Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review
Abstract
:1. Introduction
2. Definition of Groundwater Ecological Function
3. Influencing Factors of Groundwater Ecological Function
3.1. The Influence of GD on GEF in Arid Region
3.2. Effects of Vegetation Water Use Sources on GEF in Arid Regions
3.3. Influence of Vadose Zone on GEF in Arid Region
4. The Evaluation of Groundwater Ecological Function
5. Discussion and Case Study
- (1)
- Under the same buried depth of groundwater table: The deeper the root development, or the higher the support capillary water rise height, the stronger the groundwater supply capacity, showing the stronger groundwater ecological function;
- (2)
- Due to the hydrotaxis of vegetation root development in arid regions, the slower the groundwater table decline, or the more significant the annual fluctuation of the groundwater table, the more conducive to the vertical development of vegetation root system, thus absorbing more water from groundwater, showing a stronger groundwater ecological function. Furthermore, when the buried depth of the groundwater table exceeds the limited ecological water level threshold, the delayed water release effect of the vadose zone will store part of the water and continue to supply water to vegetation, extending the role of groundwater ecological function. The more complex the lithologic structure of the vadose zone, the more obvious this effect is.
6. Conclusions and Future Directions
- (1)
- Quantitative evaluation of groundwater ecological function.
- (2)
- Cyclical variation of groundwater ecological function.
- (3)
- Strengthen the dynamic monitoring of groundwater ecological function.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.X.; Cheng, G.D.; Xu, Z.M. The Utilization of Water Resource and Its Influence on Eco-Environment in the Northwest Arid Area of China. J. Nat. Resour. 1999, 14, 110–116. [Google Scholar]
- Wang, L.; Chen, F. Change in water-use efficiency of irrigated areas before and after integrated management in Shiyang River Basin. Acta Ecol. Sin. 2018, 38, 3692–3704. [Google Scholar]
- Gou, T.Y.; Tong, L.; Kang, D.K.; He, Y.J.; Wang, W.Z.; Kang, S.Z.; Fu, J. Evaluating the comprehensive effects of the Key Master Plan of the Shiyang River Basin in arid areas of northwest China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 74–84. [Google Scholar]
- Zhang, G.H.; Shen, J.M.; Nie, Z.L.; Wang, J.Z.; Yan, M.J.; Hao, M.L. Theory and methodology of regional groundwater function and sustainable utilization assessment in China. Hydrogeol. Eng. Geol. 2006, 33, 62–66+71. [Google Scholar]
- Xu, W.J.; Kong, F.H.; Mao, R.C.; Song, J.X.; Sun, H.T.; Wu, Q.; Liang, D.; Bai, H.F. Identifying and mapping potential groundwater-dependent ecosystems for a semi-arid and semi-humid area in the Weihe River, China. J. Hydrol. 2022, 609, 127789. [Google Scholar] [CrossRef]
- Hu, S.; Ma, R.; Sun, Z.Y.; Ge, M.Y.; Zeng, L.L.; Huang, F.; Bu, J.W.; Wang, Z. Determination of the optimal ecological water conveyance volume for vegetation restoration in an arid inland river basin, northwestern China. Sci. Total Environ. 2021, 788, 147775. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhang, G.H.; Wang, Q.; Cui, H.H.; Liu, P.F. Construction and application of evaluation index system of groundwater ecological function in northwest arid area. Acta Geol. Sin. (Chin. Ed.) 2021, 95, 1573–1581. [Google Scholar] [CrossRef]
