Participatory Mapping for Enhancing Flood Risk Resilient and Sustainable Urban Drainage: A Collaborative Approach for the Genoa Case Study
Abstract
:1. Introduction
2. Literature Review
3. Participatory Mapping Methodological Approaches
3.1. Preparing Phase
- Selection of the scale of intervention and definition of the case study area;
- Development of the overall multi-stakeholder participation strategy and assessment of the profiles of stakeholders and local actors;
- Design of the workflow of the Pmap process [42].
3.2. Engaging Phase
3.3. Contextualizing the Problem(s)
3.4. Planning Phase
3.5. Integrating Phase
4. Innovative Approach for Participatory Mapping and SUDS
4.1. Interdisciplinary, Intersectoral, and Multi-Stakeholder Participation
4.2. Site Inspections
4.3. Online Survey
- Demographics: In this first section, the demographic information, including age, level of education, familiarity with the urban area under consideration, and places frequently visited within this area, is collected.
- Urban Greenery: The second section aims to understand the citizens’ perceptions of existing green areas. Participants are asked about the frequency of their visits to green areas, the specific areas they visit, and whether they believe the green areas in the considered territory are sufficient. Additionally, proposals for improving existing green areas are requested.
- Flood Risk: The third section investigates the history of flooding in the area, attempting to determine how many people have directly or indirectly suffered damage from floods, thus assessing how easy they believe it is to be exposed to flooding within the identified boundaries. Furthermore, this section explores their future perspectives regarding flood risk and the variation of their occurrences in future climate scenarios.
- Best Practices: The fourth section assesses the participants’ knowledge of best practice guidelines in case of a flood event, issued by civil protection agencies.
- Engagement: The fifth and final section involves the participants in urban resilience planning. They are asked about their level of awareness regarding sustainable urban drainage systems, where they would suggest implementing them within the examined territory, and what other actions they would propose to reduce the risk of flooding.
4.4. Intergenerational Process
4.5. Emerging Technologies and Digital Tools
5. Case Study
- Description of the selected urban district
- Deployment of the participatory process
- Formalization of active proposals
5.1. Sampierdarena District Description
5.2. Participatory Process Timeline
5.3. Analysing and Active Proposals
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The International Panel on Climate Change, AR6 Synthesis Report: Climate Change. 2023. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 11 December 2023).
- United Nations Office for Disaster Risk Reduction (UNDRR), Global Assessment Report (GAR) on Disaster Risk Reduction 2023: Mapping Resilience for the Sustainable Development Goals. Available online: https://www.undrr.org/gar (accessed on 11 December 2023).
- Nofal, O.M.; van de Lindt, J.W. Understanding flood risk in the context of community resilience modeling for the built environment: Research needs and trends. Sustain. Resilient Infrastruct. 2020, 7, 171–187. [Google Scholar] [CrossRef]
- Amadei, B. A Systems Approach to Building Community Capacity and Resilience. Challenges 2020, 11, 28. [Google Scholar] [CrossRef]
- Ward, P.J.; Jongman, B.; Weiland, F.S.; Bouwman, A.; van Beek, R.; Bierkens, M.F.P.; Ligtvoet, W.; Winsemius, H.C. Assessing flood risk at the global scale: Model setup, results, and sensitivity. Environ. Res. Lett. 2013, 8, 044019. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Huber, J. Low Impact Development: A Design Manual for Urban Areas; University of Arkansas Community Design Center: Fayetteville, AR, USA, 2010; pp. 1–29. [Google Scholar]
- McClymont, K.; Fernandes Cunha, D.G.; Maidment, C.; Rajendran, L.; Imani, M. Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem. J. Environ. Manag. 2020, 275, 111173. [Google Scholar] [CrossRef]
- Fagerholm, N.; García-Martín, M.; Torralba, M.; Bieling, C.; Plieninger, T. Public participation geographical information systems (PPGIS). Participatory research methods for sustainability—Toolkit #1. Research 2022, 31, 46–48. [Google Scholar] [CrossRef]
- Allegretti, A. Reflection from the Field: Voice in cross-cultural and transdisciplinary research. Appl. Anthropol. 2015, 35, 11–16. [Google Scholar]
- Geekiyanage, D.; Fernando, T.; Keraminiyage, K. Mapping Participatory Methods in the Urban Development Process: A Systematic Review and Case-Based Evidence Analysis. Sustainability 2021, 13, 8992. [Google Scholar] [CrossRef]
- Red Cross/Red Crescent Climate Centre: Annual Report 2007—Red Cross Red Crescent Disaster Risk Reduction and Climate Change. Available online: https://www.climatecentre.org/wp-content/uploads/Annual-Report-2007.pdf (accessed on 12 December 2023).
