An Evaluation of Research Interests in Vertical Farming through the Analysis of KPIs Adopted in the Literature
Abstract
:1. Introduction
- RQ1: What are the main categories in which the VFPS KPIs can be classified based on their objective?
- RQ2: What are the most frequently used VFPS KPIs and categories?
- RQ3: Do the researchers exhaustively evaluate VFPSs by considering all the KPI categories?
2. Methodology
2.1. KPI Dimensions
2.2. VFPS Elements
2.3. Final KPIs Categories
2.4. Paper Selection from the Literature
3. Results
3.1. Productivity KPIs
3.2. Sustainability KPIs
- Resource use efficiency (RUE), i.e., the ratio of the final plant production to the total input [50];
- Energy consumption, i.e., the decrease in the primary energy consumption required to produce a unit of agricultural product [51];
- Greenhouse gas (GHG) emissions, i.e., greenhouse gases emitted by agricultural activities that constitute a group of gases contributing to global warming and climate change [52].
3.3. Quality KPIs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- SharathKumar, M.; Heuvelink, E.; Marcelis, L.F.M. Vertical Farming: Moving from Genetic to Environmental Modification. Trends Plant Sci. 2020, 25, 724–727. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; Boon, N.; Geelen, D. Vertical Farming: The Only Way Is Up? Agronomy 2021, 12, 2. [Google Scholar] [CrossRef]
- Moreno, J.C.; Berenguel, M.; Donaire, J.G.; Rodríguez, F.; Sánchez-Molina, J.A.; Guzmán, J.L.; Giagnocavo, C.L. A pending task for the digitalisation of agriculture: A general framework for technologies classification in agriculture. Agric. Syst. 2024, 213, 103794. [Google Scholar] [CrossRef]
- Huo, D.; Malik, A.W.; Ravana, S.D.; Rahman, A.U.; Ahmedy, I. Mapping smart farming: Addressing agricultural challenges in data-driven era. Renew. Sustain. Energy Rev. 2024, 189, 113858. [Google Scholar] [CrossRef]
- Awouda, A.M.M.; Fasciolo, B.; Bruno, G.; Razza, V. Cyber-Physical System Framework for Efficient Management of Indoor Farming Production. In Advances in Environmental Engineering and Green Technologies; Karthick, G.S., Ed.; IGI Global: Hershey, PA, USA, 2023; pp. 66–86. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Paradiso, R.; Arena, C.; De Pascale, S.; Van Labeke, M.-C. High Light Intensity from Blue-Red LEDs Enhance Photosynthetic Performance, Plant Growth, and Optical Properties of Red Lettuce in Controlled Environment. Horticulturae 2022, 8, 114. [Google Scholar] [CrossRef]
- Ismail, M.I.H.B.; Thamrin, N.M. IoT implementation for indoor vertical farming watering system. In Proceedings of the 2017 International Conference on Electrical, Electronics and System Engineering (ICEESE), Kanazawa, Japan, 9–10 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 89–94. [Google Scholar] [CrossRef]
- Ng, A.K.; Mahkeswaran, R. Emerging and Disruptive Technologies for Urban Farming: A Review and Assessment. J. Phys. Conf. Ser. 2021, 2003, 012008. [Google Scholar] [CrossRef]
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Fasciolo, B.; Awouda, A.; Bruno, G.; Lombardi, F. A smart aeroponic system for sustainable indoor farming. Procedia CIRP 2023, 116, 636–641. [Google Scholar] [CrossRef]
- Aliev, K.; Moazzam, M.; Narejo, S.; Pasero, E.; Pulatov, A. Internet of Plants Application for Smart Agriculture. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 421–429. [Google Scholar] [CrossRef]
- Lee, M.; Hwang, J.; Yoe, H. Agricultural Production System Based on IoT. In Proceedings of the 2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, NSW, Australia, 3–5 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 833–837. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef]
