Mixture 2 (W46, W48, W49) | 17.99 | 6.86 | 3.51 | 2.05 | 0.08 |
SIMULATION 4 | |||||
Mixture (W32, W33, W35) | 20.66 | 7.74 | 6.30 | 2.32 | 0.51 |
Mixture 2 (W32, W33, W35) | 18.63 | 7.98 | 7.18 | 2.58 | 0.59 |
SIMULATION 5 | |||||
Mixture (W18, W19, W20, W26) | 14.96 | 8.11 | 7.39 | 3.83 | 0.65 |
Mixture 2 (W18, W19, W20, W26) | 17.34 | 8.23 | 8.20 | 4.37 | 0.76 |
SIMULATION 6 | |||||
Mixture (W34, W35, W36, W40) | 18.87 | 6.7 | 2.42 | 3.56 | 0.43 |
Mixture 2 (W34, W35, W36, W40) | 18.16 | 6.39 | 2.56 | 3.67 | 0.70 |
SIMULATION 7 | |||||
Mixture (W13, W14, W15) | 17.98 | 7.26 | 1.42 | 1.93 | 0.47 |
Mixture 2 (W13, W14, W15) | 17.99 | 7.25 | 1.42 | 1.93 | 0.47 |
SIMULATION 8 | |||||
Mixture (W22, W23, W24) | 18.96 | 6.65 | 2.41 | 1.48 | 0.66 |
Mixture 2 (W21-W24) | 18.69 | 6.24 | 2.07 | 3.81 | 0.96 |
SIMULATION 9 | |||||
Mixture (W14, W15, W18, W19) | 15.60 | 5.59 | 5.30 | 1.79 | 0.42 |
Mixture 2 (W15, W18, W19) | 17.30 | 6.18 | 6.44 | 2.13 | 0.50 |
SIMULATION 10 | |||||
Mixture (W38, W39, W48) | 16.51 | 7.35 | 4.95 | 3.58 | 0.40 |
Mixture 2 (W38, W39, W48, W50) | 17.50 | 7.44 | 5.67 | 3.67 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworski, T.; Wajda, A.; Jaworska-Bytomska, K. Enhancing the Performance of a Hazardous Waste Incineration Facility through the Usage of a Dedicated Application. Sustainability 2024, 16, 1297. https://doi.org/10.3390/su16031297
Jaworski T, Wajda A, Jaworska-Bytomska K. Enhancing the Performance of a Hazardous Waste Incineration Facility through the Usage of a Dedicated Application. Sustainability. 2024; 16(3):1297. https://doi.org/10.3390/su16031297
Chicago/Turabian StyleJaworski, Tomasz, Agata Wajda, and Katarzyna Jaworska-Bytomska. 2024. "Enhancing the Performance of a Hazardous Waste Incineration Facility through the Usage of a Dedicated Application" Sustainability 16, no. 3: 1297. https://doi.org/10.3390/su16031297
APA StyleJaworski, T., Wajda, A., & Jaworska-Bytomska, K. (2024). Enhancing the Performance of a Hazardous Waste Incineration Facility through the Usage of a Dedicated Application. Sustainability, 16(3), 1297. https://doi.org/10.3390/su16031297