- International Fund Agricultural Development, Good Practices in Participatoy Mapping. Available online: https://www.ifad.org/documents/38714170/39144386/PM_web.pdf/7c1eda69-8205-4c31-8912-3c25d6f90055 (accessed on 12 December 2023).
- Reichel, C.; Frömming, U.U. Participatory Mapping of Local Disaster Risk Reduction Knowledge: An Example from Switzerland. Int. J. Disaster Risk Sci. 2014, 5, 41–54. [Google Scholar] [CrossRef]
- Sullivan-Wiley, K.A.; Gianotti, A.G.S.; Connors, J.P.C. Mapping vulnerabilities: Opportunities and limitations of participatory community mapping. Appl. Geogr. 2019, 105, 47–57. [Google Scholar] [CrossRef]
- Haworth, B.T.; Bruce, E.; Whittaker, J.; Read, R. The Good, The Bad, and the Uncertain: Contributions of Volunteered Geographic Information to Community Disaster Resilience. Front. Earth Sci. 2020, 6, 183. [Google Scholar] [CrossRef]
- Visconti, C. Co-production of knowledge for climate-resilient design and planning in Naples, Italy. Habitat Int. 2023, 135, 102748. [Google Scholar] [CrossRef]
- O’Neill, E.; Brennan, M.; Brereton, F.; Shahumyan, H. Exploring a spatial statistical approach to quantify flood risk perception using cognitive maps. Nat. Hazards 2015, 76, 1573–1601. [Google Scholar] [CrossRef]
- Maceda, E.A.; Gaillard, J.C.; Stasiak, E.; Le Masson, V.; Le Berre, I. Experimental use of participatory 3-dimensional models in island community-based disaster risk management. Shima Int. J. Res. Into Isl. Cult. 2009, 3, 46–58. [Google Scholar]
- Gaillard, J.C.; Maceda, E.A. Participatory 3-dimensional mapping for disaster risk reduction. Particip. Learn. Action 2009, 60, 109–118. [Google Scholar]
- Rall, E.; Hansen, R.; Pauleit, S. The added value of public participation GIS (PPGIS) for urban green infrastructure planning. Urban For. Urban Green. 2019, 40, 264–274. [Google Scholar] [CrossRef]
- Hartig, T. Nature experience in transactional perspective. Landsc. Urban Plan. 1993, 25, 17–36. [Google Scholar] [CrossRef]
- Kyttä, M.; Randrup, T.; Sunding, A.; Rossi, S.; Harsia, E.; Palomaki, J.; Kajosaari, A. Prioritizing participatory planning solutions: Developing place-based priority categories based on public participation GIS data. Landsc. Urban Plan. 2023, 239, 104868. [Google Scholar] [CrossRef]
- Cochrane, L.; Corbett, J. Participatory Mapping. In Handbook of Communication for Development and Social Change; Servaes, J., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 1–9. [Google Scholar]
- Denwood, T.; Huck, J.J.; Lindley, S. Participatory Mapping: A Systematic Review and Open Science Framework for Future Research. Ann. Am. Assoc. Geogr. 2022, 112, 2324–2343. [Google Scholar] [CrossRef]
- Brown, G.; Kyttä, M. Key issues and priorities in participatory mapping: Toward integration or increased specialization? Appl. Geogr. 2018, 95, 1–8. [Google Scholar] [CrossRef]
- Houessou-Dossou, E.A.Y.; Gathenya, J.M.; Njuguna, M.; Gariy, Z.A. Flood Frequency Analysis Using Participatory GIS and Rainfall Data for Two Stations in Narok Town, Kenya. Hydrology 2019, 6, 90. [Google Scholar] [CrossRef]
- Gebremedhin, E.T.; Basco-Carrera, L.; Jonoski, A.; Iliffe, M.; Winsemius, H. Crowdsourcing and interactive modelling for urban flood management. J Flood Risk Manag. 2020, 13, 12602. [Google Scholar] [CrossRef]
