Optimizing the Benefits of Invasive Alien Plants Biomass in South Africa
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Significance of Utilizing Biomass from Invasive Alien Plants
3.2. The Sources of Biomass in South Africa
3.3. The Distribution, Abundance and Major Invasive Species
3.4. Optimizing Benefits as Biomass Applications and a Niche Market
3.4.1. Energy (Power Generation, Heat and Steam, Boilers, and Drying)
3.4.2. Charcoal
3.4.3. Biochar for Soil Improvements and Conditioning
3.4.4. Eco-Industry Hubs
3.4.5. Firewood
Firewood for Rural Communities
Firewood for Urban Communities
Firewood for Farm Houses
4. Existing and Emerging Challenges
4.1. Challenges Related to the Viability of the Market
4.2. The Cost of Harvesting, Chipping, and Transport
4.3. Sustainable Green Jobs and Skilled Labour
5. Policy Responses
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lambert, J.G.; Hall, C.A.S.; Balogh, S.; Gupta, A.; Arnold, M. Energy, EROI and quality of life. Energy Policy 2014, 64, 153–167. [Google Scholar] [CrossRef]
- Maltsoglou, I.; Kojakovic, A.; Rincoón, L.E.; Felix, E.; Branca, G.; Valle, S.; Gianvenuti, A.; Rossi, A.; Thulstrup, A.; Thofern, H. Combining bioenergy and food security: An approach and rapid appraisal to guide bioenergy policy formulation. Biomass Bioenergy 2015, 79, 80–95. [Google Scholar] [CrossRef]
- Wen, J.; Okolo, C.V.; Ugwuoke, I.C.; Kolani, K. Research on influencing factors of renewable energy, energy efficiency, on technological innovation. Does trade, investment and human capital development matter? Energy Policy 2022, 160, 112718. [Google Scholar] [CrossRef]
- National Development Plan 2030. “South African Government”. Available online: www.gov.za (accessed on 29 May 2023).
- Department of Mineral Resources and Energy. Strategic Plant 2020–2025. 2020. Available online: https://www.energy.gov.za/files/aboutus/DMRE-Strategic-Plan-2020-2025.pdf (accessed on 29 May 2023).
- Vera, I.; Goosen, N.; Batidzirai, B.; Hoefnagels, R.; van der Hilst, F. Bioenergy potential from invasive alien plants: Environmental and socio-economic impacts in Eastern Cape, South Africa. Biomass Bioenergy 2022, 158, 106340. [Google Scholar] [CrossRef]
- Sims, R.E.H.; Schock, R.N.; Adegbululgbe, A.; Fenhann, J.; Konstantinaviciute, I.; Moomaw, W.; Nimir, H.B.; Schlamadinger, B.; Torres-Martínez, J.; Turner, C.; et al. Energy Supply. Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Purkus, A.; Röder, M.; Gawel, E.; Thrän, D.; Thornley, P. Handling uncertainty in bioenergy policy design: A case study analysis of UK and German bioelectricity policy instruments. Biomass Bioenergy 2015, 79, 64–79. [Google Scholar] [CrossRef]
- Vaidya, A.; Mayer, A.L. Use of a participatory approach to develop a regional assessment tool for bioenergy production. Biomass Bioenergy 2021, 94, 1–11. [Google Scholar] [CrossRef]
- Ortega-Izquierdo, M.; del Río, P. Benefits and costs of renewable electricity in Europe. Renew. Sustain. Energy Rev. 2016, 61, 372–383. [Google Scholar] [CrossRef]
- Nielsen, S.; Østergaard, P.A.; Sperling, K. Renewable energy transition, transmission system impacts and regional development—A mismatch between national planning and local development. Energy 2023, 278, 127925. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Hastings, A.; Mos, M.; McCalmont, J.P.; Ashman, C.; Awty-Carroll, D.; Cerazy, J.; Chiang, Y.-C.; Cosentino, S.; Flavell, R.; et al. Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenergy 2017, 9, 6–17. [Google Scholar] [CrossRef]