- Qi, Z.W.; Xiao, C.L.; Wang, G.; Liang, X.J. Study on ecological threshold of groundwater in typical salinization area of Qian′an county. Water 2021, 13, 856. [Google Scholar] [CrossRef]
- Wang, W.K.; Gong, C.C.; Zhang, Z.Y.; Chen, L. Research Status and Prospect of the Subsurface Hydrology and Ecological Effect in Arid Regions. Adv. Earth Sci. 2018, 33, 702–718. [Google Scholar]
- Huang, F.; Ochoa, C.G.; Chen, X.; Zhang, D.R. Modeling oasis dynamics driven by ecological water diversion and implications for oasis restoration in arid endorheic basins. J. Hydrol. 2021, 593, 125774. [Google Scholar] [CrossRef]
- Jia, L.M.; Guo, Z.X.; Long, Y.H.; Guo, K.; Liao, Z.L. Research advances in ecological groundwater level in arid areas. Ecol. Sci. 2015, 34, 187–193. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, J.W.; Yang, Y.; Peng, X.; Li, C.S.; Zhao, Q. A method to determine optimum ecological groundwater table depth in semi-arid areas. Ecol. Indic. 2022, 139, 108915. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.D.; Zhang, D.R.; Chen, X. Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions: A review. Int. J. Environ. Res. Public Health 2019, 16, 763. [Google Scholar] [CrossRef] [PubMed]
- Xin, P.; Kong, J.; Li, L.; Barry, D.A. Modeling of groundwater and vegetation interactions in a tidal marsh. Adv. Water Resour. 2013, 57, 52–68. [Google Scholar] [CrossRef]
- Fan, Z.L.; Ma, Y.J.; Zhang, H.; Wang, R.H.; Zhao, Y.J.; Zhou, H.F. Research of eco-water table and rational depth of groundwater of Tarim River drainage basin. Arid Land Geogr. 2004, 27, 8–13. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Chen, X.; Gao, M.; Liu, X.Q. Meta-analysis of ecological depth to groundwater table and its influencing factors in aird region of northwest China. South-to-North Water Divers. Water Sci. Technol. 2020, 18, 57–65. [Google Scholar] [CrossRef]
- Wang, S.; Wu, B.; Yang, P.; Li, X.; Dong, X. Determination of the Ecological Groundwater Depth Considering Ecological Integrity over Oasis Irrigation Areas in the Yanqi Basin. Resour. Sci. 2011, 33, 422–430. [Google Scholar]
- Cao, L.; Nie, Z.L.; Liu, M.; Lu, H.X.; Wang, L.F. Changes in natural vegetation growth and groundwater depth and their relationship in the Minqin oasis in the Shiyang River Basin. Hydrogeol. Eng. Geol. 2020, 47, 25–33. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Nie, H.F.; Xiao, C.L.; Xue, H.; Zhao, X.Q.; Li, T.Q.; Zhu, Z.Z. Effect of groundwater depth on vegetation coverage in southeastern margin of Otindag Sandy Land. J. Arid Land Resour. Environ. 2022, 36, 147–153. [Google Scholar] [CrossRef]
- Kai, W.M.; Liang, X.J.; Xiao, C.L.; Qi, Z.W.; Jia, L. Determination and analysis of groundwater ecological level in Changling county. China Rural Water Hydropower 2022, 1, 32–38. [Google Scholar]
- Aziz, M. Determination and control measures of groundwater ecological level in Yarkand River Basin. Groundwater 2023, 45, 83–84+105. [Google Scholar] [CrossRef]
- Zhang, G.H.; Nie, Z.L.; Cui, H.H.; Wang, Q.; Ma, R.; Xu, Z.X.; Chen, X.; Shao, J.L.; Zou, S.Z.; Fei, Y.H.; et al. Theory and Practice of Groundwater Rational Development and Ecological Function Protection in Northwest Inland Arid Area; Science Press: Beijing, China, 2022; pp. 191–193. [Google Scholar]
