Optimization of Controlled Low-Strength Material from Multi-Component Coal-Based Solid Waste
Abstract
:1. Introduction
2. Experimental Programs
2.1. Materials and Methods
2.2. Experimental Design and Data Analysis
2.3. Mixture Proportions
3. Results and Discussion
3.1. Flowability
3.1.1. Single Factor Analysis
3.1.2. Range Analysis
3.2. Bleeding
3.2.1. Single Factor Analysis
3.2.2. Range Analysis
3.3. Compressive Strength
3.3.1. Single Factor Analysis
3.3.2. Range Analysis
3.4. Determination of Optimal Sample and Microscopic Analysis
3.5. Leaching of Heavy Metals
4. Conclusions
- (1)
- The fresh and dry densities of CLSM are within the range recommended by ACI 229.
- (2)
- For the bleeding and flowability of CLSM, the water content has the greatest influence, whereas the cement–binder ratio has the most significant effect on the compressive strength of CLSM.
- (3)
- As the cement–binder ratio increases, the flowability first decreases and then increases, the bleeding increases first and then decreases, and the compressive strength increases uniformly. When the water content increases, the flowability and bleeding increase all the time, but the compressive strength shows an opposite trend. When the content of the water-reducing agent increases, the flowability increases greatly, the bleeding increases first and then decreases, the compressive strength increases slightly, and the effect on the compressive strength is inconspicuous.
- (4)
- By means of orthogonal optimization experiments and range analysis, the optimal levels of cemen−binder ratio, water content, and water-reducing agent dosage were obtained as 0.24, 248 kg·m−3, and 0.80 kg·m−3, respectively. Hereon, the flowability was 251 mm, the bleeding was 3.96%, and the compressive strength for 3 d, 7 d, and 28 d was 1.50 MPa, 3.06 MPa, and 7.79 MPa, respectively.
- (5)
- The leaching values of the prepared CLSM optimal sample and the eight heavy metal elements (Cr, Mn, Cu, Zn, As, Cd, Pb, and Hg) in the raw materials are far lower than the safety limits in the standard, indicating that the CLSM has no heavy metal leaching risk and has limited influence on the environment.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACI 229R-13 Report on Controlled Low-Strength Materials; ACI Committee 229; American Concrete Institute: Farmington Hills, MI, USA, 2013.
- Türkel, S. Strength properties of fly ash based controlled low strength materials. J. Hazard. Mater. 2007, 147, 1015–1019. [Google Scholar] [CrossRef]
- Liu, Y.L.; Su, Y.P.; Xu, G.Q.; Chen, Y.H.; You, G.S. Research progress on controlled low-strength materials: Metallurgical waste slag as cementitious materials. Materials 2022, 15, 727. [Google Scholar] [CrossRef]
- Blanco, A.; Pujadas, P.; Cavalaro, S.H.P.; Aguado, A. Methodology for the design of controlled low-strength materials. Application to the backfill of narrow trenches. Constr. Build. Mater. 2014, 72, 23–30. [Google Scholar] [CrossRef]
- Dinh, B.H.; Kim, Y.S.; Yoon, S. Experimental and numerical studies on the performance of horizontal U-type and spiral-coil-type ground heat exchangers considering economic aspects. Renew. Energy 2022, 186, 505–516. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, S.K.; Lee, K.H. Flowable backfill materials from bottom ash for underground pipeline. Materials 2014, 7, 3337–3352. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Liu, Y.; Hu, H.; Li, Y.Y.; Lu, Y. Study on filling material ratio and filling effect: Taking coarse fly ash and coal gangue as the main filling component. Adv. Civ. Eng. 2019, 2019, 2898019. [Google Scholar] [CrossRef]
- Okuyucu, O.; Jayawickrama, P.; Senadheera, S. Mechanical properties of steel fiber reinforced self-consolidating controlled low strength material for pavement base layers. J. Mater. Civ. Eng. 2019, 31, 04019177. [Google Scholar] [CrossRef]
- Alizadeh, V.; Helwany, S.; Ghorbanpoor, A.; Sobolev, K. Design and application of controlled low strength materials as a structural fill. Constr. Build. Mater. 2014, 53, 425–431. [Google Scholar] [CrossRef]
- Alizadeh, V. Finite element analysis of controlled low strength materials. Front. Struct. Civ. Eng. 2019, 13, 1243–1250. [Google Scholar] [CrossRef]