- Richter, G.M.; Agostini, F.; Barker, A.; Costomiris, D.; Qi, A. Assessing on-farm productivity of Miscanthus crops by combining soil mapping, yield modelling and remote sensing. Biomass Bioenergy 2016, 85, 252–261. [Google Scholar] [CrossRef]
- Eloka-Eboka, A.C.; Chetty, R.J. The Contribution of Bioenergy in the Renewable Energy Technology Mix: Research Perspective. J. Phys. Conf. Ser. 2019, 1378, 022053. [Google Scholar] [CrossRef]
- Roder, M.; Chong, K.; Thornley, P. The future of residue-based bioenergy for industrial use in Sub-Saharan Africa. Biomass Bioenergy 2022, 159, 106385. [Google Scholar] [CrossRef]
- Mugido, W.; Blignaut, J.N.; Joubert, M.; de Wet, J.; Knipe, A.; Joubert, S.; Cobbing, B.; Jansen, J. Determining the quantity and the true cost of harvesting and delivering invasive alien plant species for energy purposes in the Nelson Mandela Metropolitan Area. In EC Biomass/IDC, Working for Water; Beatus: Pretoria, South Africa, 2013; p. 120. [Google Scholar]
- Mugido, W.; Blignaut, J.; Joubert, M.; De Wet, J.; Knipe, A.; Joubert, S.; Cobbing, B.; Jansen, J.; Le Maitre, D.; Van der Vyfer, M. Determining the feasibility of harvesting invasive alien plant species for energy. S. Afr. J. Sci. 2014, 110, 6. [Google Scholar] [CrossRef]
- Rawat, Y.S.; Tekleyohannes, A.T. Sustainable forest management and forest products industry development in Ethiopia. Int. For. Rev. 2021, 23, 197–218. [Google Scholar] [CrossRef]
- Goswein, V.; Silvestre, J.D.; Lamb, S.; Gonçalves, A.B.; Pittau, F.; Freire, F.; Oosthuizen, D.; Lord, A.; Habert, G. Invasive alien plants as an alternative resource for concrete production- multi-scale optimization including carbon compensation, cleared land and saved water runoff in South Africa. Resour. Conserv. Recycl. 2021, 167, 105361. [Google Scholar] [CrossRef]
- Schulze, E.D.; Korner, C.; LAW, B.E.; Haberl, H.; Luyssaert, S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 2012, 4, 611–616. [Google Scholar] [CrossRef]
- Petrie, B. South Africa: A Case for Biomass? International Institute for Environment and Development: London, UK, 2014; Available online: http://pubs.iied.org/16045IIED (accessed on 25 February 2022).
- Sturm, V.; Banse, M. Transition paths towards a bio-based economy in Germany: A model-based analysis. Biomass Bioenergy 2021, 148, 106002. [Google Scholar] [CrossRef]
- Auer, V.; Rauch, P. Wood supply chain risks and risk mitigation strategies: A systematic review focusing on the Northern hemisphere. Biomass Bioenergy 2021, 148, 106001. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Biodiversity Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Van Wilgen, B.W.; Richardson, D.M.; Le Maitre, D.C.; Marais, C.; Magadlela, D. The economic consequences of alien plant invasions: Examples of impacts and approaches to sustainable management in South Africa. Environ. Dev. Sustain. 2001, 3, 145–168. [Google Scholar] [CrossRef]
- Pyšek, P.; Richardson, D.M. Invasive plants. In Ecological Engineering; Volume 3 of Encyclopedia of Ecology, 5 Volumes; Jorgensen, S.E., Brian, D.F., Eds.; Elsevier: Oxford, UK, 2008; pp. 2011–2020. [Google Scholar]
- Driver, A.; Sink, K.J.; Nel, J.; Holness, S.; van Niekerk, L.; Daniels, F.; Jonas, Z.; Majiedt, P.; Harris, L.; Maze, K. National Biodiversity Assessment 2011: An Assessment of South Africa’s Biodiversity and Ecosystems; Synthesis Report; South African National Biodiversity Institute and Department of Environmental Affairs: Pretoria, South Africa, 2012; Volume 2012, Available online: http://catalog.ipbes.net/system/assessment/195/references/files/570/original/NBA_2011_Synthesis_Report_%28low_resolution%29.pdf?1364385861 (accessed on 18 February 2022).
