Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives
Abstract
:1. Introduction
2. Fundamentals of Radon and Thoron Products
3. Radon Short-Lived Products as Radioactive Aerosols
- N, Nout—indoor, outdoor particle number concentrations, m−3, cm−3 (particles per m3, cm3);
- pout→in—outdoor → indoor particle penetration coefficient;
- λv—ventilation rate constant, s−1;
- λd—deposition rate constant, s−1;
- λf—filtration rate constant, s−1;
- Qp—particle generation rate of indoor sources, s−1 (particles per s);
- V—room volume, m3, cm−3.
- Radon gas:
- Unattached RnP
4. Radon and Thoron Sources
4.1. Ground
4.2. Building Material
4.3. Age of Building
5. Temporal Variations in Radon and Thoron Levels in Indoor Air
6. Impact of Human Activities on Radon Behaviour Indoors
6.1. Ventilation
6.2. Air Conditioning
6.3. Air Filtration
6.4. Emission of Nanoparticles
6.5. Cigarette Smoking and Candle Burning—Detailed Description
6.5.1. Cigarette Smoking
6.5.2. Candle Burning
7. Conclusions
Funding
Conflicts of Interest
References
- Nero, A.V. Radon and Its Decay Products in Indoor Air; Nazaroff, W.W., Nero, A.V., Jr., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1988; pp. 1–53. [Google Scholar]
- Etiope, G.; Martinelli, G. Migration of carrier and trace gases in the geosphere: An overview. Phys. Earth Planet. Inter. 2002, 129, 185–204. [Google Scholar] [CrossRef]
- Friedmann, H.; Gröller, J. An approach to improve the Austrian Radon Potential Map by Bayesian statistics. J. Environ. Radioact. 2010, 101, 804–808. [Google Scholar] [CrossRef]
- Kemski, J.; Siehl, A.; Stegemann, R.; Valdivia-Manchego, M. Mapping the geogenic radon potential in Germany. Sci. Total Environ. 2001, 272, 217–230. [Google Scholar] [CrossRef]
- Neznal, M.; Neznal, M.; Šmarda, J. Assessment of radon potential of soils—A five-year experience. Environ. Int. 1996, 22, 819–828. [Google Scholar] [CrossRef]
- Jobbágy, V.; Altzitzoglou, T.; Malo, P.; Tanner, V.; Hult, M. A brief overview on radon measurements in drinking water. J. Environ. Radioact. 2017, 173, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.L.; Griffin, W.M.; Casman, E.A. Lung cancer risk from radon in marcellus shale gas in northeast U.S. homes. Risk Anal. 2016, 36, 2105–2119. [Google Scholar] [CrossRef] [PubMed]
- Bochicchio, F.; Campos-Venuti, G.; Nuccetelli, C.; Risica, S.; Tancredi, F. Indoor measurements of 220Rn and 222Rn and their decay products in a Mediterranean climate area. Environ. Int. 1996, 22, 633–639. [Google Scholar] [CrossRef]
- McLaughlin, J. An overview of thoron and its progeny in the indoor environment. Radiat. Prot. Dosim. 2010, 141, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Schery, S.D.; Turk, B. Soil as a source of indoor 220Rn. Health Phys. 1992, 62, 453–457. [Google Scholar] [CrossRef]
- Porstendörfer, J. Properties and behaviour of radon and thoron and their decay products in the air. J. Aerosol Sci. 1994, 25, 219–263. [Google Scholar] [CrossRef]
- Chu, K.D.; Hopke, P.K. Neutralization kinetics for polonium-218. Environ. Sci. Technol. 1988, 22, 711–717. [Google Scholar] [CrossRef]
- Hopke, P.K. The initial atmospheric behavior of radon decay products. J. Radioanal. Nucl. Chem. 1996, 203, 353–375. [Google Scholar] [CrossRef]
- Porstendörfer, J.; Reineking, A. Indoor behaviour and characteristics of radon progeny. Radiat. Prot. Dosim. 1992, 45, 303–311. [Google Scholar] [CrossRef]
- Goldstein, S.D.; Hopke, P.K. Environmental neutralization of polonium-218. Environ. Sci. Technol. 1985, 19, 146–150. [Google Scholar] [CrossRef]
- Dankelmann, V.; Reineking, A.; Porstendörfer, J. Determination of neutralisation rates of 218Po ions in air. Radiat. Prot. Dosim. 2001, 94, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Pagelkopf, P.; Porstendörfer, J. Neutralisation rate and the fraction of the positive 218Po-clusters in air. Atmos. Environ. 2003, 37, 1057–1064. [Google Scholar] [CrossRef]
- Papastefanou, C. Radioactive aerosols. In Radioactivity in the Environment; Baxter, M.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 12, pp. 11–54. [Google Scholar]
- United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR). Sources and Effect of Ionizing Radiation; UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes; United Nations: New York NY, USA, 2000; pp. 83–156. [Google Scholar]
- Darby, S.; Hill, D.; Auvinen, A.; Barros-Dios, J.M.; Baysson, H.; Bochicchio, F.; Deo, H.; Falk, R.; Forastiere, F.; Hakama, M.; et al. Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case-control studies. BMJ 2005, 330, 223. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency (US EPA). Radon Measurements in Schools—Revised Edition; EPA 402-R-92-0014; US EPA: Washington, DC, USA, 1993.
