Life Cycle Assessment of Using Firewood and Wood Pellets in Slovenia as Two Primary Wood-Based Heating Systems and Their Environmental Impact
Abstract
:1. Introduction
Biomass as Energy Source for Residential Heating Systems
- -
- roundwood,
- -
- sawlogs and veneer logs,
- -
- round and split pulpwood,
- -
- other industrial roundwood, and
- -
- wood fuel.
- -
- Felling and processing: cutting a tree from its stump so that the tree falls to the ground, delimbing and cross-cutting the trunk to predetermined lengths.
- -
- Skidding: transportation of wood from the felling site to the extraction routes and transportation of timber along the extraction routes to the landing sites.
- -
- Debarking: partially or entirely removing the bark from a log.
- -
- Transporting wood on forest and public roads.
- -
- Producing wood fuel: production of different wood fuels with cutting and splitting activities.
2. Materials and Methods
2.1. Objectives and Scope
- Quantify life cycle environmental impacts of heat produced from firewood and from wood pellets.
- Analyze the environmental hotspots of two biomass options and compare the effect of transportation distance.
2.2. System Definition and Boundaries
2.2.1. Firewood as a Source of Heat
- Felling of standing trees, delimbing, and cross-cutting.
- Skidding with an agricultural tractor equipped with a three-point attachment winch, or a regular agricultural tractor, which takes place on a skid trail and continues to a truck road.
- Transporting the wood.
Harvesting
Transport
Firewood Preparation
Combustion of Firewood in Biomass Boiler
2.2.2. Wood Pellets as a Source of Heat
- -
- pellet production process,
- -
- distribution to the distributor,
- -
- transport from the distribution center to the final consumer, and
- -
- combustion of pellets in a wood pellet stove.
2.2.3. Life Cycle Assessment Modeling and Software
3. Results and Discussion
3.1. Impact Assessment
3.2. Airborne Emissions
3.3. Sensitivity Analysis for Wood Pellet Combustion
3.4. Cumulative Energy Demand
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janiszewska, D.; Ossowska, L. The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries. Energies 2022, 15, 6756. [Google Scholar] [CrossRef]
- Eurostat. European Union Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 21 December 2023).
- Slovenian Statistical Office. SiStat Database. Available online: https://pxweb.stat.si/sistat/en (accessed on 11 December 2023).
- SURS Energetic Statistics. Available online: https://www.stat.si/StatWeb/News/Index/11405 (accessed on 16 November 2023).
- Zgheib, M.; Quaranta, G.; Tschamber, V.; Trouvé, G. Global Warming and Human Health Effects of Wood Heating Life Cycle in the Grand-Est Region in France. Biomass Bioenergy 2023, 175, 106879. [Google Scholar] [CrossRef]
- Brandelet, B.; Rose, C.; Landreau, J.; Druette, L.; Rogaume, Y. Toward a Cleaner Domestic Wood Heating by the Optimization of Firewood Stoves? J. Clean. Prod. 2021, 325, 129338. [Google Scholar] [CrossRef]
- Čikić, A.; Zdilar, S.; Mišević, P. The Effects of Biomass Availability and Preparation on the Sustainability of Power Plants in Croatia. Teh. Vjesn. 2021, 28, 1806–1812. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2023/2413; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Bais-Moleman, A.L.; Sikkema, R.; Vis, M.; Reumerman, P.; Theurl, M.C.; Erb, K.-H. Assessing Wood Use Efficiency and Greenhouse Gas Emissions of Wood Product Cascading in the European Union. J. Clean. Prod. 2018, 172, 3942–3954. [Google Scholar] [CrossRef]
- Gonçalves, M.; Freire, F.; Garcia, R. Material Flow Analysis of Forest Biomass in Portugal to Support a Circular Bioeconomy. Resour. Conserv. Recycl. 2021, 169, 105507. [Google Scholar] [CrossRef]
