Combined Potential of Quarry Waste Fines and Eggshells for the Hydrothermal Synthesis of Tobermorite at Varying Cement Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials Preparation
2.2. Raw Material Characterization
2.3. Sample Preparation
2.4. Determination of Physical and Mechanical Properties
2.5. Determination of Phase Composition of the Autoclaved Samples
3. Results and Discussion
3.1. Raw Material Characterization Results
3.1.1. X-ray Fluorescence Analysis (XRF)
3.1.2. X-ray Diffraction Analysis (XRD)
3.1.3. Thermogravimetric Analysis and Differential Thermal Analysis (TGA-DTA)
3.2. Physical and Mechanical Properties of the Cured Samples
3.3. Phase Compositions of the Cured Samples
4. Implications
5. Conclusions and Recommendations
- QWF and ESP can be used as a starting material for tobermorite synthesis in terms of their CaO and SiO2 content. The QWF was found to have a considerable amount of silica (SiO2) (53.77%), which is comparable with the silica content range of fly ash. On the other hand, ESP makes a rich source of calcium oxide (CaO) of 97.80%.
- The sample with only 10% OPC exhibited the highest strength and best physical properties compared to QWF-ESP samples with 15% and 20% OPC. This is advantageous in terms of saving raw materials (OPC) and waste proportion optimization.
- Tobermorite was produced using QWF and ESP at a 0.80 Ca/Si ratio through hydrothermal treatment at 180 °C for 6 h, as confirmed by the XRD results. The tobermorite peaks were visible in the QWF-ESP samples, and the peak intensities were closely similar to the lime–silica formulation. Regardless of the OPC dosage, the tobermorite phase was formed using the QWF-ESP mix.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borigarla, B.; Buddaha, T.; Karen, G.S.; Hait, P. Experimental Study on Replacing Sand by M−Sand and Quarry Dust in Rigid Pavements. Mater. Today Proc. 2022, 60, 658–667. [Google Scholar] [CrossRef]
- Singhal, A.; Goel, S.; Sengupta, D. Physicochemical and Elemental Analyses of Sandstone Quarrying Wastes to Assess Their Impact on Soil Properties. J. Environ. Manag. 2020, 271, 111011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Korkiala-Tanttu, L.K.; Gustavsson, H.; Miksic, A. Assessment for Sustainable Use of Quarry Fines as Pavement Construction Materials: Part I—Description of Basic Quarry Fine Properties. Materials 2019, 12, 1209. [Google Scholar] [CrossRef] [PubMed]
- Mitikie, B.B.; Alemu, Y.L.; Reda, S.G. Utilization of Basaltic Quarry Dust as a Partial Replacement of Cement for Hollow Concrete Block Production. Int. J. Concr. Struct. Mater. 2022, 16, 55. [Google Scholar] [CrossRef]
- Pathe, A.K.; Kumar Kushwaha, P.; Thomas, J.M. Review on Performance of Quarry Dust as Fine Aggregate in Concrete. Int. Res. J. Eng. Technol. 2020, 7, 517–521. [Google Scholar]
- Schankoski, R.A.; de Matos, P.R.; Pilar, R.; Prudêncio, L.R.; Ferron, R.D. Rheological Properties and Surface Finish Quality of Eco-Friendly Self-Compacting Concretes Containing Quarry Waste Powders. J. Clean. Prod. 2020, 257, 120508. [Google Scholar] [CrossRef]
- Cheah, C.B.; Lim, J.S.; Ameri, F. Quarry Dust. In Sustainable Concrete Made with Ashes and Dust from Different Sources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 507–543. [Google Scholar]
- Bakamwesiga, H.; Mugisha, W.; Kisira, Y.; Muwanga, A. An Assessment of Air and Water Pollution Accrued from Stone Quarrying in Mukono District, Central Uganda. J. Geosci. Environ. Prot. 2022, 10, 25–42. [Google Scholar] [CrossRef]
