Effects of Biochar-Coated Nitrogen Fertilizer on the Yield and Quality of Bok Choy and on Soil Nutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BCNF
2.3. Experiment Design
2.4. Determination of Biological Characters of Bok Choy
2.5. Determination of Soil Physicochemical Properties after Bok Choy Harvesting
2.6. Data Processing
3. Results and Discussion
3.1. Effect of BCNF on the Growth, Yield, and Quality of Bok Choy
3.1.1. Effect of BCNF on Dynamic Changes of Chlorophyll Content in Bok Choy Leaves
3.1.2. Effect of BCNF on Biological Characters of Bok Choy
3.1.3. Effect of BCNF on the Yield of Bok Choy
3.1.4. Effect of BCNF on Nitrate Content of Bok Choy
3.2. Effect of BCNF on Soil Nutrients
3.2.1. Effect of BCNF on Soil Organic Matter
3.2.2. Effect of BCNF on Soil Nitrogen Concentrations
3.2.3. Effect of BCNF on Exchangeable Calcium and Magnesium in the Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cen, Z.; Wei, L.; Muthukumarappan, K.; Sobhan, A.; McDaniel, R. Assessment of a Biochar-Based Controlled Release Nitrogen Fertilizer Coated with Polylactic Acid. J. Soil Sci. Plant Nutr. 2021, 21, 2007–2019. [Google Scholar] [CrossRef]
- Liu, X.; Ren, J.; Zhen, L. Study on nitrate accumulation in vegetables and its influencing factors. Chin. J. Soil Sci. 2003, 34, 356–361. [Google Scholar] [CrossRef]
- Shang, Y.; Bao, L.; Bi, H.; Guan, S.; Xu, J.; Gu, Y.; Zhao, C. Authenticity discrimination and adulteration level detection of camellia seed oil via hyperspectral imaging technology. Food Anal. Methods 2024. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Akhtar, M.; Mukhtar, Z.; Saeed, N.A. Hazards of nitrogen fertilizers and ways to reduce nitrate accumulation in crop plants. Environ. Sci. Pollut. Res. 2020, 27, 17661–17670. [Google Scholar] [CrossRef]
- Yin, D.; Yang, X.; Wang, H.; Guo, X.; Wang, S.; Wang, Z.; Ding, G.; Yang, G.; Zhang, J.; Jin, L.; et al. Effects of chemical-based fertilizer replacement with biochar-based fertilizer on albic soil nutrient content and maize yield. Open Life Sci. 2022, 17, 517–528. [Google Scholar] [CrossRef]
- Sim, D.H.H.; Tan, I.A.W.; Lim, L.L.P.; Hameed, B.H. Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. J. Clean. Prod. 2021, 303, 127018. [Google Scholar] [CrossRef]
- Banik, C.; Bakshi, S.; Laird, D.A.; Smith, R.G.; Brown, R.C. Impact of biochar-based slow-release N-fertilizers on maize growth and nitrogen recovery efficiency. J. Environ. Qual. 2023, 52, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Peng, Y.; Jipeng, W.; Lan, Z.; Liping, Z.; Xin, L.; Wenyan, H. Effect of biochar amendment on nitrogen leaching in soils. J. Agric. Resour. Env. 2018, 35, 292–300. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, J.; Hua, Y.; Li, X.; Chen, Q.; Shen, G. Optimization of granulation process for binder-free biochar-based fertilizer from digestate and its slow-release performance. Sustainability 2021, 13, 8573. [Google Scholar] [CrossRef]
- Sun, N.; Yang, A.-P.; Wang, S.-M.; Zhu, G.-L.; Liu, J.; Wang, T.-Y.; Wang, Z.-J.; Qi, B.-W.; Liu, X.; Lv, S.; et al. Mechanism of synergistic remediation of soil phenanthrene contamination in paddy fields by rice-crab coculture and bioaugmentation with Pseudomonas sp. Environ. Int. 2023, 182, 108315. [Google Scholar] [CrossRef]
- Marcińczyk, M.; Oleszczuk, P. Biochar and engineered biochar as slow- and controlled-release fertilizers. J. Clean. Prod. 2022, 339, 130685. [Google Scholar] [CrossRef]