- Dimnik, J.; Novak, P.; Muhic, S. Decarbonising Power System with High Share of Renewables and Optionally with or without Nuclear: Slovenia Case. Therm. Sci. 2022, 26, 1593–1602. [Google Scholar] [CrossRef]
- Klein, D.; Wolf, C.; Schulz, C.; Weber-Blaschke, G. Environmental Impacts of Various Biomass Supply Chains for the Provision of Raw Wood in Bavaria, Germany, with Focus on Climate Change. Sci. Total Environ. 2016, 539, 45–60. [Google Scholar] [CrossRef]
- Kühmaier, M.; Kral, I.; Kanzian, C. Greenhouse Gas Emissions of the Forest Supply Chain in Austria in the Year 2018. Sustainability 2022, 14, 792. [Google Scholar] [CrossRef]
- Schau, E.M.; Tavzes, Č.; Gavrić, I.; Šušteršič, I.; Prelovšek Niemelä, E.; Dávid, B.; Pečnik, J.G.; DeVallance, D. Environmental and Economic Assessment of Using Wood to Meet Paris Agreement Greenhouse Gas Emission Reductions in Slovenia. E3S Web Conf. 2022, 349, 03005. [Google Scholar] [CrossRef]
- Coelho Junior, L.M.; de Lourdes da Costa Martins, K.; Carvalho, M. Carbon Footprint Associated with Firewood Consumption in Northeast Brazil: An Analysis by the IPCC 2013 GWP 100y Criterion. Waste Biomass Valor. 2019, 10, 2985–2993. [Google Scholar] [CrossRef]
- Mardones, C. Analyzing the Complementarity between Thermal Improvement and the Replacement of Wood-Burning Heaters to Reduce Outdoor Air Pollution. Int. J. Environ. Sci. Technol. 2024, 21, 189–204. [Google Scholar] [CrossRef]
- Malico, I. Biomass for Domestic Heat. In Forest Bioenergy: From Wood Production to Energy Use; Gonçalves, A.C., Malico, I., Eds.; Green Energy and Technology; Springer International Publishing: Cham, Switzerland, 2024; pp. 209–233. ISBN 978-3-031-48224-3. [Google Scholar]
- Martín-Gamboa, M.; Dias, L.C.; Quinteiro, P.; Freire, F.; Arroja, L.; Dias, A.C. Multi-Criteria and Life Cycle Assessment of Wood-Based Bioenergy Alternatives for Residential Heating: A Sustainability Analysis. Energies 2019, 12, 4391. [Google Scholar] [CrossRef]
- Ruiz, P.; Nijs, W.; Tarvydas, D.; Sgobbi, A.; Zucker, A.; Pilli, R.; Jonsson, R.; Camia, A.; Thiel, C.; Hoyer-Klick, C.; et al. ENSPRESO—An Open, EU-28 Wide, Transparent and Coherent Database of Wind, Solar and Biomass Energy Potentials. Energy Strategy Rev. 2019, 26, 100379. [Google Scholar] [CrossRef]
- Camia, A.; Robert, N.; Jonsson, K.; Pilli, R.; Garcia, C.S.; Lopez, L.R.; Van, D.V.M.; Ronzon, T.; Gurria, A.P.; M’barek, R.; et al. Biomass Production, Supply, Uses and Flows in the European Union: First Results from an Integrated Assessment. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109869 (accessed on 14 November 2023).
- Klepacka, A.M.; Florkowski, W.J. An Opportunity for Renewable Energy: Wood Pellet Use by Rural Households. In Handbook of Climate Change Mitigation and Adaptation; Lackner, M., Sajjadi, B., Chen, W.-Y., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1087–1120. ISBN 978-3-030-72579-2. [Google Scholar]
- Schau, E.M.; Gavrić, I.; Šušteršič, I.; Prelovšek Niemelä, E.; Dávid, B.; Pečnik, J.G.; DeVallance, D.B.; Tavzes, Č. Modelling the Slovenian Wood Industry’s Response to the Greenhouse Gas Paris Agreement and the EU “Fit for 55” Green Transition Plan. Sustainability 2023, 15, 8376. [Google Scholar] [CrossRef]
- Ščap, Š.; Krajnc, N.; Remic, T. Wood Products Market Statements with Forecasts (Market Statement 2023; Slovenia); UNECE: Ljubljana, Slovenia, 2023. [Google Scholar]
- Slovenian Forestry Service. Forest Ownership. Available online: http://www.zgs.si/gozdovi_slovenije/o_gozdovih_slovenije/lastnistvo_gozdov/index.html (accessed on 16 November 2023).