- Miguez-Macho, G.; Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 2021, 598, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Li, F.D. Water sources of the typical desert vegetation in Ebinur Lake basin. Acta Geogr. Sin. 2021, 76, 1649–1661. [Google Scholar] [CrossRef]
- Midgley, G.F. Ecology. Biodiversity and ecosystem function. Science 2012, 335, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Oerter, E.; Slessarev, E.; Visser, A.; Min, K.; Kan, M.; McFarlane, K.J.; Saha, M.C.; Berhe, A.A.; Pett-Ridge, J.; Nuccio, E. Hydraulic redistribution by deeply rooted grasses and its ecohydrologic implications in the southern Great Plains of North America. Hydrol. Process. 2021, 35, e14366. [Google Scholar] [CrossRef]
- Yu, K.L.; Odorico, P.D. Climate, vegetation and soil controls on hydraulic redistribution in shallow tree roots. Adv. Water Resour. 2014, 66, 70–80. [Google Scholar] [CrossRef]
- Marchionni, V.; Daly, E.; Manoli, G.; Tapper, N.J.; Walker, J.P.; Fatichi, S. Groundwater buffers drought effects and climate variability in urban reserves. Water Resour. Res. 2020, 56, e2019WR026192. [Google Scholar] [CrossRef]
- Wan, L.; Cao, W.B.; Hu, F.S.; Jin, X.M.; Chen, J.S.; Gong, B. Ecohydrogeology; Geology Press: Beijing, China, 2005; pp. 122–131. [Google Scholar]
- Zhang, H.; Wang, X.S. The impact of groundwater depth on the spatial variance of vegetation index in the Ordos Plateau, China: A semivariogram analysis. J. Hydrol. 2020, 588, 125096. [Google Scholar] [CrossRef]
- Phiri, M.; Shiferaw, Y.A.; Tesfamichael, S.G. Modelling the relationship between groundwater depth and NDVI using time series regression with Distributed Lag M. S. Afr. J. Geomat. 2018, 7, 147–163. [Google Scholar] [CrossRef]
- Song, G.; Huang, J.T.; Ning, B.H.; Wang, J.W.; Zeng, L. Effects of groundwater level on vegetation in the arid area of western China. China Geol. 2021, 4, 527–535. [Google Scholar] [CrossRef]
- Lee, E.; Kumar, P.; Knowles, J.F.; Minor, R.L.; Tran, N.; Barron-Gafford, G.A.; Scott, R.L. Convergent hydraulic redistribution and groundwater access supported facilitative dependency between trees and grasses in a semi-arid environment. Water Resour. Res. 2021, 57, e2020WR028103. [Google Scholar] [CrossRef]
- Chen, X.L.; Chen, Y.P.; Li, W.H.; Wang, Y.Y. Spatial distribution characteristics of fine roots of Populus euphratica Oliv. under different groundwater depths in arid regions. Plant Sci. J. 2018, 36, 45–53. [Google Scholar]
- Liu, S.S.; Xu, G.Q.; Li, Y.; Wu, X.; Liu, J.; Mi, X.J. Difference and consistency of responses of five sandy shrubs to changes in groundwater level in the Hailiutu River Basin. Acta Ecol. Sin. 2021, 41, 615–625. [Google Scholar]
- Zhu, Y.J.; Cui, Q.G.; Du, J.; Xu, S.H.; Liu, Z.L. Water use of three shrub communities in Mu Us Sandy Land. Acta Ecol. Sin. 2020, 40, 4470–4478. [Google Scholar]
- Barbeta, A.; Mejía-Chang, C.; Ogaya, R.; Voltas, J.; Dawson, T.E.; Penuelas, J. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Glob. Chang. Biol. 2015, 21, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.Q.; Ji, X.B.; Jin, B.W.; Zhang, J.L. Root distribution of three dominant desert shrubs and their water uptake dynamics. J. Plant Ecol. 2017, 10, 780–790. [Google Scholar] [CrossRef]
- Niu, Y.M.; Jia, G.D.; Liu, Z.H.; Wang, X.; Liu, Z.Q. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area. J. Beijing For. Univ. 2022, 44, 16–24. [Google Scholar]