- See, L.S.; Calo, L.; Bannon, B.; Opdyke, A. An Open Data Approach to Mapping Urban Drainage Infrastructure in Developing Communities. Water 2020, 12, 1880. [Google Scholar] [CrossRef]
- Klonner, C.; Usón, T.J.; Marx, S.; Mocnik, F.B.; Höfle, B. Capturing Flood Risk Perception via Sketch Maps. ISPRS Int. J. Geo.-Inf. 2018, 7, 359. [Google Scholar] [CrossRef]
- Hirata, E.; Giannotti, M.A.; Larocca, A.P.C.; Quintanilha, J.A. Flooding and inundation collaborative mapping—Use of the Crowdmap/Ushahidi platform in the city of Sao Paulo, Brazil. J. Flood Risk Manag. 2015, 11, 98–109. [Google Scholar] [CrossRef]
- Taylor, F.E.; Millington, J.D.A.; Jacob, E.; Malamud, B.D.; Pelling, M. Messy maps: Qualitative GIS representations of resilience. Landsc. Urban Plan. 2020, 198, 103771. [Google Scholar] [CrossRef]
- von Kotze, A.; Holloway, A. Reducing Risk: Participatory Learning Activities for Disaster Mitigation in Southern Africa; Oxfam Publishing: Oxford, UK, 1996. [Google Scholar]
- Abarquez, I.; Murshed, Z. Community-Based Disaster Risk Management: Field Practictioners’ Handbook; Asian Disaster Preparedness Center (ADPC): Pathum Thani, Thailand, 2006; p. 159. [Google Scholar]
- Cheung, W.; Houston, D.; Schubert, J.E.; Basolo, V.; Feldman, D.; Matthew, R.; Sanders, B.F.; Karlin, B.; Goodrich, A.C.; Contreras, S.L.; et al. Integrating resident digital sketch maps with expert knowledge to assess spatial knowledge of flood risk: A case study of participatory mapping in Newport Beach, California. Appl. Geogr. 2016, 74, 56–64. [Google Scholar] [CrossRef]
- Brandt, K.; Graham, L.; Hawthorne, T.; Jeanty, J.; Burkholder, B.; Munisteri, C.; Visaggi, C. Integrating sketch mapping and hot spot analysis to enhance capacity for community-level flood and disaster risk management. Geogr. J. 2020, 186, 198–212. [Google Scholar] [CrossRef]
- O’Grady, M.J.; Evans, B.; Eigbogba, S.; Muldoon, C.; Campbell, A.G.; Brewer, P.A.; O’Hare, G.M.P. Supporting participative pre-flood risk reduction in a UNESCO biosphere. J Flood Risk Manag. 2019, 12, 12520. [Google Scholar] [CrossRef]
- Dixon, B.; Johns, R.A.; Fernandez, A. The role of crowdsourced data, participatory decision-making and mapping of flood related events. Appl. Geogr. 2021, 128, 102393. [Google Scholar] [CrossRef]
- Gottwald, S.; Laatikainen, T.E.; Kyttä, M. Exploring the usability of PPGIS among older adults: Challenges and opportunities. Int. J. Geogr. Inf. Sci. 2016, 30, 2321–2338. [Google Scholar] [CrossRef]
- Le Dé, L.; Gampell, A.; Loodin, N.; Cadag, J. Participation mapping 2.0: New ways for children’s participation in disaster risk reduction. Aust. Inst. Disaster Resil. 2020, 35, 34–42. [Google Scholar]
- Eaton-González, R.; Andrade-Sánchez, J.; Montaño-Soto, T.; Andrade-Tafoya, P.; Brito-Jaime, D.; González-Estupiñán, K.; Guía-Ramírez, A.; Rodríguez-Canseco, J.; Teon-Vega, A.; Balderas-López, S. Participatory Mapping as a Didactic and Auxiliary Tool for Learning Community Integration, Technology Transference, and Natural Resource Management. ISPRS Int. J. Geo.-Inf. 2021, 10, 206. [Google Scholar] [CrossRef]
- Brown, G.; Sanders, S.; Reed, P. Using public participatory mapping to inform general land use planning and zoning. Landsc. Urban Plan. 2018, 177, 64–74. [Google Scholar] [CrossRef]
