Remediation Technologies of Contaminated Sites in China: Application and Spatial Clustering Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Collation and Cleaning
2.3. Local Spatial Autocorrelation
3. Results and Discussion
3.1. Application Status of Remediation Technologies for Contaminated Soils
3.2. Coupling Characteristics between Contaminants and Remediation Technologies
3.3. Spatial Distribution of Remediation Technologies
3.4. Spatial Autocorrelation Analysis of Remediation Technologies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.W.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal Contamination and Bioremediation of Agricultural Soils for Food Safety and Sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Deng, B.; Carter, R.A.; Cheng, Y.; Liu, Y.; Eddy, L.; Wyss, K.M.; Ucak-Astarlioglu, M.G.; Luong, D.X.; Gao, X.; JeBailey, K.; et al. High-Temperature Electrothermal Remediation of Multi-Pollutants in Soil. Nat. Commun. 2023, 14, 6371. [Google Scholar] [CrossRef]
- Soil and Groundwater Remediation Industry Review in 2023 and Development Prospects in 2024. Available online: https://www.hbzhan.com/news/detail/172201.html (accessed on 1 January 2024).
- Yu, J.; Luo, H.; Yang, B.; Wang, M.; Gong, Y.; Wang, P.; Jiao, Y.; Liang, T.; Cheng, H.; Ma, F.; et al. Risk Control Values and Remediation Goals for Benzo[a]Pyrene in Contaminated Sites: Sectoral Characteristics, Temporal Trends, and Empirical Implications. Environ. Sci. Technol. 2023, 57, 2064–2074. [Google Scholar] [CrossRef]
- Hou, D. Sustainable Remediation in China: Elimination, Immobilization, or Dilution. Environ. Sci. Technol. 2021, 55, 15572–15574. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Raimondo, E.E.; Saez, J.M.; Costa-Gutierrez, S.B.; Álvarez, A.; Benimeli, C.S.; Polti, M.A. The Current Approach to Soil Remediation: A Review of Physicochemical and Biological Technologies, and the Potential of Their Strategic Combination. J. Environ. Chem. Eng. 2022, 10, 107141. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Hejazi, R. An Overview and Analysis of Site Remediation Technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, B.; Bai, Y.; Zhang, M.; Xie, Y.; Shi, Y.; Du, X. Remediation Status and Practices for Contaminated Sites in China: Survey-Based Analysis. Environ. Sci. Pollut. Res. 2018, 25, 33216–33224. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Da, Y.; Yu, J.; Long, B.; Zhang, P.; Bakker, C.; McCarl, B.A.; Yuan, J.S.; Dai, S.Y. Sustainable Environmental Remediation via Biomimetic Multifunctional Lignocellulosic Nano-Framework. Nat. Commun. 2022, 13, 4368. [Google Scholar] [CrossRef]
- Li, X.; Jiao, W.; Xiao, R.; Chen, W.; Liu, W. Contaminated Sites in China: Countermeasures of Provincial Governments. J. Clean. Prod. 2017, 147, 485–496. [Google Scholar] [CrossRef]
- Li, X.; Cundy, A.B.; Chen, W.; Lyu, S. Systematic and Bibliographic Review of Sustainability Indicators for Contaminated Site Remediation: Comparison between China and Western Nations. Environ. Res. 2021, 200, 111490. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Hamdaoui, O.; Vasseghian, Y.; Momotko, M.; Boczkaj, G.; Kyzas, G.Z.; Wang, C. Bibliometric Analysis and Literature Review of Ultrasound-Assisted Degradation of Organic Pollutants. Sci. Total Environ. 2023, 876, 162551. [Google Scholar] [CrossRef]
- Ramírez-Malule, H.; Quiñones-Murillo, D.H.; Manotas-Duque, D. Emerging Contaminants as Global Environmental Hazards. A Bibliometric Analysis. Emerg. Contam. 2020, 6, 179–193. [Google Scholar] [CrossRef]
- Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation Methods for Assessing Effectiveness of in Situ Remediation of Soil and Sediment Contaminated with Organic Pollutants and Heavy Metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef]