- Chang, G.F.; Hua, X.Z.; Liu, X.; Li, C.; Wang, E.Q.; Sun, B.J. Fluidity influencing factor analysis and ratio optimization of new filling slurry based on the response surface method. J. Renew. Mater. 2022, 10, 1439–1458. [Google Scholar] [CrossRef]
- Li, J.Y.; Wang, J.M. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Kerimkulova, A.R.; Azat, S.; Velasco, L.; Mansurov, Z.A.; Lodewyckx, P.; Tulepov, M.I.; Kerimkulova, M.R.; Berezovskaya, I.; Imangazy, A. Granular rice husk-based sorbents for sorption of vapors of organic and inorganic matters. J. Chem. Technol. Metall. 2019, 54, 578–584. [Google Scholar]
- Tauanov, Z.; Azat, S.; Baibatyrova, A. A mini-review on coal fly ash properties, utilization and synthesis of zeolites. Int. J. Coal Prep. Util. 2020, 42, 1968–1990. [Google Scholar] [CrossRef]
- Kaliyavaradhan, S.K.; Ling, T.C.; Guo, M.Z. Upcycling of wastes for sustainable controlled low-strength material: A review on strength and excavatability. Environ. Sci. Pollut. Res. 2022, 29, 16799–16816. [Google Scholar] [CrossRef] [PubMed]
- Siddique, R. Utilization of waste materials and by-products in producing controlled low-strength materials. Resour. Conserv. Recycl. 2009, 54, 1–8. [Google Scholar] [CrossRef]
- Ling, T.C.; Kaliyavaradhan, S.K.; Poon, C.S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling-An overview. Constr. Build. Mater. 2018, 158, 535–548. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rahman, M.K.; Najamuddin, S.K.; Alhelal, Z.S.; Acero, C.E. A review on utilization of industrial by-products in the production of controlled low strength materials and factors influencing the properties. Constr. Build. Mater. 2022, 325, 126704. [Google Scholar] [CrossRef]
- Cheng, B.C.; Liu, R.T.; Li, X.H.; Castillo, E.D.R.; Chen, M.J.; Li, S.C. Effects of fly and coal bottom ash ratio on backfill material performance. Constr. Build. Mater. 2022, 319, 125831. [Google Scholar] [CrossRef]
- Kuo, W.T.; Wang, H.Y.; Shu, C.Y.; Su, D.S. Engineering properties of controlled low-strength materials containing waste oyster shells. Constr. Build. Mater. 2013, 46, 128–133. [Google Scholar] [CrossRef]
- Zhen, G.Y.; Lu, X.Q.; Zhao, Y.C.; Niu, J.; Chai, X.L.; Su, L.H.; Li, Y.Y.; Liu, Y.; Du, J.R.; Hojo, T.; et al. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: Mechanical and microstructural perspectives. J. Environ. Manag. 2013, 129, 183–189. [Google Scholar] [CrossRef]
- Das, S.K.; Mahamaya, M.; Reddy, K.R. Coal mine overburden soft shale as a controlled low strength material. Int. J. Min. Reclam. Environ. 2020, 34, 725–747. [Google Scholar] [CrossRef]
- Chen, H.J.; Lin, H.C.; Tang, C.W. Application of the Taguchi method for optimizing the process parameters of producing controlled low-strength materials by using dimension stone sludge and lightweight aggregates. Sustainability 2021, 13, 5576. [Google Scholar] [CrossRef]
- Katz, A.; Kovler, K. Utilization of industrial by-products for the production of controlled low strength materials (CLSM). Waste Manag. 2004, 24, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.L.; Wang, L.; Poon, C.S.; Baek, K.; Tsang, D.C.W.; Kwok, S.K. Transforming waterworks sludge into controlled low-strength material: Bench-scale optimization and field test validation. J. Environ. Manag. 2019, 232, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Polaczyk, P.; Jiang, X.; Zhang, M.M.; Wang, Y.H.; Huang, B.S. Cementless controlled low-strength material (CLSM) based on waste glass powder and hydrated lime: Synthesis, characterization and thermodynamic simulation. Constr. Build. Mater. 2021, 275, 122157. [Google Scholar] [CrossRef]
- Ricardo, S.; Jacob, H.; Jeffery, R.; David, L. Relative proportioning method for controlled low-strength material. ACI Mater. J. 2015, 112, 179–188. [Google Scholar] [CrossRef]
- Lan, W.; Wu, A.; Yu, P. Development of a new controlled low strength filling material from the activation of copper slag: Influencing factors and mechanism analysis. J. Clean. Prod. 2020, 246, 119060. [Google Scholar] [CrossRef]
- ASTM D6103-17; Standard Test Method for Flow Consistency of Controlled Low Strength Materials (CLSM). ASTM: West Conshohocken, PA, USA, 2017.