- US Environmental Protection Agency (US EPA). Radon Measurements in Schools—An Interim Report; EPA 520/1-89-010; US EPA: Washington, DC, USA, 1989.
- Vaupotič, J. Radon in kindergartens and schools: A review. In Handbook of Radon: Properties, Applications, and Health; Zachary, L., Ed.; Nova Science: New York, NY, USA, 2011; pp. 477–524. [Google Scholar]
- International Commission on Radiological Protection (ICRP). Lung Cancer Risk from Indoor Exposures to Radon Daughters; ICRP publication 50; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Hofmann, W.; Steinhausler, F.; Pohl, E. Dose calculations for the respiratory tract from inhaled natural radioactive nuclides as a function of age—I. Compartmental deposition, retention and resulting dose. Health Phys. 1979, 37, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, W. Dose calculations for the respiratory tract from inhaled natural radioactive nuclides as a function of age—II. Basal cell dose distributions and associated lung cancer risk. Health Phys. 1982, 43, 31–44. [Google Scholar]
- Hofmann, W.; Martonen, T.B.; Menache, M.G. Age-dependent lung dosimetry of radon progeny. In Extrapolation of Dosimetric Relationships for Inhaled Particles and Gases; Crapo, J.D., Miller, F.J., Eds.; Academic Press: Cambridge, MA, USA, 1989; pp. 317–344. [Google Scholar]
- Mjönes, L.; Falk, R.; Mellander, H.; Nyblom, L.; Nilsson, I. 220Rn and its progeny in buildings in Sweden. Environ. Int. 1996, 22 (Suppl. 1), S1125–S1133. [Google Scholar] [CrossRef]
- Steinhäusler, F.; Hofmann, W.; Lettner, H. Thoron exposure of man: A negligible issue? Radiat. Prot. Dosim. 1994, 56, 127–131. [Google Scholar] [CrossRef]
- Tokonami, S.; Furukawa, M.; Shicchi, Y.; Sanada, T.; Yamada, Y. Characteristics of radon and its progeny concentrations in air-conditioned office buildings in Tokyo. Radiat. Prot. Dosim. 2003, 106, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, N. Studies of Thoron Progeny Concentrations in the Living Environment. Ph.D. Thesis, Nagoya University, Nagoya, Japan, 1995. [Google Scholar]
- Tokonami, S.; Sun, Q.; Akiba, S.; Zhuo, W.; Furukawa, M.; Ishikawa, T.; Hou, C.; Zhang, S.; Narazaki, Y.; Ohji, B.; et al. Radon and thoron exposures for cave residents in Shanxi and Shaanxi provinces. Radiat. Res. 2004, 162, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bergman, L.; Falcomer, R.; Whyte, J. Results of simultaneous radon and thoron measurements in 33 metropolitan areas of Canada. Radiat. Prot. Dosim. 2014, 163, 210–216. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.; Murray, M.; Currivan, L.; Pollard, D.; Smith, V.; Tokonami, S.; Sorimachi, A.; Janik, M. Long-term measurements of thoron, its airborne progeny and radon in 205 dwellings in Ireland. Radiat. Prot. Dosim. 2011, 145, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Gierl, S.; Meisenberg, O.; Feistenauer, P.; Tschiersch, J. Thoron and thoron progeny measurements in German clay houses. Radiat. Prot. Dosim. 2014, 160, 160–163. [Google Scholar] [CrossRef]
- Chałupnik, S.; Meisenberg, O.; Bi, L.; Wang, J.; Skubacz, K.; Tschiersch, J. Measurements of radon and thoron decay products in air. An application of LSC and TLD methods. Rom. J. Phys. 2013, 58, S62–S72. [Google Scholar] [CrossRef] [PubMed]
- Szabó, Z.; Jordan, G.; Szabó, C.; Horváth, Á.; Holm, Ó.; Kocsy, G.; Csige, I.; Szabó, P.; Homoki, Z. Radon and thoron levels, their spatial and seasonal variations in adobe dwellings—A case study at the great Hungarian plain. Isotopes Environ. Health Stud. 2014, 50, 211–225. [Google Scholar] [CrossRef]
- Vaupotič, J.; Kávási, N. Preliminary study of thoron and radon levels in various indoor environments in Slovenia. Radiat. Prot. Dosim. 2010, 141, 383–385. [Google Scholar] [CrossRef]
- Žunić, Z.S.; Čeliković, I.; Tokonami, S.; Ishikawa, T.; Ujić, P.; Onischenko, A.; Zhukovsky, M.; Milić, G.; Jakupi, B.; Čuknić, O.; et al. Collaborative investigations on thoron and radon in some rural communities of Balkans. Radiat. Prot. Dosim. 2010, 141, 346–350. [Google Scholar] [CrossRef]