- Dibattista, I.; Camara, A.R.; Molderez, I.; Benassai, E.M.; Palozza, F. Socio-Environmental Impact of Mining Activities in Guinea: The Case of Bauxite Extraction in the Region of Boké. J. Clean. Prod. 2023, 387, 135720. [Google Scholar] [CrossRef]
- Githiria, J.M.; Onifade, M. The Impact of Mining on Sustainable Practices and the Traditional Culture of Developing Countries. J. Environ. Stud. Sci. 2020, 10, 394–410. [Google Scholar] [CrossRef]
- AL-Kharabsheh, B.N.; Moafak Arbili, M.; Majdi, A.; Ahmad, J.; Deifalla, A.F.; Hakamy, A.; Majed Alqawasmeh, H. Feasibility Study on Concrete Made with Substitution of Quarry Dust: A Review. Sustainability 2022, 14, 15304. [Google Scholar] [CrossRef]
- Shyam Prakash, K.; Rao, C.H. Study on Compressive Strength of Quarry Dust as Fine Aggregate in Concrete. Adv. Civ. Eng. 2016, 2016, 1742769. [Google Scholar] [CrossRef]
- Basu, P.; Thomas, B.S.; Gupta, R.C.; Agrawal, V. Properties of Sustainable Self-Compacting Concrete Incorporating Discarded Sandstone Slurry. J. Clean. Prod. 2021, 281, 125313. [Google Scholar] [CrossRef]
- Rathore, K.; Agrawal, V.; Nagar, R. Effect of Waste Sandstone Microfines on Mechanical Strength, Abrasion Resistance, and Permeability Properties of Concrete. Mater. Today Proc. 2022, 61, 571–578. [Google Scholar] [CrossRef]
- Waheed, M.; Yousaf, M.; Shehzad, A.; Inam-Ur-Raheem, M.; Khan, M.K.I.; Khan, M.R.; Ahmad, N.; Abdullah; Aadil, R.M. Channelling Eggshell Waste to Valuable and Utilizable Products: A Comprehensive Review. Trends Food Sci. Technol. 2020, 106, 78–90. [Google Scholar] [CrossRef]
- Vandeginste, V. Food Waste Eggshell Valorization through Development of New Composites: A Review. Sustain. Mater. Technol. 2021, 29, e00317. [Google Scholar] [CrossRef]
- Hamada, H.M.; Tayeh, B.A.; Al-Attar, A.; Yahaya, F.M.; Muthusamy, K.; Humada, A.M. The Present State of the Use of Eggshell Powder in Concrete: A Review. J. Build. Eng. 2020, 32, 101583. [Google Scholar] [CrossRef]
- Mahmood, L.; Rafiq, S.; Mohammed, A. A Review Study of Eggshell Powder as Cement Replacement in Concrete. Sulaimani J. Eng. Sci. 2019, 9, 25–38. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. Enhanced Eco-Friendly Concrete Nano-Change with Eggshell Powder. Appl. Sci. 2022, 12, 6606. [Google Scholar] [CrossRef]
- Paruthi, S.; Khan, A.H.; Kumar, A.; Kumar, F.; Hasan, M.A.; Magbool, H.M.; Manzar, M.S. Sustainable Cement Replacement Using Waste Eggshells: A Review on Mechanical Properties of Eggshell Concrete and Strength Prediction Using Artificial Neural Network. Case Stud. Constr. Mater. 2023, 18, e02160. [Google Scholar] [CrossRef]
- Opon, J.G. Influence of Microfine-Contaminated Sand from Mandulog River System in Iligan City, Philippines on the Performance of Concrete. J. Sci. Technol. Civ. Eng. (STCE)—HUCE 2022, 16, 12–21. [Google Scholar] [CrossRef]
- Abhilasha; Kumar, R.; Lakhani, R.; Mishra, R.K.; Khan, S. Utilization of Solid Waste in the Production of Autoclaved Aerated Concrete and Their Effects on Its Physio-Mechanical and Microstructural Properties: Alternative Sources, Characterization, and Performance Insights. Int. J. Concr. Struct. Mater. 2023, 17, 6. [Google Scholar] [CrossRef]
- Shams, T.; Schober, G.; Heinz, D.; Seifert, S. Production of Autoclaved Aerated Concrete with Silica Raw Materials of a Higher Solubility than Quartz Part II: Influence of Autoclaving Temperature. Constr. Build. Mater. 2021, 287, 123072. [Google Scholar] [CrossRef]
