The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. In Vitro Cultures of Rapeseed Plants
2.3. Nanoparticles
2.4. Treatment of In Vitro Plants with AgNPs and AuNPs
2.5. Free Protein Content and Enzymes Assessments
2.5.1. Free Protein Content Assessment
2.5.2. Extraction of Enzymes
2.5.3. Guaiacol and Pyrogallol Peroxidase Assessments
2.5.4. Superoxide Dismutase Assessment
2.6. Statistical Analysis
3. Results
3.1. Effect of Nanoparticles on the Free Protein Content
3.2. Effect of Nanoparticles on the Guaiacol Peroxidase (GPOX) Activity
3.3. Effect of Nanoparticles on the Pyrogallol Peroxidase (PPOX) Activity
3.4. Effect of Nanoparticles on the Superoxide Dismutase (SOD) Activity
3.5. Linear r Pearson Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fraceto, L.F.; Grillo, R.; de Medeiros, G.A.; Scognamiglio, V.; Rea, G.; Bartolucci, C. Nanotechnology in agriculture: Which innovation potential does it have? Front. Environ. Sci. 2016, 4, 20. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2020, 2, 579954. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Radad, K.; Al-Shraim, M.; Moldzio, R.; Rausch, W.D. Recent advances in benefits and hazards of engineered nanoparticles. Environ. Toxicol. Pharmacol. 2012, 34, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Lovecká, P.; Macůrková, A.; Záruba, K.; Hubáček, T.; Siegel, J.; Valentová, O. Genomic Damage Induced in Nicotiana tabacum L. Plants by Colloidal Solution with Silver and Gold Nanoparticles. Plants 2021, 10, 1260. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lombi, E.; Zjao, F.J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Leso, V.; Fontana, L.; Iavicoli, I. Biomedical nanotechnology: Occupational views. Nano Today 2019, 24, 10–14. [Google Scholar] [CrossRef]
- Stefan, L.; Monchaud, D. Applications of guanine quartets in nanotechnology and chemical biology. Nat. Rev. Chem. 2019, 3, 650–668. [Google Scholar] [CrossRef]
- Li, W.Q.; Qing, T.; Li, C.C.; Li, F.; Ge, F.; Fei, J.J.; Peijnenburg, W.J. Integration ofsubcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways. Chemosphere 2020, 258, 127349. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad, M.N. Role of nanomaterials in the treatment of wastewater: A review. Water 2020, 12, 495. [Google Scholar] [CrossRef]
- Sim, S.; Wong, N.K. Nanotechnology and its use in imaging and drug delivery (Review). Biomed. Rep. 2021, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total. Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Alvarez Perez, S.; Tapia, M.A.M.; González Vega, M.E.; Ardisana, E.F.; Chávez Medina, J.A.; Flores Zamora, G.L.; Bustamante, D.V. Nanotechnology and Plant Tissue Culture. In Plant Nanobionics; Prasad, R., Ed.; Nanotechnology in the Life Sciences; Springer: Cham, Switzerland, 2019; pp. 333–370. [Google Scholar]
- Moradpour, M.; Aziz, M.A.; Abdullah, S.N.A. Establishment of in vitro culture of rubber (Hevea brasiliensis) from field-derived explants: Effective role of silver nanoparticles in reducing contamination and browning. J. Nanomed. Nanotechnol. 2016, 7, 375. [Google Scholar] [CrossRef]
- Parzymies, M.; Pudelska, K.; Poniewozik, M. The use of nano-silver for disinfection of Pennisetum alopecuroides plant material for tissue culture. Acta Sci. Pol. Hortorum Cultus 2019, 18, 128–135. [Google Scholar] [CrossRef]
- Hatami, M. Toxicity assessment of multi-walled carbon nanotubes on Cucurbita pepo L. under well-watered and water-stressed conditions. Ecotoxicol. Environ. Saf. 2017, 142, 274–283. [Google Scholar] [CrossRef]