- Krajnc, N.; Ščap, Š. Management on agricultural properties [Gospodarjenje na kmetijskih gospodarstvih]. In Indicators of Forest Management in Slovenia [Kazalniki Gospodarjenja z Gozdovi v Sloveniji]; Triplat, M., Ed.; Gozdarski Inštitut Slovenije, Založba Silva Slovenica: Ljubljana, Slovenia, 2022; Volume 2022, pp. 83–93. [Google Scholar]
- Krajnc, N.; Stare, D. Forestry machiner [Gozdarska Mehanizacija]. In Indicators of Forest Management in Slovenia [Kazalniki Gospodarjenja z Gozdovi v Sloveniji]; Triplat, M., Ed.; Gozdarski Inštitut Slovenije, Založba Silva Slovenica: Ljubljana, Slovenia, 2022; Volume 2022, pp. 112–124. [Google Scholar]
- Ščap, Š.; Krajnc, N.; Piškur, M. The Forest as a Resource and Wood-Product Market. In Forests and forestry in Slovenia; Gozdarski Inštitut Slovenije: Ljubljana, Slovenia, 2020; pp. 89–101. [Google Scholar]
- Quinteiro, P.; Tarelho, L.; Marques, P.; Martín-Gamboa, M.; Freire, F.; Arroja, L.; Dias, A.C. Life Cycle Assessment of Wood Pellets and Wood Split Logs for Residential Heating. Sci. Total Environ. 2019, 689, 580–589. [Google Scholar] [CrossRef]
- Francescato, V.; Antonini, E.; Metschina, C.; Schnedl, C.; Krajnc, N.; Koscik, K.; Nocentini, G.; Stranieri, S. Wood Fuels Handbook: Production, Quality Requirements, Trading; AIEL—Italian Agriforestry Energy Association: Legnaro, Italy, 2008; Volume 2008. [Google Scholar]
- Krajnc, N. Wood Fuels Handbook; FAO—Food and Agriculture Organization of the United Nations: Pristina, Kosovo, 2015; Volume 2015. [Google Scholar]
- Cespi, D.; Passarini, F.; Ciacci, L.; Vassura, I.; Castellani, V.; Collina, E.; Piazzalunga, A.; Morselli, L. Heating Systems LCA: Comparison of Biomass-Based Appliances. Int. J. Life Cycle Assess. 2014, 19, 89–99. [Google Scholar] [CrossRef]
- Petersen Raymer, A.K. A Comparison of Avoided Greenhouse Gas Emissions When Using Different Kinds of Wood Energy. Biomass Bioenergy 2006, 30, 605–617. [Google Scholar] [CrossRef]
- Pierobon, F.; Zanetti, M.; Grigolato, S.; Sgarbossa, A.; Anfodillo, T.; Raffaele, C. Life Cycle Environmental Impact of Firewood Production—A Case Study in Italy. Appl. Energy 2015, 150, 185–195. [Google Scholar] [CrossRef]
- Paolotti, L.; Martino, G.; Marchini, A.; Boggia, A. Economic and Environmental Assessment of Agro-Energy Wood Biomass Supply Chains. Biomass Bioenergy 2017, 97, 172–185. [Google Scholar] [CrossRef]
- Ruiz, D.; San Miguel, G.; Corona, B.; López, F.R. LCA of a Multifunctional Bioenergy Chain Based on Pellet Production. Fuel 2018, 215, 601–611. [Google Scholar] [CrossRef]
- Ozgen, S.; Caserini, S. Methane Emissions from Small Residential Wood Combustion Appliances: Experimental Emission Factors and Warming Potential. Atmos. Environ. 2018, 189, 164–173. [Google Scholar] [CrossRef]
- Reyes, F.; Vasquez, Y.; Gramsch, E.; Oyola, P.; Rappenglück, B.; Rubio, M.A. Photooxidation of Emissions from Firewood and Pellet Combustion Using a Photochemical Chamber. Atmosphere 2019, 10, 575. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Boschiero, M.; Pierobon, F.; Cavalli, R.; Zanetti, M. Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains. Forests 2020, 11, 1127. [Google Scholar] [CrossRef]
- Desservettaz, M.; Pikridas, M.; Stavroulas, I.; Bougiatioti, A.; Liakakou, E.; Hatzianastassiou, N.; Sciare, J.; Mihalopoulos, N.; Bourtsoukidis, E. Emission of Volatile Organic Compounds from Residential Biomass Burning and Their Rapid Chemical Transformations. Sci. Total Environ. 2023, 903, 166592. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, A.; Yli-Pirilä, P.; Tiitta, P.; Leskinen, A.; Kortelainen, M.; Orasche, J.; Schnelle-Kreis, J.; Lehtinen, K.E.J.; Zimmermann, R.; Jokiniemi, J.; et al. Volatile Organic Compounds from Logwood Combustion: Emissions and Transformation under Dark and Photochemical Aging Conditions in a Smog Chamber. Environ. Sci. Technol. 2018, 52, 4979–4988. [Google Scholar] [CrossRef]
- Kindbom, K.; Mawdsley, I.; Nielsen, O.-K.; Saarinen, K.; Jónsson, K.; Aasestad, K. Emission Factors for SLCP Emissions from Residential Wood Combustion in the Nordic Countries; TemaNord, 2017:570; Nordic Council of Ministers: Copenhagen, Denmark, 2017; ISBN 978-92-893-5284-0.