- Gulan, L.; Milic, G.; Bossew, P.; Omori, Y.; Ishikawa, T.; Mishra, R.; Mayya, Y.S.; Stojanovska, Z.; Nikezic, D.; Vuckovic, B.; et al. Field experience on indoor radon, thoron and their progenies with solid-state detectors in a survey of Kosovo and Metohija (Balkan region). Radiat. Prot. Dosim. 2012, 152, 189–197. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Bossew, P.; Tokonami, S.; Zunic, Z.S.; Bochicchio, F.; Boev, B.; Ristova, M.; Januseski, J. National survey of indoor thoron concentration in FYR of Macedonia (continental Europe-Balkan region). Radiat. Meas. 2013, 49, 57–66. [Google Scholar] [CrossRef]
- Reddy, K.V.K.; Reddy, B.S.; Reddy, M.S.; Reddy, C.G.; Reddy, P.Y.; Reddy, K.R. Baseline studies of radon/thoron concentration levels in and around the Lambapur and Peddagattu areas in Nalgonda district, Andhra Pradesh, India. Radiat. Meas. 2003, 36, 419–423. [Google Scholar] [CrossRef]
- Virk, H.S.; Sharma, N. Indoor radon/thoron survey report from Hamirpur and Una districts, Himachal Pradesh, India. Appl. Radiat. Isot. 2000, 52, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Prasad, G.; Prasad, Y.; Gusain, G.S.; Ramola, R.C. Measurement of radon and thoron levels in soil, water and indoor atmosphere of Budhakedar in Garhwal Himalaya, India. Radiat. Meas. 2008, 43, S375–S379. [Google Scholar] [CrossRef]
- Joshi, V.; Dutt, S.; Yadav, M.; Mishra, R.; Ramola, R.C. Measurement of radon, thoron and their progeny concentrations in the dwellings of Pauri Garhwal, Uttarakhand, India. Radiat. Prot. Dosim. 2016, 171, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Omori, Y.; Prasad, G.; Sorimachi, A.; Sahoo, S.K.; Ishikawa, T.; Vidya Sagar, D.; Ramola, R.C.; Tokonami, S. Long-term measurements of residential radon, thoron, and thoron progeny concentrations around the Chhatrapur placer deposit, a high background radiation area in Odisha, India. J. Environ. Radioact. 2016, 162–163, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Singh, P.; Singh, S.; Sahoo, B.K.; Sapra, B.K.; Bajwa, B.S. A study of indoor radon, thoron and their progeny measurement in Tosham region Haryana, India. J. Radiat. Res. Appl. Sci. 2015, 8, 226–233. [Google Scholar] [CrossRef]
- Omori, Y.; Tokonami, S.; Sahoo, S.K.; Ishikawa, T.; Sorimachi, A.; Hosoda, M.; Kudo, H.; Pornnumpa, C.; Nair, R.R.K.; Jayalekshmi, P.A.; et al. Radiation dose due to radon and thoron progeny inhalation in high-level natural radiation areas of Kerala, India. J. Radiol. Prot. 2017, 37, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.; Rawat, M.; Dangwal, A.; Prasad, G.; Mishra, R.; Ramola, R.C. Study of radiation exposure due to radon, thoron and progeny in the indoor environment of Yamuna and Tons Valleys of Garhwal Himalaya. Radiat. Prot. Dosim. 2016, 171, 187–191. [Google Scholar] [CrossRef]
- Ramola, R.C.; Prasad, M.; Kandari, T.; Pant, P.; Bossew, P.; Mishra, R.; Tokonami, S. Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci. Rep. 2016, 6, 31061. [Google Scholar] [CrossRef]
- Barooah, D.; Laskar, I.; Goswami, A.K.; Ramachandran, T.V.; Nambi, K.S.V. Estimation of indoor radon, thoron and their progeny using twin cup dosemeters with solid-state nuclear track detectors in Digboi of Upper Assam. Radiat. Meas. 2003, 36, 461–463. [Google Scholar] [CrossRef]
- Dwivedi, K.K.; Mishra, R.; Tripathy, S.P.; Kulshreshtha, A.; Sinha, D.; Srivastava, A.; Deka, P.; Bhattacharjee, B.; Ramachandran, T.V.; Nambi, K.S.V. Simultaneous determination of radon, thoron and their progeny in dwellings. Radiat. Meas. 2001, 33, 7–11. [Google Scholar] [CrossRef]
- Schery, S.D. Understanding Radioactive Aerosols and Their Measurement; Springer Science & Business Media: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Reineking, A.; Porstendörfer, J. Unattached fraction of short-lived Rn decay products in indoor and outdoor environments: An improved single-screen method and results. Health Phys. 1990, 58, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Mercer, T.T. The effect of particle size on the escape of recoiling RaB atoms from particulate surfaces. Health Phys. 1976, 31, 173–175. [Google Scholar] [PubMed]