- Shams, T.; Schober, G.; Heinz, D.; Seifert, S. Production of Autoclaved Aerated Concrete with Silica Raw Materials of a Higher Solubility than Quartz Part I: Influence of Calcined Diatomaceous Earth. Constr. Build. Mater. 2021, 272, 122014. [Google Scholar] [CrossRef]
- Xu, L.; Sun, Z.; Tang, C.; Yang, K.; Li, B.; Zhang, Y.; Yang, Z.; Wu, K. Mitigation Effect of Accelerators on the Lead–Zinc Tailing Induced Retardation in Autoclaved Concrete. Constr. Build. Mater. 2022, 352, 128929. [Google Scholar] [CrossRef]
- Lam, N.N. Recycling of Aac Waste in the Manufacture of Autoclaved Aerated Concrete in Vietnam. Int. J. Geomate 2021, 20, 128–134. [Google Scholar] [CrossRef]
- Mesecke, K.; Malorny, W.; Warr, L.N. Understanding the Effect of Sulfate Ions on the Hydrothermal Curing of Autoclaved Aerated Concrete. Cem. Concr. Res. 2023, 164, 107044. [Google Scholar] [CrossRef]
- Stepien, A.; Dachowski, R.; Piotrowski, J.Z. Insulated Autoclaved Cellular Concretes and Improvement of Their Mechanical and Hydrothermal Properties. In Thermal Insulation and Radiation Control Technologies for Buildings; Springer: Berlin/Heidelberg, Germany, 2022; pp. 393–419. [Google Scholar]
- Zhou, L.; Ma, B.; Zhou, H.; Zang, J.; Wang, J.; Qian, B.; Luo, Y.; Ren, X.; Xiao, Y.; Hu, Y. Effect of Ca/Si Ratio on the Properties of Steel Slag and Deactivated ZSM-5 Autoclaved Aerated Concrete. J. Indian Chem. Soc. 2023, 100, 100853. [Google Scholar] [CrossRef]
- Majdinasab, A.; Yuan, Q. Synthesis of Al-Substituted 11 Å Tobermorite Using Waste Glass Cullet: A Study on the Microstructure. Mater. Chem. Phys. 2020, 250, 123069. [Google Scholar] [CrossRef]
- Malferrari, D.; Bernini, F.; Di Giuseppe, D.; Scognamiglio, V.; Gualtieri, A.F. Al-Substituted Tobermorites: An Effective Cation Exchanger Synthesized from “End-of-Waste” Materials. ACS Omega 2022, 7, 1694–1702. [Google Scholar] [CrossRef]
- Schreiner, J.; Goetz-Neunhoeffer, F.; Neubauer, J.; Jansen, D. Hydrothermal Synthesis of 11 Å Tobermorite—Effect of Adding Metakaolin to the Basic Compound. Appl. Clay Sci. 2020, 185, 105432. [Google Scholar] [CrossRef]
- Demir, İ.; Ogdu, M.K.; Sevim, O.; Dogan, O. Mechanical and Physical Properties of Autoclaved Aerated Concrete Reinforced Using Carbon Fibre of Different Lengths. Teh. Vjesn. Tech. Gaz. 2021, 28, 503–508. [Google Scholar] [CrossRef]
- Pan, Y.; Jiang, Y.; Liu, Z.; Xiang, Q.; Gao, C. Effect of Crystallinity on Properties of Autoclaved Aerated Concrete Matrix Materials. J. Phys. Conf. Ser. 2023, 2437, 012040. [Google Scholar] [CrossRef]
- Serdyuk, V.; Rudchenko, D.; Dyuzhilova, N. The Use of Low Clinker Binders in the Production of Autoclaved Aerated Concrete by Cutting Technology. East. Eur. J. Enterp. Technol. 2020, 6, 63–71. [Google Scholar] [CrossRef]
- Zhang, Y.; Miksic, A.; Castillo, D.; Korkiala-Tanttu, L. Microstructural Behaviour of Quarry Fines Stabilised with Fly Ash-Based Binder. Road Mater. Pavement Des. 2022, 24, 1389–1402. [Google Scholar] [CrossRef]
- Nipunika, U.; Jayaneththi, Y.; Sewwandi, G.A. Synthesis of Calcium Oxide Nanoparticles from Waste Eggshells. In Proceedings of the 2022 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 27–29 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Flegar, M.; Serdar, M.; Londono-Zuluaga, D.; Scrivener, K. Application of Thermogravimetric Analysis for Characterization of Clay as Supplementary Cementitious Material. In 6. Simpozij Doktorskog Studja Građevinarstva. 2020. pp. 153–162. Available online: http://master.grad.hr/phd-simpozij/2020/proceedings/12.pdf (accessed on 28 November 2023).