- Zong, E.; Fan, R.; Hua, H.; Yang, J.; Jiang, S.; Dai, J.; Liu, X.; Song, P. A magnetically recyclable lignin-based bio-adsorbent for efficient removal of Congo red from aqueous solution. Int. J. Biol. Macromol. 2023, 226, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cheng, M.; Zhao, C.; Li, B.; Peng, H.; Zhang, Y.; Shao, Q.; Hassan, M. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Ind. Crops Prod. 2022, 176, 114267. [Google Scholar] [CrossRef]
- An, X.; Wu, Z.; Liu, X.; Shi, W.; Tian, F.; Yu, B. A new class of biochar-based slow-release phosphorus fertilizers with high water retention based on integrated co-pyrolysis and co-polymerization. Chemosphere 2021, 285, 131481. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.F.; Correa, D.A.; da Silva Carneiro, J.S.; Melo, L.C.A. Biochar phosphate fertilizer loaded with urea preserves available nitrogen longer than conventional urea. Sustainability 2022, 14, 686. [Google Scholar] [CrossRef]
- Puga, A.P.; de Almeida Queiroz, M.C.; Ligo, M.A.V.; Carvalho, C.S.; Pires, A.M.M.; de Oliveira Santos Marcatto, J.; de Andrade, C.A. Nitrogen availability and ammonia volatilization in biochar-based fertilizers. Arch. Agron. Soil Sci. 2020, 66, 992–1004. [Google Scholar] [CrossRef]
- Jia, Y.; Hu, Z.; Ba, Y.; Qi, W. Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chem. Biol. Technol. Agric. 2021, 8, 3. [Google Scholar] [CrossRef]
- Khajavi-Shojaei, S.; Moezzi, A.; Norouzi Masir, M.; Taghavi, M. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Convers. Biorefin. 2023, 13, 593–601. [Google Scholar] [CrossRef]
- Dong, D.; Wang, C.; Van Zwieten, L.; Wang, H.; Jiang, P.; Zhou, M.; Wu, W. An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. J. Soils Sediments 2020, 20, 3027–3040. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Mao, X.; Deng, J.; Haefele, S.M. Non-flooding rice yield response to straw biochar and controlled-release fertilizer. Agron. J. 2020, 112, 4799–4809. [Google Scholar] [CrossRef]
- An, N.; Zhang, L.; Liu, Y.; Shen, S.; Li, N.; Wu, Z.; Yang, J.; Han, W.; Han, X. Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere 2022, 298, 134304. [Google Scholar] [CrossRef]
- Guan, S.; Shang, Y.; Zhao, C. Storage Time Detection of Torreya grandis Kernels Using Near Infrared Spectroscopy. Sustainability 2023, 15, 7757. [Google Scholar] [CrossRef]
- Xia, H.; Riaz, M.; Zhang, M.; Liu, B.; Li, Y.; El-Desouki, Z.; Jiang, C. Biochar-N fertilizer interaction increases N utilization efficiency by modifying soil C/N component under N fertilizer deep placement modes. Chemosphere 2022, 286, 131594. [Google Scholar] [CrossRef]
- Bai, S.H.; Omidvar, N.; Gallart, M.; Kämper, W.; Tahmasbian, I.; Farrar, M.B.; Singh, K.; Zhou, G.; Muqadass, B.; Xu, C.Y.; et al. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total Environ. 2022, 808, 152073. [Google Scholar] [CrossRef]
- Liu, X.; Liao, J.; Song, H.; Yang, Y.; Guan, C.; Zhang, Z. A Biochar-Based Route for Environmentally Friendly Controlled Release of Nitrogen: Urea-Loaded Biochar and Bentonite Composite. Sci. Rep. 2019, 9, 9548. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Kopecký, M.; Amirahmadi, E.; Bucur, D.; Walkiewicz, A. Interaction of Biochar with Chemical, Green and Biological Nitrogen Fertilizers on Nitrogen Use Efficiency Indices. Agronomy 2022, 12, 2106. [Google Scholar] [CrossRef]
- Fan, S.; Zhu, Y.; Fang, X. Big Food Vision and Food Security in China. Agric. Rural Stud. 2023, 1, 0001. [Google Scholar] [CrossRef]
- Wu, H.; Xu, H. A Review of Sampling and Modeling Techniques for Forest Biomass Inventory. Agric. Rural Stud. 2023, 1, 0002. [Google Scholar] [CrossRef]