- Dumanski, J.; Terry, E.; Byerlee, D.; Pieri, C. Performance Indicators for Sustainable Agriculture; The World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Hübl, A. Stochastic Modelling in Production Planning; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Nadaraja, D.; Lu, C.; Islam, M.M. The Sustainability Assessment of Plantation Agriculture—A Systematic Review of Sustainability Indicators. Sustain. Prod. Consum. 2021, 26, 892–910. [Google Scholar] [CrossRef]
- Sannou, R.O.; Kirschke, S.; Günther, E. Integrating the social perspective into the sustainability assessment of agri-food systems: A review of indicators. Sustain. Prod. Consum. 2023, 39, 175–190. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Mendoza, J.M.F.; Aznar-Sánchez, J.A.; Gallego-Schmid, A. Circular economy implementation in the agricultural sector: Definition, strategies and indicators. Resour. Conserv. Recycl. 2021, 170, 105618. [Google Scholar] [CrossRef]
- Singh, R.K.; Berkvens, R.; Weyn, M. AgriFusion: An Architecture for IoT and Emerging Technologies Based on a Precision Agriculture Survey. IEEE Access 2021, 9, 136253–136283. [Google Scholar] [CrossRef]
- Abeysiriwardana, P.C.; Jayasinghe-Mudalige, U.K. Role of key performance indicators on agile transformation of performance management in research institutes towards innovative commercial agriculture. J. Sci. Technol. Policy Manag. 2022, 13, 213–243. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G. Plant Factory as a Resource-Efficient Closed Plant Production System. In Plant Factory; Elsevier: Amsterdam, The Netherlands, 2016; pp. 69–90. [Google Scholar] [CrossRef]
- Martin, M.; Elnour, M.; Siñol, A.C. Environmental life cycle assessment of a large-scale commercial vertical farm. Sustain. Prod. Consum. 2023, 40, 182–193. [Google Scholar] [CrossRef]
- Stojković, A.; Krstić, N.; Đorđević, D.; Igić, N.; Krstić, I. Life Cycle Assessment through the Implementation of the ISO 14000 Series of Standards; International Series in Operations Research & Management Science; University of Belgrade, Technical Faculty in Bor, Department of Engineering Management: Belgrade, Serbia, 2004; p. 473. [Google Scholar]
- Martin, M.; Orsini, F. Life Cycle Assessment of Indoor Vertical Farms; Burleigh and Dodds: Cambridge, UK, 2023. [Google Scholar]
- Chowdhury, M.E.H.; Khandakar, A.; Ahmed, S.; Al-Khuzaei, F.; Hamdalla, J.; Haque, F.; Reaz, M.B.I.; Al Shafei, A.; Al-Emadi, N. Design, Construction and Testing of IoT Based Automated Indoor Vertical Hydroponics Farming Test-Bed in Qatar. Sensors 2020, 20, 5637. [Google Scholar] [CrossRef]
- Krijn, M.P.C.M.; Elmpt, R.F.M.; Voort, S.L.; Nicole, C.C.S.; van der Feltz, G.; Bergh, T. Factors critical to plant factory performance. Acta Hortic. 2018, 1227, 615–622. [Google Scholar] [CrossRef]
- Green, A.; Nemecek, T.; Chaudhary, A.; Mathys, A. Assessing nutritional, health, and environmental sustainability dimensions of agri-food production. Glob. Food Secur. 2020, 26, 100406. [Google Scholar] [CrossRef]
- Grasso, N.; Fasciolo, B.; Bruno, G.; Lombardi, F. A Smart Vertical Farming System to Evaluate Productivity, Quality, and Sustainability of Agricultural Production. In Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems; Silva, F.J.G., Ferreira, L.P., Sá, J.C., Pereira, M.T., Pinto, C.M.A., Eds.; Lecture Notes in Mechanical Engineering; Springer Nature: Cham, Switzerland, 2024; pp. 938–945. [Google Scholar] [CrossRef]