- Cvjetko, P.; Milošic, A.; Domijan, A.M.; Vinkovic Vrcek, I.; Tolic, S.; Peharec Štefanic, P.; Letofsky-Papst, I.; Tkalec, M.; Balen, B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017, 137, 18–28. [Google Scholar] [CrossRef]
- Timoteo de Oliveira, C.; Paiva, R.; Reis, M.V.; Claro, P.I.C.; Ferraz, L.M.; Marconcini, J.M.; de Oliveira, J.E. In vitro growth of Physalis peruviana L. affected by silver nanoparticles. 3 Biotech 2019, 9, 145. [Google Scholar] [CrossRef]
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 2010, 6, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Marambio-Jones, C.; Hoek, E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ.-Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Das, M.; Shim, K.H.; An, S.S.A.; Yi, D. Review on gold nanoparticles and their applications. J. Toxiol. Env. 2012, 3, 193–205. [Google Scholar] [CrossRef]
- Panyala, N.R.; Pena-Mendez, E.M.; Havel, J. Gold and nano-gold in medicine: Overview, toxicology and perspectives. J. Appl. Biomed. 2009, 7, 75–91. [Google Scholar] [CrossRef]
- Ahmed, J.; Gultekinoglu, M.; Edirsinghe, M. Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol. Adv. 2020, 41, 107549. [Google Scholar] [CrossRef] [PubMed]
- Matharu, R.K.; Ciric, L.; Ren, G.; Edirsinghe, M. Comparative study of the antimicrobial effects of tungsten nanoparticles and tungsten nanocomposite fibres on hospital acquired bacterial and viral pathogens. J. Nanomater. 2020, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Chou Chau, Y.F.; Ming, T.Y.; Chou Chao, C.T.; Thotagamuge, R.; Kooh, M.R.R.; Huang, H.J.; Lim, C.M.; Chiang, H.-P. Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci. Rep. 2021, 11, 18515. [Google Scholar] [CrossRef]
- Chau, Y.; Yang, T.; Lee, W. Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits. Appl. Opt. 2004, 43, 6656–6663. [Google Scholar]
- Tomaszewska-Sowa, M.; Lisiecki, K.; Pańka, D. Response of Rapeseed (Brassica napus L.) to Silver and Gold Nanoparticles as a Function of Concentration and Length of Exposure. Agronomy 2022, 12, 2885. [Google Scholar] [CrossRef]
- Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009, 43, 9473–9479. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Geisler-Lee, J.; Deng, Y.; Kolmakov, A. Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Sci. Total Environ. 2010, 408, 3053–3061. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.M.G.; Chung, I.M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 2014, 112, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, K.S.; Husen, A. Plant response to silver nanoparticles: A critical review. Crit. Rev. Biotechnol. 2021, 42, 973–990. [Google Scholar] [CrossRef]
- Jiang, H.S.; Li, M.; Chang, F.Y.; Li, W.; Yin, L.Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886. [Google Scholar] [CrossRef]
- Falco, W.F.; Queiroz, A.M.; Fernandes, J.; Botero, E.R.; Falcao, E.A.; Guimaraes, F.E.G.; M’Peko, J.C.; Oliveira, S.L.; Colbeck, I.; Caires, A.R.L. Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching. J. Photochem. Photobiol. A Chem. 2015, 299, 203–209. [Google Scholar] [CrossRef]
- Noori, A.; Ngo, A.; Gutierrez, P.; Theberge, S.; White, J.C. Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum). J. Nanopart. Res. 2020, 22, 131. [Google Scholar] [CrossRef]
- Ferrari, E.; Barbero, F.; Busquets-Fité, M.; Franz-Wachtel, M.; Köhler, H.-R.; Puntes, V.; Kemmerling, B. Growth-Promoting Gold Nanoparticles Decrease Stress Responses in Arabidopsis Seedlings. Nanomaterials 2021, 11, 3161. [Google Scholar] [CrossRef]
- Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata—An endemic and endangered medicinal tree taxon. Nanovis 2012, 2, 61–68. [Google Scholar]
- Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–310. [Google Scholar] [CrossRef]
- Gopinath, K.; Gowri, S.; Karthika, V.; Arumugam, A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostruct. Chem. 2014, 4, 115. [Google Scholar] [CrossRef]
- Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ. 2013, 461, 462–468. [Google Scholar] [CrossRef]
- Ghosh, M.; Ghosh, I.; Godderis, L.; Hoet, P.; Mukherjee, A. Genotoxicity of engineered nanoparticles in higher plants. Mutat. Res. Toxicol. Environ. Mutagen. 2019, 842, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Burketová, L.; Martinec, J.; Siegel, J.; Macůrková, A.; Maryška, L.; Valentová, O. Noble metal nanoparticles in agriculture: Impacts on plants, associated microorganisms, and biotechnological practices. Biotechnol. Adv. 2022, 58, 107929. [Google Scholar] [CrossRef] [PubMed]
- Møller, I.M.; Jensen, P.E.; Hansson, A. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 2007, 58, 459–481. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Ullah, F.; Zhou, D.X.; Yi, M.; Zhao, Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant. Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Wang, S.; Wu, X.M.; Liu, C.H.; Shang, J.Y.; Gao, F.; Guo, H.S. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. PLoS Pathog. 2020, 16, e1008481. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Palma, J.M.; Gomez, M.; Del Rio, L.A.; Sandalio, L.M. Cadmium causes oxidative modification of proteins in pea plants. Plant Cell Environ. 2002, 25, 677–686. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, M.; Teng, Y.; Jia, S.; Yu, D.; Wei, T.; Chen, C.; Song, W. Overexpression of the Glutathione Peroxidase 5 (RcGPOX5) Gene From Rhodiola crenulata Increases Drought Tolerance in Salvia miltiorrhiza. Front. Plant Sci. 2018, 9, 1950. [Google Scholar] [CrossRef]
- Faisal, M.; Saquib, Q.; Alatar, A.A.; Al-Khedhairy, A.A.; Hegazy, A.K.; Musarrat, J. Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death. J. Hazard. Mater. 2013, 250, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.S.; Qiu, X.N.; Li, G.B.; Li, W.; Yin, L.Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ. Toxicol. Chem. 2014, 33, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- da Costa, M.V.J.; Sharma, P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 2016, 54, 110–119. [Google Scholar] [CrossRef]
- Stroiński, A. Some physiological and biochemical aspects of plant resistance to cadmium effect. I. Antioxidative system. Acta Physiol. Plant. 1999, 21, 175–188. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, G.; Chen, S.; Chen, Y.; Jiang, J.; Wang, Y.-P. Correlation analysis of phenolic contents andantioxidation in yellow- and black-seeded Brassica napus. Molecules 2018, 23, 1815. [Google Scholar] [CrossRef]
- Tomaszewska-Sowa, M.; Siwik-Ziomek, A.; Figas, A.; Bocian, K. Assessment of metal nanoparticle-induced morphological and physiological changes in in vitro cultures of rapeseed (Brassica napus L.). EJPAU 2018, 21, 10. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Domeradzka-Gajda, Y.K.; Nocuń, M.; Roszak, J.; Janasik, B.; Quarles, C.D., Jr.; Wąsowicz, W.; Grobelny, J.; Tomaszewska, E.; Celichowski, G.; Ranoszek-Soliwoda, K.; et al. A study on the in vitro percutaneous absorption of silver nanoparticles in combination with aluminum chloride, methyl paraben or di-n-butyl phthalate. Toxicol. Lett. 2017, 272, 38–48. [Google Scholar] [CrossRef]