- Glavonjic, B.; Krajnc, N.; Palus, H. Development of Wood Pellets Market in South East Europe. Therm. Sci. 2015, 19, 781–792. [Google Scholar] [CrossRef]
- Sadaghiani, S.; Mafakheri, F.; Chen, Z. Life Cycle Assessment of Bioenergy Production Using Wood Pellets: A Case Study of Remote Communities in Canada. Energies 2023, 16, 5697. [Google Scholar] [CrossRef]
- Quinteiro, P.; Greco, F.; Da Cruz Tarelho, L.A.; Righi, S.; Arroja, L.; Dias, A.C. A Comparative Life Cycle Assessment of Centralised and Decentralised Wood Pellets Production for Residential Heating. Sci. Total Environ. 2020, 730, 139162. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; McDonnell, K. Greenhouse Gas and Energy Based Life Cycle Analysis of Products from the Irish Wood Processing Industry. J. Clean. Prod. 2015, 92, 134–141. [Google Scholar] [CrossRef]
- Marczak, H. Analysis of Energy Consumption in the Production Chain of Heat from Pellet. Adv. Sci. Technol. Res. J. 2020, 14, 206–214. [Google Scholar] [CrossRef] [PubMed]
Impact Category | Unit | 1 MJ of Thermal Heat from logs_10 km | 1 MJ of Thermal Heat Generated from Pellets_500 km |
---|---|---|---|
Global warming | kg CO2 eq | 0.016 | 0.041 |
Stratospheric ozone depletion | kg CFC11 eq | 2.19 × 10−7 | 5.97 × 10−8 |
Ionizing radiation | kBq Co-60 eq | 0.00048 | 0.0039 |
Ozone formation, Human health | kg NOx eq | 0.00017 | 0.00026 |
Fine particulate matter formation | kg PM2.5 eq | 9.50 × 10−5 | 1.18 × 10−5 |
Ozone formation, Terrestrial ecosystems | kg NOx eq | 0.00018 | 0.00027 |
Terrestrial acidification | kg SO2 eq | 8.57 × 10−5 | 0.00017 |
Freshwater eutrophication | kg P eq | 6.55 × 10−6 | 1.25 × 10−5 |
Marine eutrophication | kg N eq | 1.58 × 10−6 | 2.05 × 10−6 |
Terrestrial ecotoxicity | kg 1,4-DCB | 0.14 | 0.39 |
Freshwater ecotoxicity | kg 1,4-DCB | 0.00065 | 0.0016 |
Marine ecotoxicity | kg 1,4-DCB | 0.00093 | 0.0023 |
Human carcinogenic toxicity | kg 1,4-DCB | 0.0011 | 0.0031 |
Human non-carcinogenic toxicity | kg 1,4-DCB | 0.039 | 0.054 |
Land use | m2a crop eq | 0.034 | 0.046 |
Mineral resource scarcity | kg Cu eq | 4.72 × 10−5 | 0.00013 |
Fossil resource scarcity | kg oil eq | 0.0028 | 0.011 |
Water consumption | m3 | 4.35 × 10−5 | 0.00029 |
Substance | Unit | 1 MJ of Thermal Heat from logs_10 km | % | 1 MJ of Thermal Heat Generated from Pellets_500 km | % |
---|---|---|---|---|---|
Carbon dioxide, fossil | kg CO2 eq | 0.083 | 50.9 | 0.034 | 84.0 |
Carbon dioxide, land transformation | kg CO2 eq | 9.13 × 10−5 | 0.6 | 1.59 × 10−4 | 0.4 |
Dinitrogen monoxide | kg CO2 eq | 0.0059 | 36.3 | 0.0016 | 3.9 |
Methane, biogenic | kg CO2 eq | 8.47 × 10−4 | 5.2 | 2.63 × 10−4 | 0.6 |
Methane, fossil | kg CO2 eq | 0.0011 | 6.8 | 0.0044 | 10.7 |
Sulfur hexafluoride | kg CO2 eq | 2.12 × 10−5 | 0.1 | 1.06 × 10−4 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topić Božič, J.; Fric, U.; Čikić, A.; Muhič, S. Life Cycle Assessment of Using Firewood and Wood Pellets in Slovenia as Two Primary Wood-Based Heating Systems and Their Environmental Impact. Sustainability 2024, 16, 1687. https://doi.org/10.3390/su16041687
Topić Božič J, Fric U, Čikić A, Muhič S. Life Cycle Assessment of Using Firewood and Wood Pellets in Slovenia as Two Primary Wood-Based Heating Systems and Their Environmental Impact. Sustainability. 2024; 16(4):1687. https://doi.org/10.3390/su16041687
Chicago/Turabian StyleTopić Božič, Jelena, Urška Fric, Ante Čikić, and Simon Muhič. 2024. "Life Cycle Assessment of Using Firewood and Wood Pellets in Slovenia as Two Primary Wood-Based Heating Systems and Their Environmental Impact" Sustainability 16, no. 4: 1687. https://doi.org/10.3390/su16041687
APA StyleTopić Božič, J., Fric, U., Čikić, A., & Muhič, S. (2024). Life Cycle Assessment of Using Firewood and Wood Pellets in Slovenia as Two Primary Wood-Based Heating Systems and Their Environmental Impact. Sustainability, 16(4), 1687. https://doi.org/10.3390/su16041687