- de la Casa, J.; Barbeta, A.; Rodríguez-Uña, A.; Wingate, L.; Ogée, J.; Gimeno, T.E. Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments. Hydrol. Earth Syst. Sci. 2022, 26, 4125–4146. [Google Scholar] [CrossRef]
- Dai, J.J.; Zhang, X.P.; Luo, Z.D.; Wang, R.; Liu, Z.L.; He, X.G.; Rao, Z.G.; Guan, H.D. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. J. Hydrol. 2020, 589, 125199. [Google Scholar] [CrossRef]
- Han, L.; Han, Y.G.; Huang, X.Y.; Gao, Y.; Sun, Z.J. Hydrogen and oxygen stable isotope tracer plant water source and water use strategy in arid region. J. Anhui Agric. Univ. 2020, 47, 435–441. [Google Scholar] [CrossRef]
- Nie, Y.P.; Chen, H.S.; Wang, K.L. Methods for determining plant water source in thin soil region: A review. Chin. J. Appl. Ecol. 2010, 21, 2427–2433. [Google Scholar] [CrossRef]
- Wang, Y.L.; Liu, L.C.; Gao, Y.H.; Li, G.; Zhao, J.C.; Xie, M. Analysis of water sources of plants in artificial sand-fixation vegetation area based on large rainfall events. Chin. J. Appl. Ecol. 2016, 27, 1053–1060. [Google Scholar] [CrossRef]
- Yang, G.; Li, X.L.; Chen, S.; He, X.L.; Yang, M.J.; Long, A.H.; Xue, L.Q. A Study of Water Use Sources of Typical Desert Vegetations in Manasi River Basin Based on 18O Isotope. China Rural Water Hydropower 2017, 11, 94–97+103. [Google Scholar]
- Wan, Y.F.; Shi, Q.D.; Dai, Y.; Li, T.; Peng, L.; Li, H. Water sources of Populus euphratica with different tree ages in the oasis of desert hinterland. Chin. J. Appl. Ecol. 2022, 33, 353–359. [Google Scholar] [CrossRef]
- Gao, Y.; He, L.X.Z.; Jia, Z.Q.; Li, Q.X.; Dai, J. Effects of precipitation on water use characteristics of Caragana intermedia plantations with different stand ages in alpine sandy land. Chin. J. Appl. Ecol. 2021, 32, 1935–1942. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, Y.P.; Li, W.H.; Wang, R.Z.; Zhou, Y.Y.; Zhang, J.P. Water sources of typical desert riparian plants in the lower reaches of Tarim River. J. Desert Res. 2017, 37, 1150–1157. [Google Scholar]
- Eggemeyer, K.D.; Awada, T.; Harvey, F.E.; Wedin, D.A.; Zhou, X.H.; Zanner, C.W. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiol. 2009, 29, 157–169. [Google Scholar] [CrossRef]
- Tian, L.H.; Wang, H.J.; Zhang, D.S.; Wang, Q.Y.; Liu, R.N. Water use patterns for a typical afforested shrub among topographic positions in an alpine desert of Qinghai-Tibet Plateau using stable isotopes tracers. Acta Ecol. Sin. 2021, 41, 6215–6226. [Google Scholar]
- Pan, Y.X.; Wang, X.P.; Ma, X.Z.; Zhang, Y.F.; Hu, R. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena 2020, 189, 104499. [Google Scholar] [CrossRef]
- Tiemuerbieke, B.; Min, X.J.; Zang, Y.X.; Xing, P.; Ma, J.Y.; Sun, W. Water use patterns of co-occurring C3 and C4 shrubs in the Gurbantonggut desert in northwestern China. Sci. Total Environ. 2018, 634, 341–354. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, W.Z.; He, Z.B.; Yan, J.L.; Zhang, G.F. Variation in depth of water uptake for Pinus sylvestris var. mongolica along a precipitation gradient in sandy regions. J. Hydrol. 2019, 577, 123921. [Google Scholar] [CrossRef]
- Zhou, H. Review of studies on the relationship between soil water movement and energy and their driving forces in the vadose zone of arid regions. Acta Ecol. Sin. 2019, 39, 6586–6597. [Google Scholar] [CrossRef]
