Do High-Speed Rail Networks Promote Coupling Coordination between Employment and Industry Output? A Study Based on Evidence from China
Abstract
:1. Introduction
2. Literature Review
3. Theory and Hypothesis
4. Data and Methodology
4.1. Data
4.2. Methodology
4.2.1. Explained Variables
4.2.2. Explanatory Variable
4.2.3. Control Variable
4.2.4. Model Specification
5. Results
5.1. Multicollinearity Test
5.1.1. Pearson’s Correlation Coefficient
5.1.2. Variance Inflation Factor
5.2. Baseline Regression
5.3. Robustness Test
5.4. Heterogeneity Analysis
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, F. The second demographic dividend as a driver of China’s growth. China World Econ. 2020, 28, 26–44. [Google Scholar] [CrossRef]
- Gan, C.; Zheng, R.; Yu, D. Economic Growth and Fluctuations in China. Econ. Res. J. 2011, 46, 4–16+31. (In Chinese) [Google Scholar]
- Ciccone, A.; Papaioannou, E. Human capital, the structure of production, and growth. Rev. Econ. Stat. 2009, 91, 66–82. [Google Scholar] [CrossRef]
- Browning, H.L.; Singelmann, J. The transformation of the US labor force: The interaction of industry and occupation. Politics Soc. 1978, 8, 481–509. [Google Scholar] [CrossRef]
- Liu, Y. Labor market matching and unemployment in urban China. China Econ. Rev. 2013, 24, 108–128. [Google Scholar] [CrossRef]
- Carrington, W.J.; Detragiache, E.; Vishwanath, T. Migration with endogenous moving costs. Am. Econ. Rev. 1996, 86, 909–930. Available online: http://www.jstor.org/stable/2118311 (accessed on 5 May 2021).
- Chau, N.H. The pattern of migration with variable migration cost. J. Reg. Sci. 1997, 37, 35–54. [Google Scholar] [CrossRef]
- Huang, Y. Spatial and temporal heterogeneity of the impact of high-speed railway on urban economy: Empirical study of Chinese cities. J. Transp. Geogr. 2021, 91, 102972. [Google Scholar] [CrossRef]
- Buchanan, J.M. The relevance of Pareto optimality. J. Confl. Resolut. 1962, 6, 341–354. [Google Scholar] [CrossRef]
- Diamond, C.A.; Simon, C.J. Industrial specialization and the returns to labor. J. Labor Econ. 1990, 8, 175–201. [Google Scholar] [CrossRef]
- Quium, A.S.M.A. Transport Corridors for Wider Socio–Economic Development. Sustainability 2019, 11, 5248. [Google Scholar] [CrossRef]
- Berechman, J.; Ozmen, D.; Ozbay, K. Empirical analysis of transportation investment and economic development at state, county and municipality levels. Transportation 2006, 33, 537–551. [Google Scholar] [CrossRef]
- Ozbay, K.; Ozmen, D.; Berechman, J. Modeling and analysis of the link between accessibility and employment growth. J. Transp. Eng. 2006, 132, 385–393. [Google Scholar] [CrossRef]
- Chatman, D.G.; Noland, R.B. Do public transport improvements increase agglomeration economies? A review of literature and an agenda for research. Transp. Rev. 2011, 31, 725–742. [Google Scholar] [CrossRef]
- Börjesson, M.; Isacsson, G.; Andersson, M.; Anderstig, C. Agglomeration, productivity and the role of transport system improvements. Econ. Transp. 2019, 18, 27–39. [Google Scholar] [CrossRef]
- Graham, D.J.; Gibbons, S.; Martin, R. Transport Investment and the Distance Decay of Agglomeration Benefits. Report to the Department of Transport. 2009. Available online: https://personal.lse.ac.uk/GIBBONS/Papers/Agglomeration%20and%20Distance%20Decay%20Jan%202009.pdf (accessed on 29 November 2023).