- GB/T 50080-2016. Standard for Test Method of Performance on Ordinary Fresh Concrete. Ministry of Housing and Urban-Rural Development of the People’s Republic of China and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2016.
- ASTM D6023-2016; Standard Test Method for Density (Unit Weight), Yield, Cement Content, and Air Content (Gravimetric) of Controlled Low-Strength Material (CLSM). ASTM: West Conshohocken, PA, USA, 2016.
- GB/T 50081-2019; Standard for Test Method of Concrete Physical and Mechanical Properties. Ministry of Housing and Urban-Rural Development of the People’s Republic of China and State Administration for Maket Regulation: Beijing, China, 2019.
- HJ 557-2010; Solid Waste-Extraction Procedure for Leaching Toxicity-Horizontal Vibration Method. Ministry of Environment Protection of the People’s Republic of China: Beijing, China, 2010.
- Amer, I.; Kohail, M.; El-Feky, M.S.; Rashad, A.; Khalaf, M.A. Characterization of alkali-activated hybrid slag/cement concrete. Ain Shams Eng. J. 2021, 12, 135–144. [Google Scholar] [CrossRef]
- Shi, Y.B.; Ye, Y.C.; Hu, N.Y.; Huang, X.; Wang, X.H. Experiments on material proportions for similar materials with high similarity ratio and low strength in multilayer shale deposits. Appl. Sci. 2021, 11, 9620. [Google Scholar] [CrossRef]
- Li, Y.H.; Bai, J.B.; Liu, L.M.; Wang, X.Y.; Yang, Y.; Li, T. Micro and macro experimental study of using the new cement-based self-stress grouting material to solve shrinkage problem. J. Mater. Res. Technol. 2022, 17, 3118–3137. [Google Scholar] [CrossRef]
- Mneina, A.; Soliman, A.M.; Ahmed, A.; El Naggar, M.H. Engineering properties of controlled low-strength materials containing treated oil sand waste. Constr. Build. Mater. 2018, 159, 277–285. [Google Scholar] [CrossRef]
- Sivakumar, N.; Hashim, A.R.; Nadzriah, A.H.S. Effect of quarry dust addition on the performance of controlled low-strength material made from industrial waste incineration bottom ash. Int. J. Miner. Metall. Mater. 2012, 19, 536–541. [Google Scholar] [CrossRef]
- Poon, C.S.; Lam, L.; Kou, S.C.; Wong, Y.L.; Wong, R. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem. Concr. Res. 2001, 31, 1301–1306. [Google Scholar] [CrossRef]
- Cho, Y.K.; Jung, S.H.; Choi, Y.C. Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Constr. Build. Mater. 2019, 204, 255–264. [Google Scholar] [CrossRef]
- Zhang, J.X.; Wang, J.G.; Li, X.H.; Zhou, T.J.; Guo, Y.Y. Rapid-hardening controlled low strength materials made of recycled fine aggregate from construction and demolition waste. Constr. Build. Mater. 2018, 173, 81–89. [Google Scholar] [CrossRef]
- Cong, M.L.; Zhang, S.S.; Sun, D.D.; Zhou, K.P. Optimization of preparation of foamed concrete based on orthogonal experiment and range analysis. Front. Mater. 2021, 8, 778173. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, K.; He, X.; Zhang, J.Q.; Hu, G.C. Experimental study on the optimization of coal-based solid waste filling slurry ratio based on the response surface method. Materials 2022, 15, 5318. [Google Scholar] [CrossRef] [PubMed]
- GB 5085.3-2007; Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity. State Environmental Protection Administration, and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2007.