- Cai, Y.; Amaral, M. The triple helix model and the future of innovation: A reflection on the triple helix research agenda. Triple Helix 2021, 8, 217–229. [Google Scholar] [CrossRef]
- Cai, Y.; Etzkowitz, H. Theorizing the Triple Helix model: Past, present, and future. Triple Helix 2020, 7, 189–226. [Google Scholar] [CrossRef]
- Hasche, N.; Hoglund, L.; Linton, G. Quadruple helix as a network of relationships: Creating value within a Swedish regional innovation system. J. Small Businees Entrep. 2019, 32, 523–544. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Campbell, D.F.J. Mode 3 Knowledge Production in Quadruple Helix Innovation Systems; Springer: New York, NY, USA, 2011; pp. 1–63. [Google Scholar] [CrossRef]
- Pirlone, F.; Spadaro, I. The resilient city and adapting to the health emergency. TeMA J. Land Use Mobil. Environ. 2020, 305–314. [Google Scholar] [CrossRef]
- König, J.; Suwala, L.; Delargy, C. Helix Models of Innovation and Sustainable Development Goals. In Industry, Innovation and Infrastructure; Encyclopedia of the UN Sustainable Development Goals; Filho, L., Azul, W., Brandli, A.M., Lange Salvia, L., Wall, A.T., Eds.; Springer: Berlin, Heidelberg, 2020; pp. 1–15. [Google Scholar]
- Carayannis, E.G.; Campbell, D.F.J. Democracy of Climate and Climate for Democracy: The Evolution of Quadruple and Quintuple Helix Innovation Systems. J. Knowl. Econ. 2021, 12, 2050–2082. [Google Scholar] [CrossRef]
- Colvin, R.M.; Witt, G.B.; Lacey, J. Approaches to identifying stakeholders in environmental management: Insights from practitioners to go beyond the ‘usual suspects’. Land Use Policy 2016, 52, 266–276. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Hüesker, F.; Lupp, G.; Begg, C.; Huang, J.; Oen, A.; Vojinovic, Z.; Kuhlicke, C.; Pauleit, S. Stakeholder Mapping to Co-Create Nature-Based Solutions: Who Is on Board? Sustainability 2020, 12, 8625. [Google Scholar] [CrossRef]
- Spadaro, I.; Bruno, F. La partecipazione come strumento di resilienza ai rischi naturali: Una roadmap per la pianificazione urbanistica partecipativa. In Proceedings of the XXIV National Conference SIU—Italian Society of Urban Planners, Brescia, Italy, 23–24 June 2022. [Google Scholar]
- de Lima, A.P.M.; Rodrigues, A.F.; Latawiec, A.E.; Dib, V.; Gomes, F.D.; Maioli, V.; Pena, I.; Tubenchlak, F.; Rebelo, A.J.; Esler, K.J.; et al. Framework for Planning and Evaluation of Nature-Based Solutions for Water in Peri-Urban Areas. Sustainability 2022, 14, 7952. [Google Scholar] [CrossRef]
- Zhao, C.; Fu, G.; Liu, X.; Fu, F. Urban planning indicators, morphology and climate indicators: A case study for a north-south transect of Beijing, China. Build. Environ. 2011, 46, 1174–1183. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Fagerholm, N.; Raymond, C.M.; Olafsson, A.S.; Brown, G.; Rinne, T.; Hasanzadeh, K.; Broberg, H.; Kytta, M. A methodological framework for analysis of participatory mapping data in research, planning, and management, International. J. Geogr. Inf. Sci. 2021, 35, 1848–1875. [Google Scholar] [CrossRef]
- Naturvation Project (NATure-Based URban InnoVATION): Cities—Nature—Innovation. Available online: https://naturvation.eu/ (accessed on 20 November 2023).