- Porstendörfer, J. Behaviour of radon daughter products in indoor air. Radiat. Prot. Dosim. 1984, 7, 107–113. [Google Scholar] [CrossRef]
- Rout, R.P.; Mishra, R.; Prajith, R.; Jalaluddin, S.; Sapra, B.K. Measurement of 222Rn and 220Rn decay product deposition velocities using SSNTD based passive detectors. J. Radioanal. Nucl. Chem. 2014, 302, 1495–1499. [Google Scholar] [CrossRef]
- Stevanovic, N.; Markovic, V.M.; Nikezic, D. Deposition rates of unattached and attached radon progeny in room with turbulent airflow and ventilation. J. Environ. Radioact. 2009, 100, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Prajith, R.; Sapra, B.K.; Mayya, Y.S. An integrated approach for the assessment of the thoron progeny exposures using direct thoron progeny sensors. Radiat. Prot. Dosim. 2010, 141, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Meisenberg, O.; Tschiersch, J. Specific properties of a model of thoron and its decay products in indoor atmospheres. Nukleonika 2010, 55, 463–469. [Google Scholar]
- Meisenberg, O.; Tschiersch, J. Thoron in indoor air: Modeling for a better exposure estimate. Indoor Air 2011, 21, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, T.V.; Eappen, K.P.; Nair, R.N.; Mayya, Y.S.; Sadasivan, S. Radon-Thoron Levels and Inhalation Dose Distribution Patterns in India Dwellings; Bhabha Atomic Research Centre: Bombay, India, 2003. [Google Scholar]
- Vargas Trassierra, C.; Cardellini, F.; Buonanno, G.; De Felice, P. On the interaction between radon progeny and particles generated by electronic and traditional cigarettes. Atmos. Environ. 2015, 106, 442–450. [Google Scholar] [CrossRef]
- Amgarou, K.; Font, L.; Baixeras, C. A novel approach for long-term determination of indoor 222Rn progeny equilibrium factor using nuclear track detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 2003, 506, 186–198. [Google Scholar] [CrossRef]
- Yu, K.N.; Nikezic, D.; Ng, F.M.F.; Leung, J.K.C. Long-term measurements of radon progeny concentrations with solid-state nuclear track detectors. Radiat. Meas. 2005, 40, 560–568. [Google Scholar] [CrossRef]
- Hussein, T.; Hameri, K.; Heikkinen, M.; Kulmala, M. Indoor and outdoor particle size characterization at a family house in Espoo–Finland. Atmos. Environ. 2005, 39, 3697–3709. [Google Scholar] [CrossRef]
- Hussein, T.; Hruška, A.; Dohányosová, P.; Džumbová, L.; Hemerka, J.; Kulmala, M.; Smolík, J. Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber. Atmos. Environ. 2009, 43, 905–914. [Google Scholar] [CrossRef]
- Hofmann, W.; Sturm, R.; Winkler-Heil, R.; Pawlak, E. Stochastic model of ultrafine particle deposition and clearance in the human respiratory tract. Radiat. Prot. Dosim. 2003, 105, 77–79. [Google Scholar] [CrossRef]
- Hofmann, W.; Winkler-HeiI, R.; Truta, L.A.; Tschiersch, J. Application of a monte carlo lung dosimetry code to the inhalation of thoron progeny. Radiat. Prot. Dosim. 2014, 160, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Nikezić, D.; Yu, K.N.; Cheung, T.T.K.; Haque, A.K.M.M.; Vučić, D. Effects of different lung morphometry models on the calculated dose conversion factor from Rn progeny. J. Environ. Radioact. 2000, 47, 263–277. [Google Scholar] [CrossRef]
- Nikezić, D.; Haque, A.K.M.M.; Yu, K.N. Effects of different deposition models on the calculated dose conversion factors from 222Rn progeny. J. Environ. Radioact. 2002, 61, 305–318. [Google Scholar] [CrossRef]
- Birchall, A.; James, A.C. Uncertainty analysis of the effective dose per unit exposure from radon progeny and implications for ICRP risk-weighting factors. Radiat. Prot. Dosim. 1994, 53, 133–140. [Google Scholar] [CrossRef]