- Pudlarz, A.; Czechowska, E.; Ranoszek-Soliwoda, K.; Tomaszewska, E.; Celichowski, G.; Grobelny, J.; Szemraj, J. Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles. Appl. Biochem. Biotechnol. 2018, 185, 717–735. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zahir, S.; Zhang, F.; Chen, J.; Zhu, S. Determination of Oxidative Stress and Antioxidant Enzyme Activity for Physiological Phenotyping During Heavy Metal Exposure. Methods Mol. Biol. 2021, 2326, 241–249. [Google Scholar] [CrossRef]
- Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Meth. Enzymol. 1955, 2, 764–775. [Google Scholar] [CrossRef]
- McCord, J.M.; Fridovich, I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Jo, Y.K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009, 93, 1037–1043. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, B.R.; Singh, A.; Keswani, C.; Naqvi, A.H.; Singh, H.B. Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE 2014, 9, e97881. [Google Scholar] [CrossRef]
- Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 2014, 104, 302–309. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Xalxo, R.; Yadu, B.; Chandrakar, V.; Kumar, M.; Chandra, J.; Sahu, K. Silver Nanoparticles and Their Morpho-Physiological Responses on Plants. In Plant Responses to Nanomaterials, Recent Interventions, and Physiological and Biochemical Responses; Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 183–216. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Singh, N.; Manshian, B.; Jenkins, G.J.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef]
- Manaf, A.; Wang, X.; Tariq, F.; Jhanzab, H.M.; Bibi, Y.; Sher, A.; Razzaq, A.; Fiaz, S.; Tanveer, S.K.; Qayyum, A. Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions. Agronomy 2021, 11, 1494. [Google Scholar] [CrossRef]
- Slesak, I.; Libik, M.; Karpinska, B.; Karpinski, S.; Miszalski, Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol. 2007, 54, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Alharby, H.F.; Metwali, E.M.R.; Fuller, M.P.; Aldhebiani, A.Y. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch. Biol. Sci. 2016, 68, 723–735. [Google Scholar] [CrossRef]
- Radić, S.; Stipaničev, D.; Cvjetko, P.; Marijanović Rajčić, M.; Širac, S.; Pevalek-Kozlina, B.; Pavlica, M. Duckweed Lemna minor as a tool for testing toxicity and genotoxicity of surface waters. Ecotoxicol. Environ. Safe 2011, 74, 182–187. [Google Scholar] [CrossRef]
- Kao, C.H. Role of glutathione in abiotic stress tolerance of rice plants. J. Taiwan Agric. Res. 2015, 164, 167–176. [Google Scholar]
- Smirnoff, N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 1993, 125, 27–58. [Google Scholar] [CrossRef]
- Missaoui, T.; Smiri, M.; Chmingui, H.; Hafiane, A. Effects of nanosized titanium dioxide on the photosynthetic metabolism of fenugreek (Trigonella foenum-graecum L.). Comptes. Rendus Biol. 2017, 340, 499–511. [Google Scholar] [CrossRef]
- Movafeghi, A.; Khataee, A.; Abedi, M.; Tarrahi, R.; Dadpour, M.; Vafaei, F. Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J. Environ. Sci. 2018, 64, 130–138. [Google Scholar] [CrossRef]
- Lei, Z.; Mingyu, S.; Xiao, W.; Chao, L.; Chunxiang, Q.; Liang, C.; Hao, H.; Xiaoqing, L.; Fashui, H. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol. Trace Elem. Res. 2008, 121, 69–79. [Google Scholar] [CrossRef]
- Jurkow, R.; Pokluda, R.; Sękara, A.; Kalisz, A. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biol. 2020, 20, 290. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.; Lee, I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut. 2012, 223, 2799–2806. [Google Scholar] [CrossRef]