- Jayasingh, S.; Selvaraj, T. Effect of natural herbs on hydrated phases of lime mortar. J. Archit. Eng. 2020, 26, 04020021. [Google Scholar] [CrossRef]
- Holanda, J.N.F. The Properties and Durability of Clay Fly Ash-Based Fired Masonry Bricks. In Eco-Efficient Masonry Bricks and Blocks; Elsevier: Amsterdam, The Netherlands, 2015; pp. 85–101. [Google Scholar]
- ASTM C642-06; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM C1386-98; Standard Specification for Precast Autoclaved Aerated Concrete (PAAC) Wall Construction Units. ASTM International: West Conshohocken, PA, USA, 2017.
- Aliyu, I.; Sulaiman, T.A.; Mohammed, A.; Kaura, J.M. Effect of Sulphuric Acid on the Compressive Strength of Concrete with Quarry Dust as Partial Replacement of Fine Aggregate. Fudma J. Sci. 2020, 4, 553–559. [Google Scholar]
- Koganti, S.P.; Chappidi, H.R. Geotechnical Properties of Quarry Dust. Electron. J. Geotech. Eng. 2016, 21, 2963–2973. [Google Scholar]
- John, S.K.; Cascardi, A.; Nadir, Y.; Aiello, M.A.; Girija, K. A New Artificial Neural Network Model for the Prediction of the Effect of Molar Ratios on Compressive Strength of Fly Ash-Slag Geopolymer Mortar. Adv. Civ. Eng. 2021, 2021, 6662347. [Google Scholar] [CrossRef]
- Shirin, S.; Jamal, A.; Emmanouil, C.; Yadav, A.K. Assessment of Characteristics of Acid Mine Drainage Treated with Fly Ash. Appl. Sci. 2021, 11, 3910. [Google Scholar] [CrossRef]
- Uddin, M.R.; Khandaker, M.U.; Akter, N.; Ahmed, M.F.; Hossain, S.M.M.; Gafur, A.; Abedin, M.J.; Rahman, M.A.; Idris, A.M. Identification and Economic Potentiality of Mineral Sands Resources of Hatiya Island, Bangladesh. Minerals 2022, 12, 1436. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Lin, C.-T. Recycling of Basic Oxygen Furnace Slag as a Raw Material for Autoclaved Aerated Concrete Production. Sustainability 2020, 12, 5896. [Google Scholar] [CrossRef]
- Dong, M.; Ruan, S.; Zhan, S.; Shen, S.; Sun, G.; Qian, X.; Zhou, X. Utilization of Red Mud with High Radiation for Preparation of Autoclaved Aerated Concrete (AAC): Performances and Microstructural Analysis. J. Clean. Prod. 2022, 347, 131293. [Google Scholar] [CrossRef]
- Fudge, C.; Fouad, F.; Klingner, R. Autoclaved Aerated Concrete. In Developments in the Formulation and Reinforcement of Concrete; Elsevier: Amsterdam, The Netherlands, 2019; pp. 345–363. [Google Scholar]
- Agrawal, Y.; Gupta, T.; Siddique, S.; Sharma, R.K. Potential of Dolomite Industrial Waste as Construction Material: A Review. Innov. Infrastruct. Solut. 2021, 6, 205. [Google Scholar] [CrossRef]
- Junaid, M.F.; ur Rehman, Z.; Kuruc, M.; Medveď, I.; Bačinskas, D.; Čurpek, J.; Čekon, M.; Ijaz, N.; Ansari, W.S. Lightweight Concrete from a Perspective of Sustainable Reuse of Waste Byproducts. Constr. Build. Mater. 2022, 319, 126061. [Google Scholar] [CrossRef]
- Shah, S.N.; Mo, K.H.; Yap, S.P.; Yang, J.; Ling, T.-C. Lightweight Foamed Concrete as a Promising Avenue for Incorporating Waste Materials: A Review. Resour. Conserv. Recycl. 2021, 164, 105103. [Google Scholar] [CrossRef]