- Marsh, J.W.; Birchall, A.; Butterweck, G.; Dorrian, M.D.; Huet, C.; Ortega, X.; Reineking, A.; Tymen, G.; Schuler, C.; Vargas, A.; et al. Uncertainty analysis of the weighted equivalent lung dose per unit exposure to radon progeny in the home. Radiat. Prot. Dosim. 2002, 102, 229–248. [Google Scholar] [CrossRef]
- Porstendörfer, J. Radon: Measurements related to dose. Environ. Int. 1996, 22, 563–583. [Google Scholar] [CrossRef]
- Butterweck, G.; Porstendörfer, J.; Reineking, A.; Kesten, J. Unattached fraction and the aerosol size distribution of the radon progeny in a natural cave and mine atmospheres. Radiat. Prot. Dosim. 1992, 45, 167–170. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Chen, T.R.; Wasiolek, P.T.; Van Engen, A. Radon and radon progeny in the carlsbad caverns. Aerosol Sci. Technol. 1997, 26, 74–92. [Google Scholar] [CrossRef]
- Khalaf, H.N.B.; Mostafa, M.Y.A.; Zhukovsky, M. A combined system for radioactive aerosol size distribution measurements of radon decay products. Radiat. Phys. Chem. 2019, 165, 108402. [Google Scholar] [CrossRef]
- Mostafa, M.Y.A.; Khalaf, H.N.B.; Zhukovsky, M. Radon decay products equilibrium at different aerosol concentrations. Appl. Radiat. Isotopes 2020, 156, 108981. [Google Scholar] [CrossRef] [PubMed]
- Huet, C.; Tymen, G.; Boulaud, D. Long-term measurements of equilibrium factor and unattached fraction of short-lived radon decay products in a dwelling-comparison with Praddo model. Aerosol Sci. Technol. 2001, 35, 553–563. [Google Scholar] [CrossRef]
- Iskra, I.; Kávási, N.; Vaupotič, J. Nano aerosols in the Postojna Cave. Acta Carsol. 2010, 39, 523–528. [Google Scholar] [CrossRef]
- Sainz, C.; Quindós, L.S.; Fuente, I.; Nicolás, J.; Quindós, L. Analysis of the main factors affecting the evaluation of the radon dose in workplaces: The case of tourist caves. J. Hazard. Mater. 2007, 145, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Thinová, L.; Burian, I. Effective dose assessment for workers in caves in the Czech Republic: Experiments with passive radon detectors. Radiat. Prot. Dosim. 2008, 130, 48–51. [Google Scholar] [CrossRef]
- Vaupotič, J. Nanosize radon short-lived decay products in the air of the Postojna Cave. Sci. Total Environ. 2008, 393, 27–38. [Google Scholar] [CrossRef]
- Colbeck, I. Introduction to aerosol science. In Physical and Chemical Properties of Aerosols; Colbeck, I., Ed.; Thomson Science: London, UK, 1998; pp. 5–120. [Google Scholar]
- Buseck, P.R.; Adachi, K. Nanoparticles in the atmosphere. Elements 2008, 4, 389–394. [Google Scholar] [CrossRef]
- Kumar, P.; Fennell, P.; Robins, A. Comparison of the behaviour of manufactured and other airborne nanoparticles and the consequences for prioritising research and regulation activities. J. Nanoparticle Res. 2010, 12, 1523–1530. [Google Scholar] [CrossRef]
- Turner, J.; Colbeck, I. Environmental chemistry of aerosols. In Environmental Chemistry of Aerosols; Colbeck, I., Ed.; Thomson Science: London, UK, 2008; pp. 1–29. [Google Scholar]
- Wen, C.S. The Fundamentals of Aerosol Dynamics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1996. [Google Scholar]
- Kumar, P.; Robins, A.; Vardoulakis, S.; Britter, R. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls. Atmos. Environ. 2010, 44, 5035–5052. [Google Scholar] [CrossRef]
- Nowack, B.; Bucheli, T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Ristovski, Z.; Jayaratne, E.R.; Keogh, D.U.; Ling, X. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 2008, 42, 8113–8138. [Google Scholar] [CrossRef]
- Anastasio, C.; Martin, S.T. Atmospheric nanoparticles. In Nanoparticles and the Environment; Bafield, J., Navrotsky, A., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2001; pp. 293–349. [Google Scholar]
- Shi, J.P.; Evans, D.E.; Khan, A.A.; Harrison, R.M. Sources and concentrations of nanoparticles (less than 10 nm diameter) in the urban atmosphere. Atmos. Environ. 2001, 35, 1193–1202. [Google Scholar] [CrossRef]
- Porstendörfer, J.; Zock, C.; Reineking, A. Aerosol size distribution of the radon progeny in outdoor air. J. Environ. Radioact. 2000, 51, 37–48. [Google Scholar] [CrossRef]