- Kostoff, R.N. Literature-Related Discovery (LRD): Introduction and background. Technol. Forecast. Soc. Chang. 2008, 75, 165–185. [Google Scholar] [CrossRef]
- Reganold, J.P.; Papendick, R.I.; Parr, J.F. Sustainable Agriculture. Sci. Am. 1990, 262, 112–121. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Giusti, A.M.; Bignetti, E.; Cannella, C. Exploring New Frontiers in Total Food Quality Definition and Assessment: From Chemical to Neurochemical Properties. Food Bioprocess Technol. 2008, 1, 130–142. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Elsevier/AP: Amsterdam, The Netherlands; Academic Press: Boston, MA, USA, 2016. [Google Scholar]
- Kusiak, A.; Larson, T.N.; Wang, J. Reengineering of design and manufacturing processes. Comput. Ind. Eng. 1994, 26, 521–536. [Google Scholar] [CrossRef]
- Akhmetova, S.O.; Suleimenova, M.S.; Rebezov, M.B. Mechanism of an improvement of business processes management system for food production: Case of meat products enterprise. Entrep. Sustain. Issues 2019, 7, 1015–1035. [Google Scholar] [CrossRef]
- Shao, M.; Liu, W.; Zhou, C.; Wang, Q.; Li, B. Alternation of temporally overlapped red and blue light under continuous irradiation affected yield, antioxidant capacity and nutritional quality of purple-leaf lettuce. Sci. Hortic. 2022, 295, 110864. [Google Scholar] [CrossRef]
- Cho, Y.Y.; Oh, S.; Oh, M.M.; Son, J.E. Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Sci. Hortic. 2007, 111, 330–334. [Google Scholar] [CrossRef]
- Deepthi, M.P.; Nivethitha, S.; Saminathan, K.; Narendhirakannan, R.T.; Karmegam, N.; Kathireswari, P. Effect of vermiwash prepared from livestock biowaste as vermiponics medium on the growth and biochemical indices of Amaranthus viridis L. Environ. Technol. Innov. 2021, 21, 101300. [Google Scholar] [CrossRef]
- Uzair, M.; Ali, M.; Fiaz, S.; Attia, K.; Khan, N.; Al-Doss, A.A.; Khan, M.R.; Ali, Z. The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi J. Biol. Sci. 2022, 29, 103299. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, M.; Gine, A.; Vela, M.D.; Ornat, C.; Sorribas, F.; Talavera, M.; Verdejo-Lucas, S. Damage functions and thermal requirements of Meloidogyne javanica and Meloidogyne incognita on watermelon. Ann. Appl. Biol. 2014, 165, 466–473. [Google Scholar] [CrossRef]
- Hooshmand, M.; Albaji, M.; Nasab, S.B.; Ansari, N.A.Z. The effect of deficit irrigation on yield and yield components of greenhouse tomato (Solanum lycopersicum) in hydroponic culture in Ahvaz region, Iran. Sci. Hortic. 2019, 254, 84–90. [Google Scholar] [CrossRef]
- Zakaria, N.I.; Ismail, M.R.; Awang, Y.; Wahab, P.E.M.; Berahim, Z. Effect of Root Restriction on the Growth, Photosynthesis Rate, and Source and Sink Relationship of Chilli (Capsicum annuum L.) Grown in Soilless Culture. BioMed Res. Int. 2020, 2020, 2706937. [Google Scholar] [CrossRef]
- Al-Ajlouni, M.G.; Othman, Y.A.; Al-Qarallah, B.M.; Ayad, J.Y. Using environmentally friendly substrate in soilless lily production. J. Food Agric. Environ. 2017, 15, 34–38. [Google Scholar]
- Curry, G.L.; Feldman, R.M. Manufacturing Systems Modeling and Analysis, 2010th ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wheeler, R.; Mackowiak, C.; Stutte, G.; Sager, J.; Yorio, N.; Ruffe, L.; Fortson, R.; Dreschel, T.; Knott, W.; Corey, K. NASA’s biomass production chamber: A testbed for bioregenerative life support studies. Adv. Space Res. 1996, 18, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evid. Based Complement. Alternat. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef]