- Lemming, G.; Hauschild, M.Z.; Bjerg, P.L. Life Cycle Assessment of Soil and Groundwater Remediation Technologies: Literature Review. Int. J. Life Cycle Assess. 2010, 15, 115–127. [Google Scholar] [CrossRef]
- Song, Y.; Hou, D.; Zhang, J.; O’Connor, D.; Li, G.; Gu, Q.; Li, S.; Liu, P. Environmental and Socio-Economic Sustainability Appraisal of Contaminated Land Remediation Strategies: A Case Study at a Mega-Site in China. Sci. Total Environ. 2018, 610–611, 391–401. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, D. Reductive Immobilization of Chromate in Water and Soil Using Stabilized Iron Nanoparticles. Water Res. 2007, 41, 2101–2108. [Google Scholar] [CrossRef]
- Gao, J.; Faheem, M.; Yu, X. Global Research on Contaminated Soil Remediation: A Bibliometric Network Analysis. Land 2022, 11, 1581. [Google Scholar] [CrossRef]
- Rada, E.C.; Andreottola, G.; Istrate, I.A.; Viotti, P.; Conti, F.; Magaril, E.R. Remediation of Soil Polluted by Organic Compounds Through Chemical Oxidation and Phytoremediation Combined with DCT. Int. J. Environ. Res. Public. Health 2019, 16, 3179. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, W.; Ma, J.; Zhou, Y.; Wu, Y.; Qu, Y.; Sun, Y. Spatial Clustering and Source-Specific Risk of Combined Pollutants in Soils from an Industrial Area in Shanxi Province, China. Environ. Pollut. 2022, 299, 118925. [Google Scholar] [CrossRef]
- Ba, Z.; Zhao, Y.; Liu, X.; Li, G. Spatio-Temporal Dynamics and Determinants of New Energy Policy Diffusion in China: A Policy Citation Approach. J. Clean. Prod. 2022, 376, 134270. [Google Scholar] [CrossRef]
- Ye, W.-F.; Ma, Z.-Y.; Ha, X.-Z.; Yang, H.-C.; Weng, Z.-X. Spatiotemporal Patterns and Spatial Clustering Characteristics of Air Quality in China: A City Level Analysis. Ecol. Indic. 2018, 91, 523–530. [Google Scholar] [CrossRef]
- O’Brien, R.M.; Phelan, T.J.; Smith, N.M.; Smits, K.M. Remediation in Developing Countries: A Review of Previously Implemented Projects and Analysis of Stakeholder Participation Efforts. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1259–1280. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, J.; Sun, F. Spatiotemporal Differentiation of Coupling Coordination Degree between Economic Development and Water Environment and Its Influencing Factors Using GWR in China’s Province. Ecol. Model. 2021, 462, 109794. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; Luo, J. Assessing Effects of Site Characteristics on Remediation Secondary Life Cycle Impact with a Generalised Framework. J. Environ. Plan. Manag. 2014, 57, 1083–1100. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, M.; Zhao, Y.; Yang, Y.; Li, C.; Liu, G. Unintentional Persistent Organic Pollutants in Cement Kilns Co-Processing Solid Wastes. Ecotoxicol. Environ. Saf. 2019, 182, 109373. [Google Scholar] [CrossRef]
- Gomes, H.I.; Dias-Ferreira, C.; Ribeiro, A.B. Overview of in Situ and Ex Situ Remediation Technologies for PCB-Contaminated Soils and Sediments and Obstacles for Full-Scale Application. Sci. Total Environ. 2013, 445–446, 237–260. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A. Sustainability: A New Imperative in Contaminated Land Remediation. Environ. Sci. Policy 2014, 39, 25–34. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Superfund Remedy Report 17th Edition [EB/OL]. Available online: https://www.epa.gov/system/files/documents/2023-01/100003149.pdf (accessed on 2 January 2024).
- Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases|Biological Trace Element Research. Available online: https://link.springer.com/article/10.1007/s12011-018-1380-4 (accessed on 8 January 2024).