- Growgreen Project: A Partnership for Greener Cities to Increase Livability, Sustainability and Business Opportunities. Available online: https://growgreenproject.eu/ (accessed on 1 February 2024).
- Urban GreenUP: Renaturing Urban Plants. Available online: https://www.urbangreenup.eu/ (accessed on 22 November 2023).
- UNaLab: Urban Nature Labs. Available online: https://unalab.eu/en (accessed on 22 November 2023).
- Linee Guida sull’adozione di Tecniche di Drenaggio Urbano Sostenibile per una Città Più Resiliente ai Cambiamenti Climatici—2018. Available online: https://www.comune.bologna.it/myportal/C_A944/api/content/download?id=6328303072e6b400994c57c0 (accessed on 10 November 2023).
- Linee Guida per la Progettazione dei Sistemi Urbani di Drenaggio Sostenibile nel Territorio Comunale. Available online: https://www.comune.milano.it/documents/20126/190345684/Linee+Guida+per+la+progettazione+dei+sistemi+urbani+di+drenaggio+sostenibile+nel+territorio+comunale.pdf/522c413c-1bae-53fd-c97f-257e56f9766f?t=1649409433190 (accessed on 15 November 2023).
- Linee Guida Volontarie per l’uso Sostenibile del Suolo per i Professionisti dell’area Tecnica—Indirizzi per la Tutela del Suolo dai Processi di Impermeabilizzazione e Dalla Perdita di Materia Organica. Available online: https://soil4life.eu/wp/wp-content/uploads/2021/02/Linee-Guida-Soil4LIFE_ebook.pdf (accessed on 15 November 2023).
- Linee Guida per la Gestione del Verde Urbano e Prime Indicazioni per una Pianificazione Sostenibile. Available online: https://www.mase.gov.it/sites/default/files/archivio/allegati/comitato%20verde%20pubblico/linee_guida_finale_25_maggio_17.pdf (accessed on 17 November 2023).
- Infrastrutture Verdi per l’Adattamento ai Cambiamenti Climatici: Strategie e Indicazioni Progettuali per la Gestione Sostenibile delle Acque Meteoriche Urbane nell’Area Mediterranea Nord-Occidentale. Available online: https://www.cittametropolitana.genova.it/sites/default/files/progetti/Linee%20guida%20-%20Infrastrutture%20verdi.pdf (accessed on 22 November 2023).
- Ufficio delle Pubblicazioni dell’Unione Europea, Guidelines for Co-Creation and Co-Governance of Nature-Based Solutions. Available online: https://op.europa.eu/it/publication-detail/-/publication/dd7b9f43-9a33-11ee-b164-01aa75ed71a1/language-it?WT.mc_id=Publicationdetail&WT.ria_c=null&WT.ria_f=null&WT.ria_ev=permalink&WT.URL=https%3A%2F%2Furbinat.eu%2F (accessed on 17 November 2023).