- Sundaralingam, K.; Peiris, A.; Anburuvel, A.; Sathiparan, N. Quarry Dust as River Sand Replacement in Cement Masonry Blocks: Effect on Mechanical and Durability Characteristics. Materialia 2022, 21, 101324. [Google Scholar] [CrossRef]
- Wang, S.; Yu, L.; Yang, F.; Zhang, W.; Xu, L.; Wu, K.; Tang, L.; Yang, Z. Resourceful Utilization of Quarry Tailings in the Preparation of Non-Sintered High-Strength Lightweight Aggregates. Constr. Build. Mater. 2022, 334, 127444. [Google Scholar] [CrossRef]
- Imkum Putkham, A.; Chuakham, S.; Chaiyachet, Y.; Suwansopa, T.; Putkham, A. Production of Bio-Calcium Oxide Derived from Hatchery Eggshell Waste Using an Industrial-Scale Car Bottom Furnace. J. Renew. Mater. 2022, 10, 1137–1151. [Google Scholar] [CrossRef]
- Vanthana Sree, G.; Nagaraaj, P.; Kalanidhi, K.; Aswathy, C.A.; Rajasekaran, P. Calcium Oxide a Sustainable Photocatalyst Derived from Eggshell for Efficient Photo-Degradation of Organic Pollutants. J. Clean. Prod. 2020, 270, 122294. [Google Scholar] [CrossRef]
- Yadav, V.K.; Yadav, K.K.; Cabral-Pinto, M.M.S.; Choudhary, N.; Gnanamoorthy, G.; Tirth, V.; Prasad, S.; Khan, A.H.; Islam, S.; Khan, N.A. The Processing of Calcium Rich Agricultural and Industrial Waste for Recovery of Calcium Carbonate and Calcium Oxide and Their Application for Environmental Cleanup: A Review. Appl. Sci. 2021, 11, 4212. [Google Scholar] [CrossRef]
- Ajayan, N.; Shahanamol, K.P.; Arun, A.U.; Soman, S. Quantitative Variation in Calcium Carbonate Content in Shell of Different Chicken and Duck Varieties. Adv. Zool. Bot. 2020, 8, 1–5. [Google Scholar] [CrossRef]
- Addich, M.; El Baraka, N.; Laknifli, A.; Saffaj, N.; Fatni, A.; El Hammadi, A.; Alrashdi, A.A.; Lgaz, H. New Low-Cost Tubular Ceramic Microfiltration Membrane Based on Natural Sand for Tangential Urban Wastewater Treatment. J. Saudi Chem. Soc. 2022, 26, 101512. [Google Scholar] [CrossRef]
- Burduhos Nergis, D.D.; Abdullah, M.M.A.B.; Sandu, A.V.; Vizureanu, P. XRD and TG-DTA Study of New Alkali Activated Materials Based on Fly Ash with Sand and Glass Powder. Materials 2020, 13, 343. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.; Muthuraja, A.; Rajak, D.K.; Ahmad, N.; Pruncu, C.I.; Lamberti, L.; Kumar, A. Influence of Firing Temperature on the Physical, Thermal and Microstructural Properties of Kankara Kaolin Clay: A Preliminary Investigation. Materials 2020, 13, 1872. [Google Scholar] [CrossRef]
- Nannoni, A.; Piccini, L.; Costagliola, P.; Batistoni, N.; Gabellini, P.; Cioni, R.; Pratesi, G.; Bucci, S. Innovative Approaches for the Sedimentological Characterization of Fine Natural and Anthropogenic Sediments in Karst Systems: The Case of the Apuan Alps (Central Italy). Front. Earth Sci. 2021, 9, 308. [Google Scholar] [CrossRef]
- Tchapga Gnamsi, G.M.; Mambou Ngueyep, L.L.; Foguieng Wembe, M.; Ndjaka, J.-M.B. Microstructure Analysis of Hydraulic Concrete Using Crushed Basalt, Crushed Gneiss and Alluvial Sand as Fine Aggregate. JMST Adv. 2020, 2, 25–35. [Google Scholar] [CrossRef]