- Kroes, J.; Supit, I.; van Dam, J.; van Walsum, P.; Mulder, M. Impact of capillary rise and recirculation on simulated crop yields. Hydrol. Earth Syst. Sci. 2018, 22, 2937–2952. [Google Scholar] [CrossRef]
- Zhao, C.L.; Jia, X.X.; Shao, M.A.; Zhu, Y.J. Regional variations in plant-available soil water storage and related driving factors in the middle reaches of the Yellow River Basin, China. Agric. Water Manag. 2021, 257, 107131. [Google Scholar] [CrossRef]
- Xu, Y.Z.; Zhao, G.Z.; Mu, N.S.; Wang, L.L.; Peng, H.X. Review on factors affecting the process of water movement in vadose zone. J. North China Univ. Water Resour. Electr. Power Nat. Sci. Ed. 2019, 40, 37–41. [Google Scholar] [CrossRef]
- Wang, C.S.; Gao, F.; Sun, W.Y.; Mu, X.M.; Gao, P.; Zhao, G.J.; Song, X.Y. Rainfall-infiltration process and characteristics of slope-gully system in the hilly and gully region of the Loess Plateau. Acta Ecol. Sin. 2021, 41, 3111–3122. [Google Scholar]
- Chen, J.; Song, N.P.; Chen, L.; Wang, X.; Wang, Q.X. Soil moisture dynamics and its response to precipitation in different cover types of desert steppe. J. Soil Water Conserv. 2021, 35, 198–206. [Google Scholar] [CrossRef]
- Shi, M.M.; Wang, X.M.; Chen, Q.; Han, B.H.; Zhou, B.R.; Xiao, J.S.; Xiao, H.B. Responses of soil moisture to precipitation and infiltration in dry and wet alpine grassland ecosystems. Acta Pratacult. Sin. 2021, 30, 49–58. [Google Scholar]
- Ma, Z.T.; Wang, W.K.; Zhang, Z.Y.; Zhao, M.; Chen, L.; Song, H.; Yu, P.Y. Simulation study on diurnal distribution variation of soil water in shallow vadose zone. J. Water Resour. Water Eng. 2019, 30, 245–251+260. [Google Scholar]
- Ren, T.; Jia, Z.F.; Wang, Z.; Zhong, Z. Dynamics of soil water potential under plastic membrane and geotextile cloth mulching in Mu Us Desert Land. J. Soil Water Conserv. 2020, 34, 78–84. [Google Scholar] [CrossRef]
- Zhang, W.J.; Wang, N.A.; Yu, X.R.; Niu, Z.M.; Zhao, L.Q. Magnitude of groundwater evapotranspiration in the Badain Jaran Desert based on groundwater dynamics method and empirical model: A case study of the Sumujilin Lake Area. Arid Zone Res. 2020, 37, 1215–1222. [Google Scholar] [CrossRef]
- Yu, P.Y.; Wang, W.K.; Wang, Z.F.; Gong, C.C.; Zhang, Z.Y.; Chen, L. Influence of lithologic structure of vadose zone on rainfall infiltration capacity. Water Resour. Hydropower Eng. 2019, 50, 25–33. [Google Scholar] [CrossRef]
- Pandey, P.K.; Pandey, V. Estimation of infiltration rate from readily available soil properties (RASPs) in fallow cultivated land. Sustain. Water Resour. Manag. 2019, 5, 921–934. [Google Scholar] [CrossRef]
- Zornberg, J.G.; Bouazza, A.; Mccartney, J.S. Geosynthetic capillary barriers: Current state of knowledge. Geosynth. Int. 2015, 17, 273–300. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, W.Z. Soil physical characteristics of shallow vadose zone and modeling its effects on upward capillary rise of groundwater in an arid-desert area. Chin. J. Appl. Ecol. 2019, 30, 2999–3009. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, H.; Yin, H.J.; Li, B.G.; Wang, H.K. Research on influence of construction of soil layer on height of capillary water upward movement and evaporation of groundwater. Water Sav. Irrig. 2011, 3, 6–8. [Google Scholar]