- Cigu, E.; Agheorghiesei, D.T.; Gavriluță, A.F.; Toader, E. Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries. Sustainability 2019, 11, 67. [Google Scholar] [CrossRef]
- Vickerman, R. Can high-speed rail have a transformative effect on the economy? Transp. Policy 2018, 62, 31–37. [Google Scholar] [CrossRef]
- Dai, X.; Xu, M.; Wang, N. The industrial impact of the Beijing-Shanghai high-speed rail. Travel Behav. Soc. 2018, 12, 23–29. [Google Scholar] [CrossRef]
- Shao, S.; Tian, Z.; Yang, L. High speed rail and urban service industry agglomeration: Evidence from China’s Yangtze River Delta region. J. Transp. Geogr. 2017, 64, 174–183. [Google Scholar] [CrossRef]
- Yang, L.; Hu, L.; Shang, P.; Ye, Y. Estimating the Impacts of High-speed Rail on Service Industry Agglomeration in China: Advanced Modelling with Spatial Difference-in-difference Models and Propensity Score Matching. J. Transp. Econ. Policy 2021, 55, 16–35. [Google Scholar]
- Zhang, W.; Tian, X.; Yu, A. Is high-speed rail a catalyst for the fourth industrial revolution in China? Story of enhanced technology spillovers from venture capital. Technol. Forecast. Soc. Chang. 2020, 161, 120286. [Google Scholar] [CrossRef]
- Guirao, B.; Campa, J.L.; Casado-Sanz, N. Labour mobility between cities and metropolitan integration: The role of high speed rail commuting in Spain. Cities 2018, 78, 140–154. [Google Scholar] [CrossRef]
- Guirao, B.; Casado-Sanz, N.; Campa, J.L. Labour opportunities provided by Spanish high-speed rail (HSR) commuting services in a period of financial crisis: An approach based on regional wage disparities and housing rental prices. Reg. Stud. 2020, 54, 539–549. [Google Scholar] [CrossRef]
- Guirao, B.; Lara-Galera, A.; Campa, J.L. High Speed Rail commuting impacts on labour migration: The case of the concentration of metropolis in the Madrid functional area. Land Use Policy 2017, 66, 131–140. [Google Scholar] [CrossRef]
- Hensher, D.A.; Ellison, R.B.; Mulley, C. Assessing the employment agglomeration and social accessibility impacts of high speed rail in Eastern Australia. Transportation 2014, 41, 463–493. [Google Scholar] [CrossRef]
- Heuermann, D.F.; Schmieder, J.F. Warping Space: High-Speed Rail and Returns to Scale in Local Labor Markets; ZBW—Deutsche Zentralbibliothek für Wirtschaftswissenschaften, Leibniz-Informationszentrum Wirtschaft: Kiel, Germany, 2014. [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Feigenbaum, B. High-Speed Rail in Europe and Asia: Lessons for the United States (No. Policy Study 418); Reason Foundation: Los Angeles, CA, USA, 2013. [Google Scholar]
- Cheng, Y.S.; Loo, B.P.; Vickerman, R. High-speed rail networks, economic integration and regional specialisation in China and Europe. Travel Behav. Soc. 2015, 2, 1–14. [Google Scholar] [CrossRef]
- Ross, J.F. High-speed rail: Catalyst for European integration. J. Common Mkt. Stud. 1994, 32, 191. Available online: https://heinonline.org/HOL/P?h=hein.journals/jcmks32&i=191 (accessed on 5 May 2021). [CrossRef]
- Blanquart, C.; Koning, M. The local economic impacts of high-speed railways: Theories and facts. Eur. Transp. Res. Rev. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Chen, C.L.; Hall, P. The wider spatial-economic impacts of high-speed trains: A comparative case study of Manchester and Lille sub-regions. J. Transp. Geogr. 2012, 24, 89–110. [Google Scholar] [CrossRef]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Yao, Z.; Ye, K.; Xiao, L.; Wang, X. Radiation Effect of Urban Agglomeration’s Transportation Network: Evidence from Chengdu–Chongqing Urban Agglomeration, China. Land 2021, 10, 520. [Google Scholar] [CrossRef]
- Chen, M. Impacts of French High-Speed Rail Investment on Urban Agglomeration Economies. 2014. Available online: https://repository.upenn.edu/entities/publication/d411fc2f-12e0-4f32-a028-d3f7ed14580f (accessed on 29 November 2023).