- Tu, K.W.; Knutson, E.O.; George, A.C. Thoron versus radon: Comparison of measured progeny aerosol size distributions. Aerosol Sci. Technol. 1994, 20, 266–274. [Google Scholar] [CrossRef]
- Tu, K.W.; Knutson, E.O.; George, A.C. Indoor radon progeny aerosol size measurements in urban, suburban, and rural regions. Aerosol Sci. Technol. 1991, 15, 170–178. [Google Scholar] [CrossRef]
- Morawska, L.; Jamriska, M. Deposition of radon progeny on indoor surfaces. J. Aerosol Sci. 1996, 27, 305–312. [Google Scholar] [CrossRef]
- Hopke, P.K.; Wasiolek, P.; Montassier, N.; Cavallo, A.; Gadsby, K.; Socolow, R. Measurements of activity-weighted size distributions of radon decay products in a normally occupied home. Radiat. Prot. Dosim. 1992, 45, 329–331. [Google Scholar] [CrossRef]
- Porstendörfer, J. Physical parameters and dose factors of the radon and thoron decay products. Radiat. Prot. Dosim. 2001, 94, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.S.; Chen, T.R.; Yeh, H.C.; Bigu, J.; Holub, R.; Tu, K.; Knutsond, E.O.; Falk, R. Intercomparison of activity size distribution of thoron progeny and a mixture of radon and thoron progeny. J. Environ. Radioact. 2000, 51, 59–78. [Google Scholar] [CrossRef]
- Huet, C.; Tymen, G.; Boulaud, D. Size distribution, equilibrium ratio and unattached fraction of radon decay products under typical indoor domestic conditions. Sci. Total Environ. 2001, 272, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Fukutsu, K.; Yamada, Y.; Tokonami, S.; Iida, T. Newly designed graded screen array for particle size measurements of unattached radon decay products. Rev. Sci. Instrum. 2004, 75, 783–787. [Google Scholar] [CrossRef]
- Mohery, M.; El-Hussein, A.; Alddin, S.H.; Al Howaity, S. Unattached fractions and aerosol attached of radon progeny in indoor air. Int. J. Phys. Sci. 2012, 7, 5089–5096. [Google Scholar]
- Yuness, M.; Mohamed, A.; Nazmy, H.; Moustafa, M.; Abd El-hady, M. Indoor activity size distribution of the short-lived radon progeny. Stoch. Environ. Res. Risk Assess. 2016, 30, 167–174. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, B.; Zhuo, W.; Zhao, C. Measurements of the size distribution of unattached radon progeny by using the imaging plate. Radiat. Meas. 2014, 62, 41–44. [Google Scholar] [CrossRef]
- Marsh, J.W.; Birchall, A. Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progeny. Radiat. Prot. Dosim. 2000, 87, 167–178. [Google Scholar] [CrossRef]
- Trevisi, R.; Cardellini, F.; Leonardi, F.; Vargas Trassierra, C.; Franci, D. A comparison of radon and its decay products’ behaviour in indoor air. Radiat. Prot. Dosim. 2014, 162, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Vargas Trassierra, C.; Stabile, L.; Cardellini, F.; Morawska, L.; Buonanno, G. Effect of indoor-generated airborne particles on radon progeny. J. Hazard. Mater. 2016, 314, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Nikezić, D.; Stevanović, N. Room model with three modal distributions of attached 220Rn progeny and dose conversion factor. Radiat. Prot. Dosim. 2007, 123, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Vaupotič, J.; Bezek, M.; Kobal, I. The effect of air filtration on the fraction of unattached radon products. Rad. Appl. 2017, 2, 115–117. [Google Scholar]
- Hussein, T.; Glytsos, T.; Ondráček, J.; Dohányosová, P.; Ždímal, V.; Hämeri, K.; Lazaridis, M.; Smolík, J.; Kulmala, M. Particle size characterization and emission rates during indoor activities in a house. Atmos. Environ. 2006, 40, 4285–4307. [Google Scholar] [CrossRef]
- Matson, U. Indoor and outdoor concentrations of ultrafine particles in some Scandinavian rural and urban areas. Sci. Total Environ. 2005, 343, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; He, C.; Hitchins, J.; Gilbert, D.; Parappukkaran, S. The relationship between indoor and outdoor airborne particles in the residential environment. Atmos. Environ. 2001, 35, 3463–3473. [Google Scholar] [CrossRef]