- Jurga, A.; Ratkiewicz, K.; Wdowikowska, A.; Reda, M.; Janicka, M.; Chohura, P.; Janiak, K. Urine and grey water based liquid fertilizer—Production and the response of plants. J. Environ. Manag. 2023, 331, 117248. [Google Scholar] [CrossRef]
- Page, V.; Feller, U. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems. Adv. Space Res. 2013, 52, 536–546. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. How energy innovation in indoor vertical farming can improve food security, sustainability, and food safety? In Advances in Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 1–51. [Google Scholar] [CrossRef]
- Ghasemi-Mobtaker, H.; Sharifi, M.; Taherzadeh-Shalmaei, N.; Afrasiabi, S. A new method for green forage production: Energy use efficiency and environmental sustainability. J. Clean. Prod. 2022, 363, 132562. [Google Scholar] [CrossRef]
- FAO. Agricultural Production Statistics 2000–2020; FAOSTAT Analytical Brief Series No. 41; FAO: Rome, Italy, 2022. [Google Scholar]
- Rossi, A.; Biancalani, R.; Chocholata, L. Change in Water-Use Efficiency over Time (SDG Indicator 6.4. 1): Analysis and Interpretation of Preliminary Results in Key Regions and Countries; FAO: Rome, Italy, 2019. [Google Scholar]
- Legendre, R.; Van Iersel, M.W. Supplemental Far-Red Light Stimulates Lettuce Growth: Disentangling Morphological and Physiological Effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Research Centre on Urban Environment for Agriculture and Biodiversity, Agricultural Sciences Department, Alma Mater Studiorum—University of Bologna, Bologna. Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci. 2020, 85, 297–309. [Google Scholar] [CrossRef]
- Wang, L.; Mühling, K.-H.; Erley, G.S.A. Nitrogen efficiency and leaf nitrogen remobilisation of oilseed rape lines and hybrids. Ann. Appl. Biol. 2016, 169, 125–133. [Google Scholar] [CrossRef]
- Li, J.; Sun, D.; Cheng, J. Recent Advances in Nondestructive Analytical Techniques for Determining the Total Soluble Solids in Fruits: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Hounsome, N.; Hounsome, B.; Lobo, M.G. Biochemistry of Vegetables. In Handbook of Vegetables and Vegetable Processing; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Roberts, S.B.; Flaherman, V. Dietary Energy. Adv. Nutr. 2022, 13, 2681–2685. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Lawrence, A.L.; Watts, S.A. Feeding, Digestion and Digestibility of Sea Urchins. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 135–154. [Google Scholar] [CrossRef]
- Minj, J.; Sudhakaran, V.A.; Kumari, A. (Eds.) Dairy Processing: Advanced Research to Application; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Qamer, Z.; Chaudhary, M.T.; Du, X.; Hinze, L.; Azhar, M.T. Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. J. Cotton Res. 2021, 4, 9. [Google Scholar] [CrossRef]
- Anjana, S.U.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar] [CrossRef]
- Davídek, J. Natural Toxic Compounds of Foods: Formation and Change during Processing and Storage; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Peralta-Videa, J.R.; Lopez, M.L.; Narayan, M.; Saupe, G.; Gardea-Torresdey, J. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int. J. Biochem. Cell Biol. 2009, 41, 1665–1677. [Google Scholar] [CrossRef]
- Jain, R.; Bagade, P.; Patil-Doke, K.; Ramamurthi, G. Food Microbiology: Fundamentals and Techniques. In Microbes in the Food Industry; Wiely: Hoboken, NJ, USA, 2023; pp. 1–38. [Google Scholar] [CrossRef]
- Li, K.; Xu, W.; Song, H.; Bi, F.; Li, Y.; Jiang, Z.; Tao, Y.; Qu, J.; Zhang, Y. Superior reduction and immobilization of Cr (VI) in soil utilizing sulfide nanoscale zero-valent iron supported by phosphoric acid-modified biochar: Efficiency and mechanism investigation. Sci. Total Environ. 2024, 907, 168133. [Google Scholar] [CrossRef]