- Castro, L.d.S.; Barañano, A.G.; Pinheiro, C.J.G.; Menini, L.; Pinheiro, P.F. Biodiesel Production from Cotton Oil Using Heterogeneous CaO Catalysts from Eggshells Prepared at Different Calcination Temperatures. Green Process. Synth. 2019, 8, 235–244. [Google Scholar] [CrossRef]
- Razali, N.; Jumadi, N.; Jalani, A.Y.; Kamarulzaman, N.Z.; Faizal, K.; Pa’ee, K.F. Thermal Decomposition of Calcium Carbonate In Chicken Eggshells: Study on Temperature and Contact Time (Penguraian Kalsium Karbonat Dalam Kulit Telur Ayam: Kajian Mengenai Suhu Dan Masa). Malays. J. Anal. Sci. 2022, 26, 347–359. [Google Scholar]
- Moreau, T.; Gautron, J.; Hincke, M.T.; Monget, P.; Réhault-Godbert, S.; Guyot, N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front. Icn Immunol. 2022, 13, 946428. [Google Scholar] [CrossRef]
- Jakfar, N.H.; Fhan, K.S.; Johar, B.; Shima Adzali, N.M.; Yunus, S.N.H.M.; Meng, C.E. Crystal Structure and Thermal Behaviour of Calcium Monosilicate Derived from Calcined Chicken Eggshell and Rice Husk Ash. J. Phys. Conf. Ser. 2021, 2129, 012040. [Google Scholar] [CrossRef]
- Toibah, A.R.; Misran, F.; Shaaban, A.; Mustafa, Z. Effect of PH Condition during Hydrothermal Synthesis on the Properties of Hydroxyapatite from Eggshell Waste. J. Mech. Eng. Sci. 2019, 13, 4958–4969. [Google Scholar] [CrossRef]
- Saldanha, R.B.; da Rocha, C.G.; Caicedo, A.M.L.; Consoli, N.C. Technical and Environmental Performance of Eggshell Lime for Soil Stabilization. Constr. Build. Mater. 2021, 298, 123648. [Google Scholar] [CrossRef]
- Consoli, N.C.; Caicedo, A.M.L.; Beck Saldanha, R.; Filho, H.C.S.; Acosta, C.J.M. Eggshell Produced Limes: Innovative Materials for Soil Stabilization. J. Mater. Civ. Eng. 2020, 32, 06020018. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, Q.; Zhang, M. Water Absorption Behaviour of Concrete: Novel Experimental Findings and Model Characterization. J. Build. Eng. 2022, 53, 104602. [Google Scholar] [CrossRef]
- Kewalramani, M.; Khartabil, A. Porosity Evaluation of Concrete Containing Supplementary Cementitious Materials for Durability Assessment through Volume of Permeable Voids and Water Immersion Conditions. Buildings 2021, 11, 378. [Google Scholar] [CrossRef]
- Lamidi, Y.D.; Owoeye, S.S.; Abegunde, S.M. Preparation and Characterization of Synthetic Tobermorite (CaO–Al2O3–SiO2–H2O) Using Bio and Municipal Solid Wastes as Precursors by Solid State Reaction. Boletín Soc. Española Cerámica Vidr. 2022, 61, 76–81. [Google Scholar] [CrossRef]
- Luo, S.; Jiang, Z.; Zhao, M.; Yang, L.; Castro-Gomes, J.; Wei, S.; Mi, T. Microwave Hydrothermal Synthesis of Tobermorite for the Solidification of Iron. Case Stud. Constr. Mater. 2023, 19, e02267. [Google Scholar] [CrossRef]
- Arif Kamal, M. Analysis of Autoclaved Aerated Concrete (AAC) Blocks with Reference to Its Potential and Sustainability. J. Build. Mater. Struct. 2020, 7, 76–86. [Google Scholar] [CrossRef]