- Ren, K.; Wei, Y.; Li, J.; Han, C.; Deng, Y.; Su, G. Polycyclic Aromatic Hydrocarbons (PAHs) and Their Derivatives (Oxygenated PAHs, Azaarenes, and Sulfur/Oxygen-Containing Heterocyclic PAHs) in Surface Soils from a Typical City, South China. Chemosphere 2021, 283, 131190. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Wu, Y.; Hu, S.; Zhang, Y. Dynamic characteristics of heavy metal accumulation in the farmland soil over Xiaoqinling gold-mining region, Shaanxi, China. Environ. Earth Sci. 2019, 78, 25. [Google Scholar] [CrossRef]
- Halmemies, S.; Gröndahl, S.; Arffman, M.; Nenonen, K.; Tuhkanen, T. Vacuum Extraction Based Response Equipment for Recovery of Fresh Fuel Spills from Soil. J. Hazard. Mater. 2003, 97, 127–143. [Google Scholar] [CrossRef]
- Xu, D.-M.; Fu, R.-B.; Wang, J.-X.; Shi, Y.-X.; Guo, X.-P. Chemical Stabilization Remediation for Heavy Metals in Contaminated Soils on the Latest Decade: Available Stabilizing Materials and Associated Evaluation methods—A Critical Review. J. Clean. Prod. 2021, 321, 128730. [Google Scholar] [CrossRef]
- Liang, T.; Huo, M.; Yu, L.; Wang, P.; Zheng, J.; Zhang, C.; Wang, D.; Ding, A.; Li, F. Life Cycle Assessment-Based Decision-Making for Thermal Remediation of Contaminated Soil in a Regional Perspective. J. Clean. Prod. 2023, 392, 136260. [Google Scholar] [CrossRef]
- Spatiotemporal Changes in Efficiency and Influencing Factors of China’s Industrial Carbon Emissions|Environmental Science and Pollution Research. Available online: https://link.springer.com/article/10.1007/s11356-021-13003-8 (accessed on 8 January 2024).
- Liang, T.; Yang, B.; Deng, C.; Du, P.; Wang, T.; Zhou, H.; Wang, P.; Yu, J.; Ding, A.; Ma, F.; et al. Diffusion of Cement Kiln Co-Processing of Contaminated Soil in Selected Provinces of China: Engineering Practices, Modeling, and Driving Factors. Sustainability 2022, 14, 14887. [Google Scholar] [CrossRef]
- Ren, L.; Lu, H.; He, L.; Zhang, Y. Enhanced Electrokinetic Technologies with Oxidization–Reduction for Organically-Contaminated Soil Remediation. Chem. Eng. J. 2014, 247, 111–124. [Google Scholar] [CrossRef]
- A Methodological Framework for Identifying Potential Sources of Soil Heavy Metal Pollution Based on Machine Learning: A Case Study in the Yangtze Delta, China—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0269749119302088 (accessed on 8 January 2024).
- Anthony, E.J.; Wang, J.S. Pilot plant investigations of thermal remediation of tar-contaminated soil and oil-contaminated gravel. Fuel 2006, 85, 443–450. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China (MEEPR). Technical Specifications of Contaminated Soil Remediation Ex-Situ Thermal Desorption. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/hjbhgc/202106/t20210616_839130.shtml (accessed on 7 January 2024).
- Ministry of Ecology and Environment of the People’s Republic of China (MEEPR). Technical Specifications of Contaminated Soil Remediation In-situ Thermal Desorption. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/hjbhgc/202106/t20210616_839135.shtml (accessed on 7 January 2024).
- Ministry of Ecology and Environment of the People’s Republic of China (MEEPR). Technical Specifications of Contaminated Soil Remediation Solidification/Stabilization. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/hjbhgc/202302/t20230214_1016203.shtml (accessed on 7 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Wang, P.; Yuan, B.; Wang, M.; Shi, P.; Li, F. Remediation Technologies of Contaminated Sites in China: Application and Spatial Clustering Characteristics. Sustainability 2024, 16, 1703. https://doi.org/10.3390/su16041703
Yu J, Wang P, Yuan B, Wang M, Shi P, Li F. Remediation Technologies of Contaminated Sites in China: Application and Spatial Clustering Characteristics. Sustainability. 2024; 16(4):1703. https://doi.org/10.3390/su16041703
Chicago/Turabian StyleYu, Jingjing, Panpan Wang, Bei Yuan, Minghao Wang, Pengfei Shi, and Fasheng Li. 2024. "Remediation Technologies of Contaminated Sites in China: Application and Spatial Clustering Characteristics" Sustainability 16, no. 4: 1703. https://doi.org/10.3390/su16041703
APA StyleYu, J., Wang, P., Yuan, B., Wang, M., Shi, P., & Li, F. (2024). Remediation Technologies of Contaminated Sites in China: Application and Spatial Clustering Characteristics. Sustainability, 16(4), 1703. https://doi.org/10.3390/su16041703