- Kurian, S.J.; Baral, T.; Sekhar, M.S.; Rao, M. Chapter 28—Role of probiotics and prebiotics in digestion, metabolism, and immunity. In Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health; Bagchi, D., Ohia, S.E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 501–522. [Google Scholar] [CrossRef]
- Blum, F.; Hampel, S.M.; Hippner, H. Do Consumers Seek for Prestige? Development of the Need for Prestige Scale. In The Sustainable Global Marketplace, Proceedings of the Academy of Marketing Science; Dato-on, M.C., Ed.; Springer International Publishing: Cham, Switzerland, 2015; p. 112. [Google Scholar] [CrossRef]
- Cuartero, J.; Yeo, A.R.; Flowers, T.J. Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol. 1992, 121, 63–69. [Google Scholar] [CrossRef]
- Hewlett, J.D.; Kramer, P.J. The measurement of water deficits in broadleaf plants. Protoplasma 1963, 57, 381–391. [Google Scholar] [CrossRef]
- Kontrobayeva, Z. Improving the efficienccy of road transport during the carriage of agricultural goods. Int. J. GEOMATE 2023, 25, 213–220. [Google Scholar] [CrossRef]
- Subramaniam, P. (Ed.) Woodhead Publishing Series in Food Science, Technology and Nutrition. In The Stability and Shelf Life of Food, 2nd ed.; Woodhead Publishing: Sawston, UK, 2016; pp. xiii–xxvi. [Google Scholar] [CrossRef]
- Lichtfouse, E. (Ed.) Sustainable Agriculture Reviews; Springer International Publishing: Cham, Switzerland, 2015; Volume 15. [Google Scholar] [CrossRef]
KPIs Dimensions | VFPS Elements | |||
---|---|---|---|---|
Dimension | Sub-Dimension | Element Type | Element | Element Component |
Productivity | Crop productivity | Output | Crops | Edible part |
Non-edible part | ||||
System productivity | Output | Crops | Edible part | |
Non-edible part | ||||
Mechanisms | Environmental technologies | Sensors | ||
Actuators | ||||
Microprocessor | ||||
Mechanical structure | Frame | |||
Sustainability | Environmental | Input | Environmental input | CO2 |
Light | ||||
Energy | ||||
Temperature | ||||
Humidity | ||||
Space | ||||
Water | ||||
Substrate | ||||
Nutrients | ||||
Output | Environmental output | Nutrient surplus | ||
Water | ||||
Oxygen | ||||
Quality | Nutritive value | Output | Crops | Edible part |
Safety | Output | Crops | Edible part | |
Non-edible part | ||||
Deliciousness | Output | Crops | edible part | |
Logistic feasibility | Input | Packaging materials | Packaging materials | |
Output | Crops | Edible part |
Construct | Keywords | Search Query |
---|---|---|
Vertical farming | Vertical farming | “Vertical farm *” OR hydroponic * OR aeroponic * OR aquaponic * OR bioponic * OR “controlled environment farm *” OR CEA OR “Plant Factory with Artificial Light *” OR PFAL |
Hydroponics | ||
Aeroponics | ||
Aquaponics | ||
Biophonic | ||
Controlled-environment farms (CEA)Plant factory with artificial light (PFAL) | ||
Key performance indicators | Key performance indicators (KPI) | kpi OR “key performance indicator” OR metric * OR index * OR indicator * OR “performance evaluat *” |
Index | ||
Metric | ||
indicator | ||
Performance evaluation |
Productivity Category | KPI Level I | KPI Level II | KPI Level III | |
---|---|---|---|---|
Crop Productivity | Output: Crop | Dry Weight (47) | Root Dry Weight (2) | Dry Root Biomass Content (1) |
Shoot Dry Weight (2) | Dry Leaves Biomass Content (1) | |||
Fruit Dry Weight (1) | ||||
Fresh Weight (44) | Root Fresh Weight (8) | |||
Fruit Fresh Weight (3) | ||||