- Xu, J.; Lu, J.; Han, W.; Tang, W.; Zhao, C. Preparation of nano-SiO2-starch-polyvinyl alcohol composite membrane material and its application in carbon-based fertilizer. J. Chin. Agric. Mech. 2022, 43, 219–227. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, J.; Bi, H.; Shang, Y.; Shao, Q. A slow-release fertilizer of urea prepared via biochar-coating with nano-SiO2-starch-polyvinyl alcohol: Formulation and release simulation. Environ. Technol. Innov. 2023, 32, 103264. [Google Scholar] [CrossRef]
- Yeboah, S.; Zhang, R.; Cai, L.; Li, L.; Xie, J.; Luo, Z.; Wu, J.; Antille, D.L. Soil water content and photosynthetic capacity of spring wheat as affected by soil application of nitrogen-enriched biochar in a semiarid environment. Photosynthetica 2017, 55, 532–542. [Google Scholar] [CrossRef]
- Xie, T.; Zhao, H.; Xiao, H.; Chen, Y.; Hu, G.; Qi, S. Effects of carbon fertilizer on photosynthetic characteristics, dry matter accumulation and yield formation of fresh corn from Yellow soil in Guizhou Province. Soil Fert. Sci. China 2022, 3, 61–67. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Xiao, H.; Xie, T.; Qin, S.; Hu, G. Effects of nitrogen reduction combined with organic materials on crop yield, photosynthetic characteristics, and product quality of corn-cabbage rotation system. Chin. J. Appl. Ecol. 2021, 32, 4391–4400. [Google Scholar] [CrossRef]
- Mikos-Szymańska, M.; Schab, S.; Rusek, P.; Borowik, K.; Bogusz, P.; Wyzińska, M. Preliminary Study of a Method for Obtaining Brown Coal and Biochar Based Granular Compound Fertilizer. Waste Biomass Valorizat. 2019, 10, 3673–3685. [Google Scholar] [CrossRef]
- Moreau, D.; Abiven, F.; Busset, H.; Matejicek, A.; Pagès, L. Effects of species and soil-nitrogen availability on root system architecture traits—Study on a set of weed and crop species. Ann. Appl. Biol. 2017, 171, 103–116. [Google Scholar] [CrossRef]
- Li, Q.; Ren, Y.; Zou, Y.; Liu, J.; Yuan, J. Differences in nitrogen metabolism and dry matter productin between maize cultivars and different nitrogen efficiencies under low nitrogen stress. Acta Agric. Boreali-Occident. Sin. 2021, 30, 672–680. [Google Scholar] [CrossRef]
- Alharby, H.F.; Fahad, S. Melatonin application enhances biochar efficiency for drought tolerance in maize varieties: Modifications in physio-biochemical machinery. Agron. J. 2020, 112, 2826–2847. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Xu, C.Y.; Tahmasbian, I.; Che, R.; Xu, Z.; Zhou, X.; Wallace, H.M.; Bai, S.H. Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis. Geoderma 2017, 288, 79–96. [Google Scholar] [CrossRef]
- Fu, J.; Qiao, Z.; Zheng, J.; Li, L.; Pan, G.; Liu, F.; Zhang, X.; Zheng, J.; Wang, J.; Yu, X. Effects of different biochar-based fertilizer on nitrate content, yield and quality of cabbage. Chin. Agric. Sci. Bull. 2013, 29, 162–165. [Google Scholar]
- Sun, N.; Wang, T.; Qi, B.; Yu, S.; Yao, Z.; Zhu, G.; Fu, Q.; Li, C. Inhibiting release of phenanthrene from rice-crab coculture sediments to overlying water with rice stalk biochar: Performance and mechanisms. Sci. Total Environ. 2024, 908, 168385. [Google Scholar] [CrossRef]
- Kontárová, S.; Přikryl, R.; Škarpa, P.; Kriška, T.; Antošovský, J.; Gregušková, Z.; Figalla, S.; Jašek, V.; Sedlmajer, M.; Menčík, P.; et al. Slow-Release Nitrogen Fertilizers with Biodegradable Poly(3-hydroxybutyrate) Coating: Their Effect on the Growth of Maize and the Dynamics of N Release in Soil. Polymers 2022, 14, 4323. [Google Scholar] [CrossRef] [PubMed]
- Jiao, R.; Ren, S.; Wang, J.; Wei, C.; Meng, M.; Chen, Y. The Effects of Carbon Based Fertilizer on Soil Bulk Density and Porosity and Nutrient of Potato. Acta Agric. Boreali Sin. 2015, 30, 231–238. [Google Scholar] [CrossRef]