- Shi, W.J.; Shen, B.; Wang, Z.R.; Wang, W.Y. Maximum height of upward capillary water movement in layered soil. Agric. Res. Arid Area 2007, 1, 94–97. [Google Scholar]
- Cui, H.H.; Zhang, B.; Feng, X.; Gao, Y.X. Soil water-holding properties of different soil body configuration. Agric. Res. Arid Areas 2016, 34, 1–5. [Google Scholar] [CrossRef]
- Ge, J.; Huang, D.W.; Gao, X.; Tang, J.; Shen, H. Water Retention Capacity of Drained Soil Columns with Grained Layers. Southwest China. J. Agric. Sci. 2019, 32, 2126–2132. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Gao, Y.F.; Wang, P.Y. A Preliminary Study on The Mechanism of Water Release From Saturated Layered Soils. Earth Sci. 1985, 1, 21–27. [Google Scholar]
- Wang, Q.J.; Shao, M.A.; Zheng, J.Y. Water Movement and Solute Migration in Soil; China Water Power Press: Beijing, China, 2007. [Google Scholar]
- Liu, H.H.; Wang, G.L.; Yin, H.S.; He, R.P. Characteristics of soil water infiltration under different vegetation cover in jujube economic forest. J. Irrig. Drain. 2020, 39, 52–58. [Google Scholar] [CrossRef]
- Yang, L.H.; Xu, Y.C.; Ma, Y.X.; Song, X.F.; Zhao, Z.P.; Gong, L.; Liu, H.Y.; Song, Q.Y. Water movement in the unsaturated zone and groundwater recharge in the Yellow River irrigation area. Res. Soil Water Conserv. 2021, 28, 168–174. [Google Scholar] [CrossRef]
- Lin, D.; Jin, M.G.; Liang, X.; Zhang, H.B. Estimating groundwater recharge beneath irrigated farmland using environmental tracers’ fluoride, chloride and sulfate. Hydrogeol. J. 2013, 21, 1469–1480. [Google Scholar] [CrossRef]
- Xu, C.C.; Xu, G.Q.; Chen, Y.P.; Qiu, S.; Li, Y. Application of a new ground medium vaporizing instrument in laboratory simulated evaporation precipitation infiltration test. Groundwater 2018, 40, 127–129. [Google Scholar]
- You, C.Y.; Wang, J.Z.; Fang, G.Q.; Zhang, J.J. Application of water balance method in groundwater resources calculation for agriculture area in Arong County. Water Resour. Hydropower Northeast China 2019, 37, 19–21+71. [Google Scholar] [CrossRef]
- Lai, H.A.; Wang, Y.Y. Review of research methods on soil water transport in vadose zone. Agric. Technol. 2022, 42, 37–40. [Google Scholar] [CrossRef]
- Gulati, D.; Satpute, S.; Kaur, S.; Aggarwal, R. Estimation of potential recharge through direct seeded and transplanted rice fields in semi-arid regions of Punjab using HYDRUS-1D. Paddy Water Environ. 2022, 20, 79–92. [Google Scholar] [CrossRef]
- Huang, P.F.; Ma, D.H.; Wang, Z.J.; Gong, H.B. The application of administrative analysis method in groundwater function evaluation of Minqin Oasis. China Environ. Manag. 2006, 2, 2–5. [Google Scholar]
- Yan, C.Y.; Nie, Z.L.; Zhang, G.H.; Shen, J.M.; Cheng, X.X.; Yu, S.B. Assessment of groundwater function in the middle and lower reaches of the Shulehe River Basin. Hydrogeol. Eng. Geol. 2007, 4, 62–66+71. [Google Scholar]
- Zhang, G.H.; Yang, L.Z.; Nie, Z.L.; Shen, J.M.; Wang, J.Z.; Yan, M.J. Assessment of Groundwater Function in North China Plain. Resour. Sci. 2009, 31, 368–374. [Google Scholar]
- Sun, C.Z.; Yang, L.; Hu, D.L. Groundwater ecological sensitivity assessment in the lower Liaohe River Plain based on GIS technique. Acta Ecol. Sin. 2011, 31, 7428–7440. [Google Scholar]
- Wang, J.Z.; Zhang, G.H.; Yan, M.J.; Tian, Y.L.; Wang, Q. Index weight analysis of groundwater function evaluation and zoning system in arid areas. Trans. Chin. Soc. Agric. Eng. 2020, 36, 133–143. [Google Scholar] [CrossRef]