- Yu, N.; De Jong, M.; Storm, S.; Mi, J. Transport infrastructure, spatial clusters and regional economic growth in China. Transp. Rev. 2012, 32, 3–28. [Google Scholar] [CrossRef]
- Kim, H.; Sultana, S.; Weber, J. A geographic assessment of the economic development impact of Korean high-speed rail stations. Transp. Policy 2018, 66, 127–137. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, Y.; Zhu, X.; Cai, Z.; Xu, J.; Shi, S. Spatial structure of urban agglomeration under the impact of high-speed railway construction: Based on the social network analysis. Sustain. Cities Soc. 2020, 62, 102404. [Google Scholar] [CrossRef]
- Li, X.; Huang, B.; Li, R.; Zhang, Y. Exploring the impact of high speed railways on the spatial redistribution of economic activities-Yangtze River Delta urban agglomeration as a case study. J. Transp. Geogr. 2016, 57, 194–206. [Google Scholar] [CrossRef]
- Huang, T.; Xi, J.-C.; Ge, Q.-S. Spatial differentiation and integration optimization of an urban agglomeration tourism system under the influence of high-speed railway network evolution. Appl. Spat. Anal. Policy 2019, 12, 349–376. [Google Scholar] [CrossRef]
- Levinson, D.M. Accessibility impacts of high-speed rail. J. Transp. Geogr. 2012, 22, 288–291. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, J.; Jin, F. Impacts of high-speed rail lines on the city network in China. J. Transp. Geogr. 2017, 60, 257–266. [Google Scholar] [CrossRef]
- Chang, Z.; Diao, M.; Jing, K.; Li, W. High-speed rail and industrial movement: Evidence from China’s Greater Bay Area. Transp. Policy 2021, 112, 22–31. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, T.; Liang, S.; Yang, J.; Hou, P.; Qu, S.; Zhou, J.; Jia, X.; Wang, H.; Xu, M. Life cycle assessment of high speed rail in China. Transp. Res. Part D Transp. Environ. 2015, 41, 367–376. [Google Scholar] [CrossRef]
- Diao, M. Does growth follow the rail? The potential impact of high-speed rail on the economic geography of China. Transp. Res. Part A Policy Pract. 2018, 113, 279–290. [Google Scholar] [CrossRef]
- Jia, S.; Zhou, C.; Qin, C. No difference in effect of high-speed rail on regional economic growth based on match effect perspective? Transp. Res. Part A Policy Pract. 2017, 106, 144–157. [Google Scholar] [CrossRef]
- Deng, F.; Fang, Y.; Xu, L.; Li, Z. Tourism, Transportation and Low-Carbon City System Coupling Coordination Degree: A Case Study in Chongqing Municipality, China. Int. J. Environ. Res. Public Health 2020, 17, 792. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J. Evaluation of coupling coordination degree between urban rail transit and land use. Int. J. Commun. Syst. 2021, 34, e4015. [Google Scholar] [CrossRef]
- Scott, J. Social network analysis. Sociology 1988, 22, 109–127. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Wu, B.; Li, W.; Chen, J. Networked Transport and Economic Growth: Does High-Speed Rail Narrow the Gap between Cities in China? Sustainability 2022, 14, 5937. [Google Scholar] [CrossRef]
- Clark, T.S.; Linzer, D.A. Should I use fixed or random effects? Political Sci. Res. Methods 2015, 3, 399–408. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Daoud, J.I. Multicollinearity and regression analysis. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 949, p. 012009. [Google Scholar]
- Wang, X.; Huang, S.; Zou, T.; Yan, H. Effects of the high speed rail network on China’s regional tourism development. Tour. Manag. Perspect. 2012, 1, 34–38. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Wang, P. Impact of high-speed rail on urban economic efficiency in China. Transp. Policy 2020, 97, 220–231. [Google Scholar] [CrossRef]