Shoot Fresh Weight (3) | ||||
Leaf Area (40) | Leaf Area Index (3) | |||
Shoot Length (27) | ||||
Numbers of Leaves (8) | ||||
Root Length (6) | ||||
Stem Diameter (6) | ||||
Yield (5) | Harvest Index (14) | |||
Root-to-Shoot Ratio (3) | ||||
Number of Fruits (3) | ||||
Root Diameter (1) | ||||
Number of Flowers (1) | ||||
Flower Size (1) | ||||
System Productivity | Output: Crop Mechanism: Environmental Technology and Mechanical Structure | Overall Equipment Effectiveness (8) | Uptime (9) | Mean Time to Repair (1) |
Mean Time to Failure (1) | ||||
Percentage of Usable Fresh Weight (6) | ||||
Relative Yield (5) | ||||
Percentage of Usable Dry Weight (3) | ||||
Output: Crop | Gross Production (14) | |||
Net Oxygen Produced (3) | ||||
Cycle Time (Germination) (7) | ||||
Cycle Time (Growth) (21) |
Sustainability Category | KPI Level I | KPI Level II | KPI Level III | |
---|---|---|---|---|
Environmental | Input: Environmental Input, Output: Environmental Output | Resource Use Efficiency (7) | Macronutrient Use Efficiency (6) | N Use Efficiency (12) |
P Use Efficiency (10) | ||||
K Use Efficiency (7) | ||||
Micronutrient Use Efficiency (4) | ||||
Water Use Efficiency (17) | ||||
CO2 Use Efficiency (9) | ||||
Electrical Energy Use Efficiency (10) | Electrical UE Lighting (5) | |||
Electrical UE Cooling (4) | ||||
Light Use Efficiency (21) | ||||
Land Use Efficiency (10) | ||||
Energy Consumption (5) | Electricity Consumption for Lamps (4) | |||
Electricity Consumption for Cooling (3) | ||||
GHG Emissions (3) |
Quality Category | KPI Level I | KPI Level II | |
---|---|---|---|
Nutritive Value | Output: Crops | Total Soluble Solids (2) | Vitamin Content (3) |
Mineral Content (9) | |||
Fiber Content (1) | |||
Prebiotic Compounds (1) | |||
Antioxidant Compounds (4) | |||
Protein Content (7) | |||
Sugar Content (2) | |||
Fatty Acids (1) | |||
Energy Content (1) | |||
Digestibility (1) | |||
Safety | Output: Crops | Nitrate Content (12) | |
Natural Toxic Compounds (12) | |||
Hazardous Compounds (12) | Heavy Metal Content (4) | ||
Bacterial Load (3) | Probiotic Compounds (1) | ||
Deliciousness | Output: Crops | Prestige (1) | |
Ease of Use (2) | |||
Color (9) | |||
Texture (3) | |||
Taste (3) | |||
Relative Water Content (5) | |||
Leaf Succulence (1) | |||
Logistic Feasibility | Output: Crops, Input: Packaging Materials | Transport Efficiency (2) | |
Suitability for Storage (1) | |||
Shelf Life (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasciolo, B.; Awouda, A.M.M.; Grasso, N.; Bruno, G.; Chiabert, P.; Lombardi, F. An Evaluation of Research Interests in Vertical Farming through the Analysis of KPIs Adopted in the Literature. Sustainability 2024, 16, 1371. https://doi.org/10.3390/su16041371
Fasciolo B, Awouda AMM, Grasso N, Bruno G, Chiabert P, Lombardi F. An Evaluation of Research Interests in Vertical Farming through the Analysis of KPIs Adopted in the Literature. Sustainability. 2024; 16(4):1371. https://doi.org/10.3390/su16041371
Chicago/Turabian StyleFasciolo, Benedetta, Ahmed Mubarak Mekki Awouda, Nicolò Grasso, Giulia Bruno, Paolo Chiabert, and Franco Lombardi. 2024. "An Evaluation of Research Interests in Vertical Farming through the Analysis of KPIs Adopted in the Literature" Sustainability 16, no. 4: 1371. https://doi.org/10.3390/su16041371
APA StyleFasciolo, B., Awouda, A. M. M., Grasso, N., Bruno, G., Chiabert, P., & Lombardi, F. (2024). An Evaluation of Research Interests in Vertical Farming through the Analysis of KPIs Adopted in the Literature. Sustainability, 16(4), 1371. https://doi.org/10.3390/su16041371