- Barbasz, A.; Kreczmer, B.; Ocwieja, M. Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiol. Plant. 2016, 38, 76. [Google Scholar] [CrossRef]
- Vannini, C.; Domingo, G.; Onelli, E.; Prinsi, B.; Marsoni, M.; Espen, L.; Bracale, M. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 2013, 8, e68752. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Singh, S.; Singh, S.; Srivastava, P.K.; Singh, V.P.; Singh, S.; Prasad, S.M.; Singh, P.K.; Dubey, N.K.; Pandey, A.C.; et al. Nitric oxide alleviates silver nanoparticles(AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem. 2017, 110, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, R.; Kołodziej, K.; Ślesak, I.; Zimak-Piekarczyk, P.; Orzechowska, A.; Gabruk, M.; Żądło, A.; Habina, I.; Knap, W.; Burda, K.; et al. Titanium dioxide nanoparticles (100–1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environ. Pollut. 2016, 213, 957–965. [Google Scholar] [CrossRef]
- Shaw, A.; Ghosh, S.; Kalaji, M.; Bosa, K.; Brestic, M.; Zivcak, M.; Hossain, Z. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). Environ. Exp. Bot. 2014, 102, 37–47. [Google Scholar] [CrossRef]
- Parveen, A.; Sonkar, S.; Sarangi, P.K.; Singh, A.K.; Sahoo, U.K.; Gupta, R.; Prus, P.; Imbrea, F.; Șmuleac, L.; Pașcalău, R. Harnessing the Eco-Friendly Potential of Asparagus racemosus Leaf Extract Fabricated Ni/Ni(OH)2 Nanoparticles for Sustainable Seed Germination and Seedling Growth of Vigna radiata. Agronomy 2023, 13, 2073. [Google Scholar] [CrossRef]
- Iqbal, M.; Raja, N.I.; Mashwani, Z.-U.-R.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on growth of wheat under heat stress. Iran. J. Sci. Technol. Trans. A Sci. 2017, 43, 387–395. [Google Scholar] [CrossRef]
- Gunjan, B.; Zaidi, M.G.H.; Sandeep, A. Impact of gold nanoparticles on physiological and biochemical characteristics of Brasica juncea. J. Plant. Physiol. Biochem. 2014, 2, 133. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, S.; Merritt, D.J.; Stevens, J.; Dixon, K. Seed Coating: Science or Marketing Spin? Trends Plant. Sci. 2017, 22, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Decerle, J. Farmers and the “Farm to Fork” Strategy. In Farm to Fork: Towards a Sustainable and Resilient Food System in Europe; Ulmann, L., Mai Thanh, C., Eds.; The European Files/Les Dossiers Europeenes: Brussels, Belgium, 2020; Volume 64, p. 22. [Google Scholar]
- Elshafie, H.S.; Camele, I. Applications of Absorbent Polymers for Sustainable Plant Protection and Crop Yield. Sustainability 2021, 13, 3253. [Google Scholar] [CrossRef]
- Pańka, D.; Jeske, M.; Łukanowski, A.; Baturo-Cieśniewska, A.; Prus, P.; Maitah, M.; Maitah, K.; Malec, K.; Rymarz, D.; Muhire, J.d.D.; et al. Can Cold Plasma Be Used for Boosting Plant Growth and Plant Protection in Sustainable Plant Production? Agronomy 2022, 12, 841. [Google Scholar] [CrossRef]
Treatment Time (Days) | Nanoparticles | Free Protein (mg/gFW) |
---|---|---|
7 | Control | 16.82 ± 0.80 ab |
AgNPs 50 ppm | 15.78 ± 0.60 abc | |
AgNPs 100 ppm | 17.03 ± 0.39 ab | |
AuNPs 50 ppm | 18.45 ± 1.71 a | |
AuNPs 100 ppm | 17.91 ± 1.56 ab | |
14 | Control | 11.90 ± 1.08 cd |
AgNPs 50 ppm | 13.54 ± 1.34 bc | |
AgNPs 100 ppm | 15.79 ± 0.73 abc | |
AuNPs 50 ppm | 16.91 ± 0.83 ab | |
AuNPs 100 ppm | 16.26 ± 0.30 abc | |
21 | Control | 4.26 ± 0.31 e |
AgNPs 50 ppm | 5.51 ± 0.57 e | |
AgNPs 100 ppm | 4.07 ± 0.51 e | |
AuNPs 50 ppm | 7.91 ± 0.91 de | |
AuNPs 100 ppm | 7.16 ± 0.88 e |
Treatment Time (Days) | Nanoparticles | GPOX U/gFW | GPOX U/mg |
---|---|---|---|
7 | Control | 553.23 ± 249.02 ab | 38.53 ± 18.66 abc |