- Simpson, D. Thematic Brief Nature-Based Solutions; United Nations Economist Network (UNEN): Nairobi, Kenya, 2020. [Google Scholar]
- IUCN. Guidance for Using the IUCN Global Standard for Nature-Based Solutions. A User-Friendly Framework for the Verification, Design and Scaling up of Nature-Based Solutions, 1st ed.; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Seddon, N. Guidelines for Successful, Sustainable Nature-Based Solutions; Kleinman Center for Energy Policy: Philadelphia, PA, USA, 2021. [Google Scholar]
- European Commission, Environment, Water Framework Directive. Available online: https://environment.ec.europa.eu/topics/water/water-framework-directive_en (accessed on 11 December 2023).
- European Commission, Environment, Floods Directive. Available online: https://environment.ec.europa.eu/topics/water/floods_en (accessed on 11 December 2023).
- Holguin, N.; Mugica, A.; Ukar, O. How Is Climate Change Included in the Implementation of the European Flood Directive? Analysis of the Methodological Approaches of Different Countries. Water 2021, 13, 1490. [Google Scholar] [CrossRef]
- Gottwald, S.; Stedman, R.C. Preserving ones meaningful place or not? Understanding environmental stewardship behaviour in river landscapes. Landsc. Urban Plan. 2020, 198, 103778. [Google Scholar] [CrossRef]
- Bąkowska-Waldmann, E.; Kaczmarek, T. The Use of PPGIS: Towards Reaching a Meaningful Public Participation in Spatial Planning. ISPRS Int. J. Geo.-Inf. 2021, 10, 581. [Google Scholar] [CrossRef]
- Agarwal, M.K.; Sehgal, V.; Ogra, A. Creating a Child-Friendly Environment: An Interpretation of Children’s Drawings from Planned Neighbor-hood Parks of Lucknow City. Societies 2021, 11, 80. [Google Scholar] [CrossRef]
- van Heel, B.F.; van den Born, R.J.G.; Aarts, M.N.C. Everyday childhood nature experiences in an era of urbanisation: An analysis of Dutch children’s drawings of their favourite place to play outdoors. Child. Geogr. 2022, 21, 1–16. [Google Scholar] [CrossRef]
- Moghadas, M.; Rajabifard, A.; Fekete, A.; Kötter, T. A Framework for Scaling Urban Transformative Resilience through Utilizing Volunteered Geographic Information. ISPRS Int. J. Geo-Inf. 2022, 11, 114. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, M.; Han, J.; Su, Y.; Jang, J. Quantifying Flood Water Levels Using Image-Based Volunteered Geographic Information. Remote Sens. 2020, 12, 706. [Google Scholar] [CrossRef]
- Opach, T.; Navarra, C.; Rød, J.K.; Neset, T.S.; Wilk, J.; Santos Cruz, S.; Joling, A. Identifying relevant volunteered geographic information about adverse weather events in Trondheim using the CitizenSensing participatory system. Urban Anal. City Sci. 2023, 50, 1806–1821. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica (ISTAT). Available online: https://www.istat.it/ (accessed on 6 December 2023).
- ISTAT. Censimenti Permanenti, Popolazione e Abitazioni; ISTAT: Rome, Italy, 2022. [Google Scholar]
- Municipality of Genoa, Piano Urbanistico Comunale Vigente. Available online: https://www.comune.genova.it/servizi/puc (accessed on 17 November 2023).
- Municipality of Genoa. Direzione Rigenerazione Urbana—Urban Center e Centro Storico, Genova Green Strategy; Comune di Genova: Genova, Italy, 2022. [Google Scholar]
- Geoportale del Comune di Genova. Available online: https://mappe.comune.genova.it/MapStore2/#/viewer/34 (accessed on 9 December 2023).