- Chen, H.; Namdeo, A.; Bell, M. Classification of road traffic and roadside pollution concentrations for assessment of personal exposure. Environ. Model. Softw. 2008, 23, 282–287. [Google Scholar] [CrossRef]
- He, C.; Morawska, L.; Hitchins, J.; Gilbert, D. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ. 2004, 38, 3405–3415. [Google Scholar] [CrossRef]
- Petros, K.; Briggs, S.L.K.; Leaderer, B.P. Source apportionment of indoor aerosols in Suffolk and Onondaga Counties, New York. Environ. Sci. Technol. 1992, 26, 521–527. [Google Scholar]
- Wallace, L.; Emmerich, S.J.; Howard-Reed, C. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ. Sci. Technol. 2004, 38, 2304–2311. [Google Scholar] [CrossRef] [PubMed]
- El-Hussein, A. Unattached fractions, attachment and deposition rates of radon progeny in indoor air. Appl. Radiat. Isot. 1996, 47, 515–523. [Google Scholar] [CrossRef]
- Jacobi, W. Activity and potential energy of 222Rn- and 222Rn-daughters in different air atmospheres. Health Phys. 1972, 22, 441–450. [Google Scholar] [CrossRef]
- Knutson, E.O. Characteristics and behaviour of radon decay products. In Radon and Its Decay Products in Indoor Air; Nazaroff, W.W., Nero, A.V., Jr., Eds.; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Nikezić, D.; Yu, K.N. Long-term determination of airborne concentrations of unattached and attached radon progeny using stacked LR 115 detector with multi-step etching. Nucl. Instrum. Methods Phys. Res. Sect. A 2010, 613, 245–250. [Google Scholar] [CrossRef]
- Bruno, R.C. Verifying a model of radon decay product behavior indoors. Health Phys. 1983, 45, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Zarcone, M.J.; Schery, S.D.; Wilkening, M.H.; McNamee, E. A comparison of measurements of thoron, radon and their daughters in a test house with model predictions. Atmos. Environ. 1986, 20, 1273–1279. [Google Scholar] [CrossRef]
- Gadgil, A.J.; Kong, D.; Nazaroff, W.W. Deposition of unattached radon progeny from enclosure flows. Radiat. Prot. Dosim. 1992, 45, 337–341. [Google Scholar] [CrossRef]
- Islam, G.S.; Mazumdar, S.C.; Ashraf, M.A. Influence of various room parameters upon radon daughter equilibrium indoor. Radiat. Meas. 1996, 26, 193–201. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Vogiannis, E. Modelling radon progeny concentration variations in thermal spas. Sci. Total Environ. 2007, 373, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Mayya, Y.S.; Kushwaha, H.S. Measurement of 220Rn/222Rn progeny deposition velocities on surfaces and their comparison with theoretical models. J. Aerosol Sci. 2009, 40, 1–15. [Google Scholar] [CrossRef]
- Stevanovic, N.; Markovic, V.M.; Urosevic, V.; Nikezic, D. Determination of parameters of the Jacobi room model using the Brownian motion model. Health Phys. 2009, 96, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Stevanovic, N.; Markovic, V.M.; Nikezic, D. Relationship between deposition and attachment rates in Jacobi room model. J. Environ. Radioact. 2010, 101, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.N.; Nikezic, D. Long-term measurements of unattached radon progeny concentrations using solid-state nuclear track detectors. Appl. Radiat. Isot. 2012, 70, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, L.; Guo, Q. The influence of environmental factors on the deposition velocity of thoron progeny. Radiat. Prot. Dosim. 2012, 152, 84–88. [Google Scholar] [CrossRef]
- Mishra, R.; Rout, R.; Prajith, R.; Jalalluddin, S.; Sapra, B.K.; Mayya, Y.S. Innovative easy-to-use passive technique for 222Rn and 220Rn decay product detection. Radiat. Prot. Dosim. 2016, 171, 181–186. [Google Scholar] [CrossRef]
- Doi, M.; Kobayashi, S.; Fujimoto, K. A passive measurement technique for characterisation of high-risk houses in Japan due to enhanced levels of indoor radon and thoron concentrations. Radiat. Prot. Dosim. 1992, 45, 425–430. [Google Scholar] [CrossRef]
- Kolarž, P.; Vaupotič, J.; Kobal, I.; Ujić, P.; Stojanovska, Z.; Žunić, Z.S. Thoron, radon and air ions spatial distribution in indoor air. J. Environ. Radioact. 2017, 173, 70–74. [Google Scholar] [CrossRef]