- Pérez Hoyos, I.C.; Krakauer, N.Y.; Khanbilvardi, R.; Armstrong, R.A. A review of advances in the identification and characterization of groundwater dependent ecosystems using geospatial technologies. Geosciences 2016, 6, 17. [Google Scholar] [CrossRef]
- Martínez-Santos, P.; Díaz-Alcaide, S.; de la Hera-Portillo, A.; Gomez-Escalonilla, V. Mapping groundwater-dependent ecosystems by means of multi-layer supervised classification. J. Hydrol. 2021, 603, 126873. [Google Scholar] [CrossRef]
- Páscoa, P.; Gouveia, C.M.; Kurz-Besson, C. A simple method to identify potential groundwater-dependent vegetation using NDVI MODIS. Forests 2020, 11, 147. [Google Scholar] [CrossRef]
- Glanville, K.; Ryan, T.; Tomlinson, M.; Muriuki, G.; Ronan, M.; Pollett, A. A Method for Catchment Scale Mapping of Groundwater-Dependent Ecosystems to Support Natural Resource Management (Queensland, Australia). Environ. Manag. 2016, 57, 432–449. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.; Merrifield, M. Mapping Groundwater Dependent Ecosystems in California. PLoS ONE 2020, 5, e11249. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.V.; Coutinho, R.; Andrade, C.; Medeiros, D.; Cymbron, R. Identification and Mapping of Groundwater Dependent Ecosystems in the AZORES Volcanic Archipelago (Portugal). Water 2022, 14, 1126. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Yu, Y.; Zhao, W.Z.; Guo, L.; Yetemen, O. Mapping groundwater-dependent ecosystems in arid Central Asia: Implications for controlling regional land degradation. Sci. Total Environ. 2021, 797, 14902. [Google Scholar] [CrossRef] [PubMed]
- Duran-Llacer, I.; Luis Arumí, J.; Arriagada, L.; Aguayo, M.; Rojas, O.; Gonzalez-Rodriguez, L.; Rodriguez-Lopez, L.; Martinez-Retureta, R.; Oyarzun, R.; Singh, S.K. A new method to map groundwater-dependent ecosystem zones in semi-arid environments: A case study in Chile. Sci. Total Environ. 2022, 816, 151528. [Google Scholar] [CrossRef]
- Huang, L.; Cao, W.; Wu, D.; Gong, G.L.; Zhao, G.S. Assessment on the changing conditions of ecosystems in key ecological function zones in China. Chin. J. Appl. Ecol. 2015, 26, 2758–2766. [Google Scholar] [CrossRef]
- Deng, M.J.; Fan, Z.L.; Xu, H.L.; Zhou, H.Y. Ecological function regionalization of Tarim River Basin. Arid Land Geogr. 2017, 40, 705–717. [Google Scholar] [CrossRef]
- Wang, L.X.; Zhang, M.S.; Sui, L.C.; Zhang, S.C.; Yang, Y. Ecological Function Regionalization in the Weihe River Basin. Arid Zone Res. 2020, 37, 236–243. [Google Scholar] [CrossRef]
- Wang, H.; You, J.J. Progress of water resources allocation during the past 30 years in China. J. Hydraul. Eng. 2016, 47, 265–271+282. [Google Scholar] [CrossRef]
- Yang, X.X.; Guo, P.; Li, M. A fuzzy multi-objective optimal allocation model of water resource oriented ecology in the middle reaches of Heihe River. Water Sav. Irrig. 2016, 5, 65–70. [Google Scholar]
- Song, S.H.; Nie, Z.L.; Geng, X.X.; Shen, X.; Wang, Z.; Zhu, P.C. Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin, Northwest China: A case study of the Xiying River. J. Groundwater Sci. Eng. 2023, 11, 89–96. [Google Scholar] [CrossRef]
- Guo, R.Q. Scientific allocation of water resources and promotion of ecological management of dongjuyanhai: Study on ecological protection and high quality development scheme in the lower reaches of Heihe River. J. Irrig. Drain. 2020, 39 (Suppl. 2), 136–139. [Google Scholar] [CrossRef]