- Van Wilgen, B.W.; Wannenburgh, A. Co-facilitating invasive species control, water conservation and poverty relief: Achievements and challenges in South Africa’s Working for Water programme. Curr. Opin. Environ. Sustain. 2016, 19, 7–17. [Google Scholar] [CrossRef]
- De Beer, I.W.; Hui, C.; Botella, C.; Richardson, D.M. Drivers of compositional turnover of narrow-ranged versus widespread naturalised woody plants in South Africa. Front. Ecol. Evol. 2023, 11, 1106197. [Google Scholar] [CrossRef]
- McGeoch, M.A.; Butchart, S.H.M.; Spear, D.; Marais, E.; Kleynhans, E.J.; Symes, A.; Chanson, J.; Hoffmann, M. Global indicators of biological invasion: Species, numbers, biodiversity impact and policy responses. Divers. Distrib. 2010, 16, 95–108. [Google Scholar] [CrossRef]
- Huiskes, A.H.L.; Gremmen, N.J.M.; Bergstrom, D.M.; Frenot, Y.; Hughes, K.A.; Imura, S.; Kiefer, K.; Lebouvier, M.; Lee, J.E.; Tsujimoto, M.; et al. Aliens in Antarctica: Assessing transfer of plant propagules by human visitors to reduce invasion risk. Biol. Conerv. 2014, 171, 278–284. [Google Scholar] [CrossRef]
- Rawat, Y.S.; Negi, V.S.; Pant, S.; Bachheti, R.K. Collaborative Adaptive Stewardship for Invasive Alien Plants Management in South Africa. Sustainability 2023, 15, 4833. [Google Scholar] [CrossRef]
- Rawat, Y.S. Inclusive development and sustainable biodiversity stewardship in South Africa. Curr. Opin. Environ. Sustain. 2017, 24, 89–95. [Google Scholar] [CrossRef]
- Koenig, R. Unleashing an army to repair alien-ravaged ecosystems. Science 2009, 325, 562–563. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Gaertner, M.E.; Marchante, E.J.; Ens, E.J.; Holmes, P.M.; Pauchard, A.; O’Farrell, P.J.; Rogers, A.M.; Blanchard, R.; Richardson, D.M.; et al. Impacts of invasive Australian acacias: Implications for management and restoration. Divers. Distrib. 2011, 17, 1015–1029. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Wilson, J.R.; Wannenburgh, A.; Foxcroft, L.C. The Extent and Effectiveness of Alien Plant Control Projects in South Africa BT—Biological Invasions in South Africa; Van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R., Zengeya, T.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 597–628. [Google Scholar] [CrossRef]
- Department of Mineral Resources and Energy. The South African Energy Sector Report 2019; Department of Mineral Resources and Energy: Pretoria, South Africa, 2019. Available online: http://www.energy.gov.za/files/media/explained/2019-South-African-Energy-Sector-Report.pdf (accessed on 1 June 2023).
- Etambackonga, C.L. Barriers to widespread biomass energy in South Africa. J. MacroTrends Energy Sustain. 2013, 1, 36–49. [Google Scholar]
- Mamphweli, N.S.; Meyer, E.L. Implementation of the biomass gasification project for community empowerment at Melani village, Eastern Cape, South Africa. Renew. Energy 2009, 34, 2923–2927. [Google Scholar] [CrossRef]
- Department of Energy. Draft 2012 Integrated Energy Planning Report, 2013, 160p. Available online: http://www.energy.gov.za/files/policies/energyPlanning/Draft-2012-Integrated-Energy-Planning-Report-an-Executive-Summary.pdf (accessed on 21 February 2022).
- Kaygusuz, K. Energy for sustainable development: A case of developing countries. Renew. Sustain. Energy Rev. 2012, 16, 1116–1126. [Google Scholar] [CrossRef]
- Siol, C.; Thran, D.; Majer, S. Utilizing residual biomasses from agriculture and forestry: Different approaches to set system boundaries in environmental and economic life-cycle assessments. Biomass Bioenergy 2023, 174, 106839. [Google Scholar] [CrossRef]
- De Wit, M.P.; Crookes, D.J.; van Wilgen, B.W. Conflicts of interest in environmental management: Estimating the costs and benefits of a tree invasion. Biol. Invasions 2001, 3, 167–178. [Google Scholar] [CrossRef]
- Rawat, Y.S.; Eba, M.; Nebiyu, M. Lumber Recovery Rate of Cupressus lusitanica in Arsi Forest Enterprise, Ethiopia. Sustainability 2023, 15, 1046. [Google Scholar] [CrossRef]
- Dasappa, S. Potential of biomass energy for electricity generation in sub-Saharan Africa. Energy Sustain. Dev. 2011, 15, 203–213. [Google Scholar] [CrossRef]
- Petrie, B.; Macqueen, D. South African Biomass Energy: Little Heeded but Much Needed; The International Institute for Environment and Development (IIED) Briefing, London, United Kingdom: 2013. Available online: http://pubs.iied.org/17165IIED (accessed on 25 February 2022).
- South Africa Forestry Online. Sappi Southern Africa Is Set to Build a 25 MW Biomass Power Plant at Its Ngodwana Mill in Mpumalanga; South Africa Forestry Online: Johannesburg, South Africa, 2018. [Google Scholar]
- BP p.l.c. Statistical Review of World Energy. London. 2021. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf (accessed on 1 June 2023).