- Lawrence, R.Z. China, like the US, faces challenges in achieving inclusive growth through manufacturing. China World Econ. 2020, 28, 3–17. [Google Scholar] [CrossRef]
Level | City Clusters in the Group |
---|---|
First tier | Beijing–Tianjin–Hebei City Cluster, Yangtze River Delta City Cluster, Pearl River Delta City Cluster, Chengdu–Chongqing City Cluster, Middle Reach of Yangtze River City Cluster. |
Second tier | Shandong Peninsula City Cluster, Guangdong–Fujian–Zhejiang Coastal City Cluster, Zhongyuan City Cluster, Guanzhong Plain City Cluster, Beibu Gulf City Cluster. |
Third tier | Harbin–Changchun City Cluster, Mid-southern Liaoning City Cluster, Central Shanxi City Cluster, Central Guizhou City Cluster, Central Yunnan City Cluster, Hohhot–Baotou–Ordos–Yulin City Cluster, Lanzhou-Xining City Cluster, Ningxia Yellow River City Cluster, Northern Slope of Mt. Tianshan City Cluster. |
Variables | Observations | Mean | Std. Dev | Min | Max | |
---|---|---|---|---|---|---|
Explained variables | 3588 | 0.1838 | 0.1063 | 0 | 0.172 | |
3588 | 0.6703 | 0.0893 | 0.315 | 1.282 | ||
3588 | 0.6714 | 0.0751 | 0.381 | 1.844 | ||
Explanatory variables | 3588 | 0.6596 | 1.5923 | 0 | 37.5 | |
Control variables | 3588 | 445.9554 | 317.4186 | 18.14 | 3416 | |
3588 | 641,342.4 | 1,014,595 | 42,100 | 10,564,600 | ||
3588 | 3,137,419 | 5,603,669 | 24,375 | 71,081,480 | ||
3588 | 21,666,110 | 32,394,977 | 618,352 | 381,560,000 | ||
3588 | 209.4179 | 209.4197 | 10 | 2428.14 |
Variables | |||||
---|---|---|---|---|---|
1 | 0.5524 | 0.5277 | 0.5359 | 0.5132 | |
0.5524 | 1 | 0.6156 | 0.6860 | 0.6234 | |
0.5277 | 0.6156 | 1 | 0.6939 | 0.6821 | |
0.5359 | 0.6860 | 0.6939 | 1 | 0.6282 | |
0.5132 | 0.6234 | 0.6821 | 0.6282 | 1 |
All Sample | Cities Belong to City Clusters | Non-Cluster Cities | |||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
Variables | D1 | D2 | D3 | D1 | D2 | D3 | D1 | D2 | D3 |
−0.00547 *** | −0.00121 *** | 0.000808 *** | −0.00559 *** | −0.000856 *** | 0.000692 ** | −0.000716 | −0.00283 *** | 0.00124 | |
(0.00102) | (0.000318) | (0.000313) | (0.00113) | (0.000313) | (0.000329) | (0.00232) | (0.00104) | (0.000894) | |
0.230 *** | −0.0123 | −0.0578 *** | 0.273 *** | −0.0330 | −0.0375 * | 0.284 ** | 0.0548 | −0.118 ** | |
(0.0640) | (0.0200) | (0.0197) | (0.0744) | (0.0206) | (0.0216) | (0.122) | (0.0545) | (0.0469) | |
−0.0772 *** | 0.0116 *** | −0.0128 *** | −0.0976 *** | 0.0140 *** | −0.0124 *** | 0.0204 | 0.0118 | −0.0258 *** | |
(0.00974) | (0.00304) | (0.00299) | (0.0113) | (0.00313) | (0.00329) | (0.0200) | (0.00894) | (0.00770) | |
−0.0832 *** | −0.00711 ** | 0.0155 *** | −0.108 *** | −0.00254 | 0.00908 ** | −0.0360 *** | −0.0107 * | 0.0255 *** | |
(0.00945) | (0.00295) | (0.00291) | (0.0123) | (0.00340) | (0.00357) | (0.0138) | (0.00618) | (0.00532) | |
−0.145 *** | −0.0143 | 0.0492 *** | −0.0947 *** | −0.0228 ** | 0.0525 *** | −0.331 *** | 0.0151 | 0.0477 ** | |
(0.0287) | (0.00897) | (0.00883) | (0.0333) | (0.00922) | (0.00968) | (0.0549) | (0.0246) | (0.0212) | |
−0.240 *** | 0.00237 | 0.0283 *** | −0.242 *** | −0.00660 | 0.0357 *** | −0.215 *** | 0.0131 | 0.0187 ** | |
(0.0153) | (0.00479) | (0.00471) | (0.0201) | (0.00555) | (0.00583) | (0.0218) | (0.00976) | (0.00841) | |
Constant | 5.922 *** | 4.267 *** | 4.072 *** | 6.034 *** | 4.423 *** | 3.958 *** | 4.413 *** | 3.682 *** | 4.525 *** |
(0.363) | (0.113) | (0.112) | (0.430) | (0.119) | (0.125) | (0.649) | (0.291) | (0.250) | |