- ISTAT. Commissioni Riunite, 9a Commissione “Agricoltura e Produzione Agroalimentare” e 13a Commissione “Territorio, Ambiente, Beni Ambientali” del Senato della Repubblica—Allegato Statistico; ISTAT: Rome, Italy, 2019. [Google Scholar]
- Municipality of Genoa. Economic Development Department Urban Agenda & Green Transition Office, Genoa 2050—Action Plan for a Lighthouse; Comune di Genova: Genova, Italy, 2022. [Google Scholar]
- Keul, A.G.; Brunner, B.; Allen, J.; Wilson, K.A.; Taszarek, M.; Price, C.; Soleiman, G.; Sharma, S.; Roy, P.; Said, A.M.; et al. Multihazard Weather Risk Perception and Preparedness in Eight Countries. Weather Clim. Soc. 2018, 10, 501–520. [Google Scholar] [CrossRef]
- Palla, A.; Colli, M.; Candela, A.; Aronica, G.T.; Lanza, L.G. Pluvial flooding in urban areas: The role of surface drainage efficiency. J. Flood Risk Manag. 2018, 11, S663–S676. [Google Scholar] [CrossRef]
- Dossche, R. Understanding the Effects of Flood Risk Perception on Individual and Collective Flood Behavior: A Mapping Exercise in Val Bisagno (Genoa). AGEI Geotema 2021, 21, 99–109. [Google Scholar]
- Ugolini, F.; Massetti, L.; Calaza-Martínez, P.; Cariñanos, P.; Dobbs, C.; Ostoic, S.K.; Marin, A.M.; Pearlmutter, D.; Saaroni, H.; Sauliene, I.; et al. Understanding the benefits of public urban green space: How do perceptions vary between professionals and users? Landsc. Urban Plan. 2022, 228, 104575. [Google Scholar] [CrossRef]
- Saraiva, M.; Roebeling, P.; Sousa, S.; Teotonio, C.; Palla, A.; Gnecco, I. Dimensions of shrinkage: Evaluating the socio-economic consequences of population decline in two medium-sized cities in Europe, using the SULD decision support tool. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 1122–1144. [Google Scholar] [CrossRef]
- Cox, D.T.C.; Bennie, J.; Casalegno, S.; Hudson, H.L.; Anderson, K.; Gaston, K.J. Skewed contributions of individual trees to indirect nature experience. Landsc. Urban Plan. 2019, 185, 28–34. [Google Scholar] [CrossRef]
- Ferreira, V.; Barreira, A.P.; Loures, L.; Antunes, D.; Panagopoulos, T. Stakeholders’ Engagement on Nature-Based Solutions: A Systematic Literature Review. Sustainability 2020, 12, 640. [Google Scholar] [CrossRef]
- Collier, M.J.; Frantzeskaki, N.; Connop, S.; Dick, G.; Dumitru, A.; Dziubala, A.; Fletcher, A.; Georgiou, P.; Holscher, K.; Koojiman, E.; et al. An integrated process for planning, delivery, and stewardship of urban nature-based solutions: The Connecting Nature Framework. Nat. Based Solut. 2023, 3, 1000060. [Google Scholar] [CrossRef]
- Palla, A.; Pezzagno, M.; Spadaro, I.; Ermini, R. Participatory approach for planning urban resilience to climate change: Brescia, Genova and Matera, three compared case studies in Italy. Sustainability 2024, 16, 2170. [Google Scholar] [CrossRef]
- Gough, C.; Barr, C.; Lewis, L.K.; Hutchinson, C.; Maeder, A.; George, S. Older adults’ community participation, physical activity, and social interactions during and following COVID-19 restrictions in Australia: A mixed methods approach. BMC Public Health 2023, 23, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Aranda, N.R.; De Waegemaeker, J.; Van de Weghe, N. The evolution of public participation GIS (PPGIS) barriers in spatial planning practice. Appl. Geogr. 2023, 155, 102940. [Google Scholar] [CrossRef]
Technique | Functioning | Strengths | Weaknesses | Sources |
---|---|---|---|---|
Ephemeral mapping | Drawing maps on the ground from memory using in loco available materials | Easy to organize and facilitate Inexpensive Familiar to many people Flexible | Temporary Limited semiology Neither scaled nor automatically georeferenced Difficulties in communicating results to decision makers | [12,13] |
Sketch mapping | Freehand drawings on sheet of paper using different colored pencils, markers, etc. | Easy to organize and facilitate Inexpensive Familiar to many people Broad semiology Flexible | Temporary Neither scaled nor automatically georeferenced Difficulties in communicating results to decision makers | [14,15] |