- Water Resources in Northwest Region Task Group of Chinese Academy of Engineering (Chinese Academy of Engineering, Beijing\100038, China). Strategic study on allocation of water resources, conservation and upgrading of eco-environment and sustainable development in North-west China. Strateg. Study CAE 2003, 4, 1–26. [Google Scholar]
- Liu, M.; Nie, Z.L.; Cao, L.; Wang, L.F.; Lu, H.X.; Wang, Z.; Zhu, P.C. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed. J. Groundwater Sci. Eng. 2021, 9, 326–340. [Google Scholar] [CrossRef]
- Cui, H.H.; Zhang, G.H.; Wang, Q.; Yan, M.J.; Cao, L.; Liu, P.F. Periodicity and mechanism of groundwater ecological function in natural oasis in the lower reaches of Shiyang River Basin. J. Hydraul. Eng. 2023, 54, 199–207+219. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhang, G.H.; Cui, H.H.; Wang, Q.; Dong, H.B.; Hao, J. System index attribute and application of groundwater function zoning in northwest inland area of China. J. Hydraul. Eng. 2020, 51, 796–804. [Google Scholar]
- Wang, L.L.; Zhu, Y.M.; Liu, H.Y.; Wang, Q.; Wang, K. Design and implementation of an integrated platform for smart watersheds. Water Wastewater Eng. 2021, 57 (Suppl. 2), 456–460. [Google Scholar] [CrossRef]
GD (m) | Status of GEF | Response Characteristics of Vegetation Key Indicators |
---|---|---|
1.0~3.2 | Good | Both ecological NDVI index and vegetation coverage increased significantly and are positively correlated with GD. |
3.2~5.3 | Normal | Ecological NDVI index and vegetation coverage decreased significantly and are negatively correlated with GD. Most natural vegetation still shows a good growth state, but some moist vegetation, such as reed, is in poor ecological condition. |
5.3~7.4 | Gradual degeneration | The ecological NDVI index and vegetation coverage show a continuous decrease, and they are negatively correlated with GD. Some vegetation, such as licorice and reed, begin to wither and die. |
7.4~10.3 | Gradual degeneration | The ecological NDVI index and vegetation coverage show a slight decrease, and they are still negatively correlated with GD. The natural vegetation system shows a poor growth state on the whole. |
>10.3 | Catastrophic degeneration | Ecological NDVI index and vegetation coverage are not related to GD. Most of the desert vegetation is dead, the coverage is very low, and the surface has been desertification or desertification. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Yan, M.; Wang, Q.; Zhang, G.; Feng, H.; Lang, X. Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review. Sustainability 2024, 16, 1631. https://doi.org/10.3390/su16041631
Cui H, Yan M, Wang Q, Zhang G, Feng H, Lang X. Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review. Sustainability. 2024; 16(4):1631. https://doi.org/10.3390/su16041631
Chicago/Turabian StyleCui, Haohao, Mingjiang Yan, Qian Wang, Guanghui Zhang, Huimin Feng, and Xujuan Lang. 2024. "Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review" Sustainability 16, no. 4: 1631. https://doi.org/10.3390/su16041631
APA StyleCui, H., Yan, M., Wang, Q., Zhang, G., Feng, H., & Lang, X. (2024). Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review. Sustainability, 16(4), 1631. https://doi.org/10.3390/su16041631