Observations | 3588 | 3588 | 3588 | 2756 | 2756 | 2756 | 832 | 832 | 832 |
R-squared | 0.430 | 0.015 | 0.121 | 0.453 | 0.023 | 0.129 | 0.384 | 0.020 | 0.119 |
Number of id | 276 | 276 | 276 | 212 | 212 | 212 | 64 | 64 | 64 |
(10) | (11) | (12) | (13) | (14) | (15) | |
---|---|---|---|---|---|---|
Variables | D1 | D2 | D3 | D1 | D2 | D3 |
−0.00535 *** | −0.00121 *** | 0.000780 ** | −0.00568 *** | −0.00121 *** | 0.000815 ** | |
(0.00108) | (0.000335) | (0.000332) | (0.00103) | (0.000323) | (0.000320) | |
0.250 *** | −0.00291 | −0.0646 *** | 0.235 *** | −0.0110 | −0.0583 *** | |
(0.0680) | (0.0212) | (0.0210) | (0.0637) | (0.0200) | (0.0198) | |
−0.0771 *** | 0.0113 *** | −0.0113 *** | −0.0807 *** | 0.0117 *** | −0.0128 *** | |
(0.0101) | (0.00313) | (0.00310) | (0.00974) | (0.00306) | (0.00303) | |
−0.0862 *** | −0.00821 *** | 0.0175 *** | −0.0854 *** | −0.00672 ** | 0.0154 *** | |
(0.00986) | (0.00307) | (0.00304) | (0.00944) | (0.00296) | (0.00293) | |
−0.150 *** | −0.0185 * | 0.0490 *** | −0.146 *** | −0.0116 | 0.0475 *** | |
(0.0317) | (0.00987) | (0.00978) | (0.0288) | (0.00904) | (0.00895) | |
−0.247 *** | −0.00145 | 0.0337 *** | −0.238 *** | 0.00265 | 0.0287 *** | |
(0.0165) | (0.00513) | (0.00508) | (0.0153) | (0.00481) | (0.00477) | |
Constant | 5.917 *** | 4.276 *** | 4.025 *** | 5.949 *** | 4.240 *** | 4.082 *** |
(0.386) | (0.120) | (0.119) | (0.361) | (0.113) | (0.112) | |
Observations | 3312 | 3312 | 3312 | 3536 | 3536 | 3536 |
R-squared | 0.382 | 0.019 | 0.120 | 0.436 | 0.014 | 0.119 |
Number of id | 276 | 276 | 276 | 272 | 272 | 272 |
Explanatory Variable | Industry Sector | City Cluster Level | Time Periods | |||
---|---|---|---|---|---|---|
(16)–(21) | (22)–(27) | (27)–(32) | (33)–(38) | |||
2007–2009 | 2010–2012 | 2013–2015 | 2016–2019 | |||
Secondary industry | First tier | 0.0154 ** | −0.000781 | −0.00180 | 0.000159 | |
(0.00633) | (0.000779) | (0.00138) | (0.00139) | |||
Second tier | −0.00792 | 0.000212 | −0.000318 | −0.000965 | ||
(0.0112) | (0.000826) | (0.000855) | (0.000957) | |||
Third tier | 0.000562 | 0.351 ** | −0.00642 *** | −0.0153 *** | ||
(0.00217) | (0.140) | (0.00212) | (0.00519) | |||
Tertiary industry | First tier | 0.00976 * | 0.000641 | −0.00132 | −0.00214 | |
(0.00580) | (0.000562) | (0.00147) | (0.00119) | |||
Second tier | 0.0151 | 0.000256 | 0.0000523 | 0.000715 | ||
(0.0110) | (0.000430) | (0.00101) | (0.000955) | |||
Third tier | −0.00431 | −0.310 *** | 0.00673 *** | 0.0297 *** | ||
(0.00270) | (0.0938) | (0.00205) | (0.00737) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Zhou, Y.; Li, Z.; Zhang, Z.; Cai, J. Do High-Speed Rail Networks Promote Coupling Coordination between Employment and Industry Output? A Study Based on Evidence from China. Sustainability 2024, 16, 975. https://doi.org/10.3390/su16030975
Deng L, Zhou Y, Li Z, Zhang Z, Cai J. Do High-Speed Rail Networks Promote Coupling Coordination between Employment and Industry Output? A Study Based on Evidence from China. Sustainability. 2024; 16(3):975. https://doi.org/10.3390/su16030975
Chicago/Turabian StyleDeng, Liqian, Yaodong Zhou, Zhipeng Li, Zujie Zhang, and Jiaoli Cai. 2024. "Do High-Speed Rail Networks Promote Coupling Coordination between Employment and Industry Output? A Study Based on Evidence from China" Sustainability 16, no. 3: 975. https://doi.org/10.3390/su16030975
APA StyleDeng, L., Zhou, Y., Li, Z., Zhang, Z., & Cai, J. (2024). Do High-Speed Rail Networks Promote Coupling Coordination between Employment and Industry Output? A Study Based on Evidence from China. Sustainability, 16(3), 975. https://doi.org/10.3390/su16030975