- Xin, J.; Liu, L.; Xu, L.H.; Wang, J.Y.; Yang, P.; Qu, H.S. A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks. Sci. Total Environ. 2022, 830, 154766. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.Y.; Hills, C.D.; Tyrer, M.; Slipper, I.; Shen, H.G.; Brough, A. Characterization of products of tricalcium silicate hydration in the presence of heavy metals. J. Hazard. Mater. 2007, 147, 817–825. [Google Scholar] [CrossRef] [PubMed]
Composition (%) | SiO2 | Al2O3 | CaO | Fe2O3 | MgO | Na2O | K2O | TiO2 | SO3 | f-CaO | Cl− | Loss | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raw Materials | |||||||||||||
Cement | 20.72 | 4.62 | 62.18 | 3.26 | 3.15 | 0.52 | 0.34 | – | 2.72 | 0.72 | 0.012 | 1.84 | |
Fly ash | 52.95 | 27.55 | 4.94 | 6.31 | 1.92 | 1.52 | 1.85 | 1.28 | 1.03 | – | – | 0.19 | |
Bottom ash | 56.37 | 26.71 | 3.41 | 6.62 | 1.2 | 1.08 | 1.58 | 1.04 | 0.47 | – | – | 1.09 | |
Desulfuration gypsum | 2.62 | 0.58 | 28.77 | 0.43 | 2.46 | 0.25 | 0.12 | 0.03 | 40.17 | – | – | 24.5 | |
Coal gangue | 48.46 | 24.13 | 0.1 | 9.44 | 0.47 | 0.25 | 1.99 | 0.86 | 0.09 | – | – | 14.03 | |
Gasification slag | 48.07 | 16.37 | 8.95 | 8.84 | 1.91 | 1.77 | 1.48 | 0.9 | 0.61 | – | – | 10.3 |
Factor | Cement–Binder Ratio (A) | Water Content (kg·m−3) (B) | Water-Reducing Agent Content (kg·m−3) (C) |
---|---|---|---|
Level 1 | 0.16 | 248 | 0.64 |
Level 2 | 0.24 | 272 | 0.80 |
Level 3 | 0.32 | 296 | 0.96 |
No. | Cement–Binder Ratio (A) | Water Content (kg·m−3) (B) | Water-Reducing Agent Content (kg·m−3) (C) |
---|---|---|---|
1 | 1 (0.16) | 1 (248) | 1 (0.64) |
2 | 1 (0.16) | 2 (272) | 2 (0.80) |
3 | 1 (0.16) | 3 (296) | 3 (0.96) |
4 | 2 (0.24) | 1 (248) | 2 (0.80) |
5 | 2 (0.24) | 2 (272) | 3 (0.96) |
6 | 2 (0.24) | 3 (296) | 1 (0.64) |
7 | 3 (0.32) | 1 (248) | 3 (0.96) |
8 | 3 (0.32) | 2 (272) | 1 (0.64) |
9 | 3 (0.32) | 3 (296) | 2 (0.80) |
No. | Aggregate (kg·m−3) | Cementitious Materials (kg·m−3) | Water (kg·m−3) | Water-Reducing Agent (kg·m−3) | ||||
---|---|---|---|---|---|---|---|---|
Coal Gangue | Gasification Slag | Cement | Fly Ash | Bottom Ash | Desulfurized Gypsum | |||
1 | 960 | 240 | 64 | 208 | 80 | 48 | 248 | 0.64 |
2 | 960 | 240 | 64 | 208 | 80 | 48 | 272 | 0.80 |
3 | 960 | 240 | 64 | 208 | 80 | 48 | 296 | 0.96 |
4 | 960 | 240 | 96 | 176 | 80 | 48 | 248 | 0.80 |
5 | 960 | 240 | 96 | 176 | 80 | 48 | 272 | 0.96 |
6 | 960 | 240 | 96 | 176 | 80 | 48 | 296 | 0.64 |
7 | 960 | 240 | 128 | 144 | 80 | 48 | 248 | 0.96 |
8 | 960 | 240 | 128 | 144 | 80 | 48 | 272 | 0.64 |
9 | 960 | 240 | 128 | 144 | 80 | 48 | 296 | 0.80 |
No. | Flowability (mm) | Bleeding (%) | Compressive Strength (MPa) | Porosity (%) | Absorption (%) | Fresh Density (kg·m−3) | Dry Density (kg·m−3) | ||
---|---|---|---|---|---|---|---|---|---|
3 d | 7 d | 28 d | |||||||
1 | 150 | 2.49 | 1.02 | 2.42 | 3.63 | 13.78 | 15.98 | 1985 | 1778 |
2 | 320 | 5.67 | 0.84 | 2.31 | 3.14 | 14.12 | 16.44 | 2015 | 1782 |
3 | 350 | 5.25 | 0.74 | 1.86 | 2.46 | 13.26 | 15.29 | 2093 | 1859 |
4 | 251 | 3.96 | 1.50 | 3.06 | 7.79 | 13.27 | 15.30 | 2023 | 1810 |
5 | 350 | 11.00 | 1.33 | 2.87 | 7.29 | 13.75 | 15.94 | 2047 | 1812 |
6 | 260 | 9.43 | 0.99 | 2.36 | 6.24 | 14.41 | 16.83 | 2019 | 1778 |