- Ikechukwu, A.F.; Shabangu, C. Strength and Durability Performance of Masonry Bricks Produced with Crushed Glass and Melted PET Plastics. Case Stud. Constr. Mater. 2021, 14, e00542. [Google Scholar] [CrossRef]
- Dai, S.; Wen, Q.; Huang, F.; Bao, Y.; Xi, X.; Liao, Z.; Shi, J.; Ou, C.; Qin, J. Preparation and Application of MgO-Loaded Tobermorite to Simultaneously Remove Nitrogen and Phosphorus from Wastewater. Chem. Eng. J. 2022, 446, 136809. [Google Scholar] [CrossRef]
- Qin, J.; Fang, Y.; Ou, C.; Wang, J.; Huang, F.; Wen, Q.; Liao, Z.; Shi, J. Highly Efficient Cd2+ and Cu2+ Removal by MgO-Modified Tobermorite in Aqueous Solutions. J. Environ. Chem. Eng. 2023, 11, 109534. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, C.; Jiao, Y.; Zhang, D.; Kang, D.; Wang, K. Study on Crystal Growth of Tobermorite Synthesized by Calcium Silicate Slag and Silica Fume. Materials 2023, 16, 1288. [Google Scholar] [CrossRef] [PubMed]
Sample | QWF | ESP | Silica | Lime | OPC | Ca/Si |
---|---|---|---|---|---|---|
QWF-ESP10 | 72 | 18 | - | - | 10 | 0.8 |
QWF-ESP15 | 70 | 15 | - | - | 15 | 0.8 |
QWF-ESP20 | 68 | 12 | - | - | 20 | 0.8 |
LS10 | - | - | 50 | 40 | 10 | 0.8 |
Chemical Composition (Oxides) | QWF | ESP | OPC |
---|---|---|---|
SiO2 | 53.77 | 0.41 | 21.27 |
CaO | 8.89 | 97.8 | 59.63 |
Al2O3 | 20.07 | 0.5 | 8.58 |
MgO | 3.56 | - | 0.52 |
Fe2O3 | 10.9 | 0.49 | 3.26 |
K2O | 1.26 | 0.36 | 0.84 |
P2O5 | 0.21 | 0.33 | 0.18 |
MnO | 0.19 | - | 0.08 |
TiO2 | 0.85 | 0.01 | 0.36 |
V2O5 | 0.1 | - | 0.01 |
CuO | 0.02 | 0.01 | 0.01 |
ZnO | 0.02 | - | 0.01 |
SO3 | 0.13 | 0.57 | 5.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldia, S.; Bacosa, H.; Vegafria, M.C.; Zoleta, J.; Hiroyoshi, N.; Empig, E.; Calleno, C.; Cantong, W.; Ibarra, E.; Aguilos, M.; et al. Combined Potential of Quarry Waste Fines and Eggshells for the Hydrothermal Synthesis of Tobermorite at Varying Cement Content. Sustainability 2024, 16, 2401. https://doi.org/10.3390/su16062401
Saldia S, Bacosa H, Vegafria MC, Zoleta J, Hiroyoshi N, Empig E, Calleno C, Cantong W, Ibarra E, Aguilos M, et al. Combined Potential of Quarry Waste Fines and Eggshells for the Hydrothermal Synthesis of Tobermorite at Varying Cement Content. Sustainability. 2024; 16(6):2401. https://doi.org/10.3390/su16062401
Chicago/Turabian StyleSaldia, Shem, Hernando Bacosa, Maria Cristina Vegafria, Joshua Zoleta, Naoki Hiroyoshi, Ernesto Empig, Christian Calleno, Wilyneth Cantong, Ephraim Ibarra, Maricar Aguilos, and et al. 2024. "Combined Potential of Quarry Waste Fines and Eggshells for the Hydrothermal Synthesis of Tobermorite at Varying Cement Content" Sustainability 16, no. 6: 2401. https://doi.org/10.3390/su16062401
APA StyleSaldia, S., Bacosa, H., Vegafria, M. C., Zoleta, J., Hiroyoshi, N., Empig, E., Calleno, C., Cantong, W., Ibarra, E., Aguilos, M., & Amparado, R., Jr. (2024). Combined Potential of Quarry Waste Fines and Eggshells for the Hydrothermal Synthesis of Tobermorite at Varying Cement Content. Sustainability, 16(6), 2401. https://doi.org/10.3390/su16062401