VGI mapping | Provision of data to through location-based information sharing technologies | Permanent Both scaled and geo-referenced Ease in communicating results to decision makers | Unfamiliar to many people Software license Limited/controlled semiology Need for training Not flexible | [16] |
Scaled 2D mapping | Scaled base map on which to draw with a variety of stationery items | Easy to organize and facilitate Inexpensive Broad semiology Flexible Scaled Ease in communicating results to decision makers | Temporary Unfamiliar to many people Not automatically georeferenced | [17,18] |
P3DM | Participants build a 3D model of the case study with available materials | Easy to organize and facilitate Inexpensive Broad semiology Flexibile Both scaled and geo-referenced | Temporary Unfamiliar to many people Often require an external facilitator to provide the base map Difficulties in communicating results to decision makers | [19,20] |
Web-based/app-based GIS mapping | Provision of data to a web-based or app-based GIS database | Permanent Both scaled and geo-referenced Ease in communicating results to decision makers | Unfamiliar to many people Software license Limited/controlled semiology Need for training Not flexible | [21] |
Techniques | Main Objective |
---|---|
Interviews | Gathering the opinions of a selected group of people in a structured way |
Questionnaires, Polls | Gathering the opinions of a large group of people in a structured way |
World Café, Fishbowl, Focus groups | Producing thorough information from a small group of people |
Expert panels | Collecting the scientific knowledge and expertise of experts in the field |
Techniques | Main Objective |
---|---|
Design charette | Define common planning and development scenarios |
Knowledge creation | Reframing the problem to be addressed and its solutions |
Workshops | Creating ideas from the integration of different perspectives |
Public advisory committees | Providing regular comments and advice on the problem to be addressed |
Citizen juries | Using expert ideas to stimulate discussions and support decision-making |
Visioning | Creation of shared urban or landscape scenarios |
Community indicators project | Development of indicators/indices from people’s vision of the future |
Participatory budgeting | Deciding how to use public economic resources |
Asset-based community development | Assessing people’s available resources and determining appropriate action |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnecco, I.; Pirlone, F.; Spadaro, I.; Bruno, F.; Lobascio, M.C.; Sposito, S.; Pezzagno, M.; Palla, A. Participatory Mapping for Enhancing Flood Risk Resilient and Sustainable Urban Drainage: A Collaborative Approach for the Genoa Case Study. Sustainability 2024, 16, 1936. https://doi.org/10.3390/su16051936
Gnecco I, Pirlone F, Spadaro I, Bruno F, Lobascio MC, Sposito S, Pezzagno M, Palla A. Participatory Mapping for Enhancing Flood Risk Resilient and Sustainable Urban Drainage: A Collaborative Approach for the Genoa Case Study. Sustainability. 2024; 16(5):1936. https://doi.org/10.3390/su16051936
Chicago/Turabian StyleGnecco, Ilaria, Francesca Pirlone, Ilenia Spadaro, Fabrizio Bruno, Maria Cristina Lobascio, Sabrina Sposito, Michele Pezzagno, and Anna Palla. 2024. "Participatory Mapping for Enhancing Flood Risk Resilient and Sustainable Urban Drainage: A Collaborative Approach for the Genoa Case Study" Sustainability 16, no. 5: 1936. https://doi.org/10.3390/su16051936
APA StyleGnecco, I., Pirlone, F., Spadaro, I., Bruno, F., Lobascio, M. C., Sposito, S., Pezzagno, M., & Palla, A. (2024). Participatory Mapping for Enhancing Flood Risk Resilient and Sustainable Urban Drainage: A Collaborative Approach for the Genoa Case Study. Sustainability, 16(5), 1936. https://doi.org/10.3390/su16051936