- Karekezi, S.; Lata, K.; Coelho, T.S. Traditional Biomass Energy. Improving its Use and Moving to Modern Energy Use. In Proceedings of the International Conference for Renewable Energies, Bonn, Germany, 1–4 June 2004; p. 56. [Google Scholar]
- Vijay, V.; Shreedhar, S.; Adlak, K.; Payyanand, S.; Sreedharan, V.; Gopi, G.; van der Voort, T.S.; Malarvizhi, P.; Yi, S.; Aravind, P.V.; et al. Review of large-scale biochar field-trials for soil amendment and the observed influences on crop yield variations. Front. Energy Res. 2021, 9, 499. [Google Scholar] [CrossRef]
- Jaafar, N.M. Biochar as a Habitat for Arbuscular Mycorrhizal Fungi. In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology; Solaiman, Z., Abbott, L., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 41. [Google Scholar] [CrossRef]
- Damm, O.; Triebel, R. A synthesis report on biomass energy consumption and availability in South Africa. In The Programme for Basic Energy and Conservation (ProBEC); The German Agency for Technical Cooperation (GTZ): Eschborn, Germany, 2008; 59p., Available online: https://dev.ecoguineafoundation.com/uploads/5/4/1/5/5415260/biomass_energy_consumption_availability_sa.pdf (accessed on 5 August 2022).
- Madubansi, M.; Shackleton, C.M. Changing energy profiles and consumption patterns following electrification in five rural villages, South Africa. Energy Policy 2006, 34, 4081–4092. [Google Scholar] [CrossRef]
- Matsika, R.; Erasmus, B.F.; Twine, W.C. Double jeopardy: The dichotomy of firewood use in rural South Africa. Energy Policy 2013, 52, 716–725. [Google Scholar] [CrossRef]
- Rawat, Y.S.; Vishvakarma, S.C.R.; Todaria, N.P. Fuel wood consumption pattern of tribal communities in cold desert of the Lahaul valley, North-Western Himalaya, India. Biomass Bioenergy 2009, 33, 1547–1557. [Google Scholar] [CrossRef]
- Field, C.B.; Campbell, J.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2007, 23, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Pegels, A. Renewable energy in South Africa: Potentials, barriers and options for support. Energy Policy 2010, 38, 4945–4954. [Google Scholar] [CrossRef]
- Invasive Species South Africa. New NEMBA Regulations Published (Online). 2013. Available online: http://www.invasives.org.za/item/469-new-nemba-regulations-published.html (accessed on 17 February 2022).
- Government Gazette. Republic of South Africa, 2014, Volume 590 No. 37886. 80p. Available online: www.gpwonline.co.za (accessed on 18 February 2022).
- Prasad, G.; Visagie, E. Bioenergy, Rural Development and Poverty Alleviation in Southern Africa; Prepared for Global Network on Energy for Sustainable Development; Energy Research Centre, University of Cape Town: Cape Town, South Africa, 2005; Available online: https://open.uct.ac.za/server/api/core/bitstreams/4a28c0e7-b84b-4d80-8393-047d8e4cbdda/content (accessed on 25 September 2022).
Name of the Organizations | Objectives | Applications | Biomass Sources Focuses on | Sources |
---|---|---|---|---|
Department of Environmental Affairs | To produce various forms of bioenergy sustainably (e.g., biogas, woodgas (gasification), pellets, charcoal and firewood, employment, and skills development | Cooking, water heating, space heating, industrial heating for processing, electricity generation, transportation fuel, chemical industries, fertilizers | Waste water treatment plants, landfill sites, pulp and paper industries, wood mills and furniture industries, horticulture centers, abattoirs, animal ranches, grasses, trees, and invasive and alien species | https://dffe.gov.za. |
South African National Energy Development Institute | To produce bioenergy (e.g., woodgas, charcoal, biogas, biofuel) from renewable sources of energy, employment, enterprises, and skills development | Cooking, water heating, space heating for low cost housing, electricity generation, biofuels for rural applications, chemical industries, fertilizers | Agricultural waste, invasive alien plants, bush encroachment and grasses, and municipal solid waste | http://www.sanedi.org.za |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawat, Y.S.; Singh, G.S.; Tekleyohannes, A.T. Optimizing the Benefits of Invasive Alien Plants Biomass in South Africa. Sustainability 2024, 16, 1876. https://doi.org/10.3390/su16051876
Rawat YS, Singh GS, Tekleyohannes AT. Optimizing the Benefits of Invasive Alien Plants Biomass in South Africa. Sustainability. 2024; 16(5):1876. https://doi.org/10.3390/su16051876
Chicago/Turabian StyleRawat, Yashwant S., G. S. Singh, and Anteneh T. Tekleyohannes. 2024. "Optimizing the Benefits of Invasive Alien Plants Biomass in South Africa" Sustainability 16, no. 5: 1876. https://doi.org/10.3390/su16051876
APA StyleRawat, Y. S., Singh, G. S., & Tekleyohannes, A. T. (2024). Optimizing the Benefits of Invasive Alien Plants Biomass in South Africa. Sustainability, 16(5), 1876. https://doi.org/10.3390/su16051876