7 | 270 | 2.13 | 2.15 | 3.49 | 13.95 | 12.69 | 14.53 | 2075 | 1849 |
8 | 255 | 4.76 | 1.73 | 2.98 | 11.97 | 13.15 | 15.14 | 2084 | 1847 |
9 | 315 | 13.73 | 1.49 | 2.71 | 11.12 | 13.99 | 16.26 | 2031 | 1786 |
Performance Parameter | Experimental Control Factor | Cement–Binder Ratio (A) | Water Content (kg·m−3) (B) | Water-Reducing Agent Content (kg·m−3) (C) | Rank |
---|---|---|---|---|---|
Flowability (mm) | Level 1 | 273 | 224 | 222 | C > B > A |
Level 2 | 287 | 308 | 295 | ||
Level 3 | 280 | 308 | 323 | ||
Range analysis | 14 | 84 | 101 |
Performance Parameter | Experimental Control Factor | Cement–Binder Ratio (A) | Water Content (kg·m−3) (B) | Water-Reducing Agent Content (kg·m−3) (C) | Rank |
---|---|---|---|---|---|
Bleeding | Level 1 | 4.47 | 2.86 | 5.56 | B > A > C |
Level 2 | 8.10 | 7.14 | 7.78 | ||
Level 3 | 6.87 | 9.47 | 6.13 | ||
Range analysis | 3.63 | 6.61 | 2.22 |
Performance Parameter | Experimental Control Factor | Cement–Binder Ratio (A) | Water Content (kg·m−3) (B) | Water-Reducing Agent Content (kg·m−3) (C) | Rank |
---|---|---|---|---|---|
3 d | Level 1 | 0.87 | 1.56 | 1.25 | A > B > C |
Level 2 | 1.27 | 1.30 | 1.28 | ||
Level 3 | 1.79 | 1.07 | 1.41 | ||
Range analysis | 0.92 | 0.49 | 0.16 | ||
7 d | Level 1 | 2.20 | 2.99 | 2.59 | |
Level 2 | 2.76 | 2.72 | 2.69 | ||
Level 3 | 3.06 | 2.31 | 2.74 | ||
Range analysis | 0.86 | 0.68 | 0.15 | ||
28 d | Level 1 | 3.08 | 8.45 | 7.28 | |
Level 2 | 7.11 | 7.47 | 7.35 | ||
Level 3 | 12.34 | 6.61 | 7.90 | ||
Range analysis | 9.26 | 1.84 | 0.62 |
Heavy Metal | Cr | Mn | Cu | Zn | As | Pb | Cd | Hg |
---|---|---|---|---|---|---|---|---|
Gasification slag | 494.60 | 5.42 | 3.88 | 59.13 | 3.07 | 11.56 | 0.75 | 5.38 |
Coal gangue | 0.00 | 635.24 | 0.55 | 141.77 | 0.09 | 0.07 | 0.33 | 0.05 |
Fly ash | 727.81 | 1.79 | 1.96 | 30.64 | 3.18 | 11.90 | 4.33 | 1.45 |
Desulfurized gypsum | 0.23 | 138.55 | 4.66 | 6.41 | 5.97 | 0.04 | 0.83 | 0.11 |
Bottom ash | 3.40 | 0.22 | 0.02 | 7.85 | 3.09 | 0.02 | 0.00 | 0.24 |
Optimal sample | 79.61 | 1.07 | 8.61 | 37.15 | 0.40 | 9.87 | 0.58 | 2.22 |
GB 5085.3-2007 | 5000 | - | 100,000 | 100,000 | 5000 | 5000 | 1000 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Yuan, N.; Wang, S.; Zhang, X.; Lin, C.; Wu, X.; Wang, Q.; Wang, D. Optimization of Controlled Low-Strength Material from Multi-Component Coal-Based Solid Waste. Sustainability 2024, 16, 1513. https://doi.org/10.3390/su16041513
Chen T, Yuan N, Wang S, Zhang X, Lin C, Wu X, Wang Q, Wang D. Optimization of Controlled Low-Strength Material from Multi-Component Coal-Based Solid Waste. Sustainability. 2024; 16(4):1513. https://doi.org/10.3390/su16041513
Chicago/Turabian StyleChen, Tianxiang, Ning Yuan, Shanhu Wang, Xinling Zhang, Chaoyang Lin, Xinyue Wu, Qibao Wang, and Dongmin Wang. 2024. "Optimization of Controlled Low-Strength Material from Multi-Component Coal-Based Solid Waste" Sustainability 16, no. 4: 1513. https://doi.org/10.3390/su16041513
APA StyleChen, T., Yuan, N., Wang, S., Zhang, X., Lin, C., Wu, X., Wang, Q., & Wang, D. (2024). Optimization of Controlled Low-Strength Material from Multi-Component Coal-Based Solid Waste. Sustainability, 16(4), 1513. https://doi.org/10.3390/su16041513