- Smernik, R.J.; Kookana, R.S.; Skjemstad, J.O. NMR characterization of 13C-benzene sorbed to natural and prepared charcoals. Environ. Sci. Technol. 2006, 40, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, K.; Miyamoto, T.; Shiono, T.; Shinogi, Y. Influence of Sugarcane Bagasse-derived Biochar Application on Nitrate Leaching in Calcaric Dark Red Soil. J. Environ. Qual. 2012, 41, 1131–1137. [Google Scholar] [CrossRef]
- Liao, S.; Chen, Y.; Li, Y.; Zhang, L.; Sun, Y. Effect of Biochar-based Urea on Yield and Quality of Celery and Soil NO3--N Content. J. Agric. Resour. Env. 2015, 32, 443–448. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, L.; Yang, J.; Zhang, Z. Chemosphere Insight to bacteria community response of organic management in apple orchard-bagasse fertilizer combined with biochar. Chemosphere 2022, 286, 131693. [Google Scholar] [CrossRef]
- Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Sci. Total Environ. 2021, 794, 148757. [Google Scholar] [CrossRef]
- Li, H.; Wang, B.; Siri, M.; Liu, C.; Feng, C.; Shao, X.; Liu, K. Calcium-modified biochar rather than original biochar decreases salinization indexes of saline-alkaline soil. Environ. Sci. Pollut. Res. 2023, 30, 74966–74976. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, D.; Qin, X.; He, P.; Fu, Y. Effect of Mg-Modified Waste Straw Biochar on the Chemical and Biological Properties of Acidic Soils. Molecules 2023, 28, 5225. [Google Scholar] [CrossRef]
Treatment | Urea (g·pot−1) | BCNF (g·pot−1) | Superphosphate (g·pot−1) | K2SO4 (g·pot−1) |
---|---|---|---|---|
BA | 0 | 0 | 1.875 | 0.600 |
CK | 0.469 | 0 | 1.875 | 0.600 |
BCNF | 0 | 0.670 | 1.875 | 0.600 |
D-BCNF | 0 | 0.536 | 1.875 | 0.600 |
Treatment | Leaf Number (Piece) | Leaf Length (cm) | Leaf Width (cm) | Leaf Area (cm2) |
---|---|---|---|---|
BA | 6.68 ± 0.001 b | 8.89 ± 0.073 b | 6.33 ± 0.112 b | 42.21 ± 12.022 c |
CK | 7.16 ± 0.532 ab | 11.13 ± 0.023 a | 7.47 ± 0.191 a | 62.36 ± 17.716 ab |
BCNF | 7.78 ± 0.036 ab | 11.66 ± 0.023 a | 7.90 ± 0.130 a | 69.08 ± 12.924 a |
D-BCNF | 7.22 ± 0.150 a | 10.75 ± 0.788 a | 7.46 ± 0.424 a | 60.14 ± 25.975 b |
Treatment | Dry Matter on the Ground (g·pot−1) | Root Weight (g·pot−1) | Root Shoot Ratio |
---|---|---|---|
BA | 1.2169 ± 0.001 b | 0.1133 ± 0.008 a | 0.0937 ± 0.001 a |
CK | 1.5376 ± 0.028 a | 0.0654 ± 0.001 b | 0.0425 ± 0.001 b |
BCNF | 1.6506 ± 0.027 a | 0.0572 ± 0.002 b | 0.0344 ± 0.001 b |
D-BCNF | 1.4597 ± 0.017 ab | 0.0809 ± 0.002 ab | 0.0572 ± 0.001 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, H.; Xu, J.; Li, K.; Li, K.; Cao, H.; Zhao, C. Effects of Biochar-Coated Nitrogen Fertilizer on the Yield and Quality of Bok Choy and on Soil Nutrients. Sustainability 2024, 16, 1659. https://doi.org/10.3390/su16041659
Bi H, Xu J, Li K, Li K, Cao H, Zhao C. Effects of Biochar-Coated Nitrogen Fertilizer on the Yield and Quality of Bok Choy and on Soil Nutrients. Sustainability. 2024; 16(4):1659. https://doi.org/10.3390/su16041659
Chicago/Turabian StyleBi, Haiwen, Jiafeng Xu, Kaixuan Li, Kaiang Li, Huanling Cao, and Chao Zhao. 2024. "Effects of Biochar-Coated Nitrogen Fertilizer on the Yield and Quality of Bok Choy and on Soil Nutrients" Sustainability 16, no. 4: 1659. https://doi.org/10.3390/su16041659
APA StyleBi, H., Xu, J., Li, K., Li, K., Cao, H., & Zhao, C. (2024). Effects of Biochar-Coated Nitrogen Fertilizer on the Yield and Quality of Bok Choy and on Soil Nutrients. Sustainability, 16(4), 1659. https://doi.org/10.3390/su16041659