AgNPs 50 ppm | 432.14 ± 295.18 abc | 30.22 ± 20.56 c | |
AgNPs 100 ppm | 763.80 ± 324.83 ab | 48.78 ± 19.50 abc | |
AuNPs 50 ppm | 916.69 ± 527.76 ab | 58.70 ± 33.72 abc | |
AuNPs 100 ppm | 1034.64 ± 151.85 a | 72.02 ± 12.29 abc | |
14 | Control | 327.05 ± 106.25 abc | 31.06 ± 10.51 bc |
AgNPs 50 ppm | 1556.92 ± 677.10 a | 113.79 ± 41.46 abc | |
AgNPs 100 ppm | 766.24 ± 402.14 ab | 49.98 ± 24.97 abc | |
AuNPs 50 ppm | 412.82 ± 26.20 ab | 25.92 ± 2.27 bc | |
AuNPs 100 ppm | 703.98 ± 123.30 ab | 45.75 ± 7.72 abc | |
21 | Control | 552.58 ± 113.32 ab | 190.40 ± 46.23 ab |
AgNPs 50 ppm | 61.02 ± 16.67 c | 16.11 ± 6.54 c | |
AgNPs 100 ppm | 139.45 ± 48.30 bc | 50.00 ± 16.26 abc | |
AuNPs 50 ppm | 1220.90 ± 294.45 a | 241.53 ± 98.85 a | |
AuNPs 100 ppm | 524.87 ± 159.34 ab | 117.73 ± 54.37 abc |
Treatment Time (Days) | Nanoparticles | PPOX U/gFW | PPOX U/mg |
---|---|---|---|
7 | Control | 1627.33 ± 483.90 ab | 111.18 ± 37.50 de |
AgNPs 50 ppm | 1401.21 ± 267.77 ab | 99.96 ± 18.16 de | |
AgNPs 100 ppm | 1981.58 ± 294.05 ab | 130.08 ± 20.00 a–e | |
AuNPs 50 ppm | 2300.20 ± 1097.37 ab | 147.35 ± 70.13 cde | |
AuNPs 100 ppm | 2195.55 ± 271.86 a | 153.06 ± 24.44 a–e | |
14 | Control | 1840.08 ± 169.87 ab | 166.41 ± 13.94 a–e |
AgNPs 50 ppm | 3285.83 ± 1306.83 a | 296.07 ± 151.11 a–e | |
AgNPs 100 ppm | 1720.24 ± 402.91 ab | 118.00 ± 34.20 cde | |
AuNPs 50 ppm | 1487.45 ± 194.04 ab | 94.86 ± 17.14 e | |
AuNPs 100 ppm | 1711.74 ± 172.24 ab | 112.20 ± 12.20 b–e | |
21 | Control | 1813.16 ± 324.26 ab | 582.58 ± 54.27 a |
AgNPs 50 ppm | 1027.94 ± 26.38 b | 260.23 ± 42.56 a–d | |
AgNPs 100 ppm | 1361.74 ± 61.03 ab | 513.61 ± 96.08 ab | |
AuNPs 50 ppm | 2978.14 ± 450.67 a | 526.92 ± 82.62 ab | |
AuNPs 100 ppm | 2043.12 ± 399.56 ab | 424.46 ± 121.04 abc |
Treatment Time (Days) | Nanoparticles | SOD U/gFW | SOD U/mg |
---|---|---|---|
7 | Control | 1112.72 ± 64.78 a–d | 198.99 ± 10.33 a–d |
AgNPs 50 ppm | 1004.31 ± 27.81 bcd | 189.76 ± 12.47 a–d | |
AgNPs 100 ppm | 950.50 ± 16.22 cd | 182.30 ± 6.88 bcd | |
AuNPs 50 ppm | 1210.05 ± 93.17 a–d | 227.64 ± 82.34 a–d | |
AuNPs 100 ppm | 1168.62 ± 36.16 a–d | 137.58 ± 22.07 d | |
14 | Control | 1045.78 ± 43.80 a–d | 260.89 ± 21.06 a–d |
AgNPs 50 ppm | 1228.17 ± 95.10 a–d | 342.36 ± 27.28 ab | |
AgNPs 100 ppm | 1255.37 ± 49.68 a–d | 330.95 ± 41.88 abc | |
AuNPs 50 ppm | 1345.71 ± 39.86 ab | 356.83 ± 56.87 a | |
AuNPs 100 ppm | 1293.21 ± 30.89 abc | 288.37 ± 35.63 a–d | |
21 | Control | 1113.20 ± 65.42 a–d | 171.18 ± 18.35 bcd |
AgNPs 50 ppm | 1010.52 ± 115.91 bcd | 178.56 ± 20.86 bcd | |
AgNPs 100 ppm | 924.46 ± 87.16 d | 122.64 ± 14.10 d | |
AuNPs 50 ppm | 1304.79 ± 136.31 abc | 163.96 ± 21.17 cd | |
AuNPs 100 ppm | 1394.09 ± 53.03 a | 207.07 ± 27.49 a–d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewska-Sowa, M.; Pańka, D.; Lisiecki, K.; Lemańczyk, G. The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles. Sustainability 2024, 16, 977. https://doi.org/10.3390/su16030977
Tomaszewska-Sowa M, Pańka D, Lisiecki K, Lemańczyk G. The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles. Sustainability. 2024; 16(3):977. https://doi.org/10.3390/su16030977
Chicago/Turabian StyleTomaszewska-Sowa, Magdalena, Dariusz Pańka, Karol Lisiecki, and Grzegorz Lemańczyk. 2024. "The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles" Sustainability 16, no. 3: 977. https://doi.org/10.3390/su16030977
APA StyleTomaszewska-Sowa, M., Pańka, D., Lisiecki, K., & Lemańczyk, G. (2024). The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles. Sustainability, 16(3), 977. https://doi.org/10.3390/su16030977