- Németh, C.; Tokonami, S.; Ishikawa, T.; Takahashi, H.; Zhuo, W.; Shimo, M. Measurements of radon, thoron and their progeny in Gifu prefecture, Japan. J. Radioanal. Nucl. Chem. 2005, 267, 9–12. [Google Scholar] [CrossRef]
- Zhuo, W.; Chen, B.; Wei, M. Estimation of indoor 220Rn progeny concentrations with 220Rn measurements. Radiat. Prot. Dosim. 2010, 141, 408–411. [Google Scholar] [CrossRef]
- Zhuo, W.; Iida, T.; Moriizumi, J.; Aoyagi, T.; Takahashi, I. Simulation of the concentrations and distributions of indoor radon and thoron. Radiat. Prot. Dosim. 2001, 93, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Ramola, R.C.; Negi, M.S.; Choubey, V.M. Radon and thoron monitoring in the environment of Kumaun Himalayas: Survey and outcomes. J. Environ. Radioact. 2005, 79, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Meisenberg, O.; Chen, Y.; Karg, E.; Tschiersch, J. Mitigation of radon and thoron decay products by filtration. Sci. Total Environ. 2011, 409, 3613–3619. [Google Scholar] [CrossRef] [PubMed]
- Kemski, J.; Klingel, R.; Siehl, A.; Valdivia-Manchego, M. From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ. Geol. 2009, 56, 1269–1279. [Google Scholar] [CrossRef]
- Kemski, J.; Klingel, R.; Siehl, A.; Stegemann, R. Radon transfer from ground to houses and prediction of indoor radon in Germany based on geological information. In The Natural Radiation Environment VII, Seventh International Symposium on the Natural Radiation in Environment (NRE-VII); McLaughlin, J.P., Simopoulos, S.E., Steinhäusler, F., Eds.; Elsevier Ltd.: Oxford, UK, 2005; pp. 820–832. [Google Scholar]
- Mihci, M.; Buyuksarac, A.; Aydemir, A.; Celebi, N. Indoor and outdoor radon concentration measurements in Sivas, Turkey, in comparison with geological setting. J. Environ. Radioact. 2010, 101, 952–957. [Google Scholar] [CrossRef]
- Vaupotič, J.; Andjelov, M.; Kobal, I. Relationship between radon concentrations in indoor air and in soil gas. Environ. Geol. 2002, 42, 583–587. [Google Scholar]
- Borgoni, R.; Tritto, V.; Bigliotto, C.; de Bartolo, D. A geostatistical approach to assess the spatial association between indoor radon concentration, geological features and building characteristics: The case of Lombardy, Northern Italy. Int. J. Environ. Res. Public Health 2011, 8, 1420–1440. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Zebrowski, A.; Karpińska, M.; Kapała, J.; Kozak, K.; Mazur, J.; Grządziel, D.; Mamont-Cieśla, K.; Stawarz, O.; Kozłowska, B.; et al. Mean annual 222Rn concentration in homes located in different geological regions of Poland—First approach to whole country area. J. Environ. Radioact. 2011, 102, 735–741. [Google Scholar] [CrossRef]
- Crameri, R.; Brunner, H.H.; Buchli, R.; Wernli, C.; Burkart, W. Indoor Rn levels in different geological areas in Switzerland. Health Phys. 1989, 57, 29–38. [Google Scholar] [CrossRef]
- Zhu, H.C.; Charlet, J.M.; Tondeur, F. Geological controls to the indoor radon distribution in southern Belgium. Sci. Total Environ. 1998, 220, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Bochicchio, F.; Campos-Venuti, G.; Felici, F.; Grisanti, A.; Grisanti, G.; Kalita, S.; Moroni, G.; Nuccetelli, C.; Risica, S.; Tancredi, F. Characterisation of some parameters affecting the radon exposure of the population. Radiat. Prot. Dosim. 1994, 56, 137–140. [Google Scholar] [CrossRef]
- Moreno, V.; Baixeras, C.; Font, L.; Bach, J. Indoor radon levels and their dynamics in relation with the geological characteristics of La Garrotxa, Spain. Radiat. Meas. 2008, 43, 1532–1540. [Google Scholar] [CrossRef]
- Sciocchetti, G.; Bovi, M.; Cotellessa, G.; Baldassini, P.G.; Batella, C.; Porcu, I. Indoor radon and thoron surveys in high radioactivity areas of Italy. Radiat. Prot. Dosim. 1992, 45, 509–513. [Google Scholar] [CrossRef]
- Minda, M.; Tóth, G.; Horváth, I.; Barnet, I.; Hámori, K.; Tóth, E. Indoor radon mapping and its relation to geology in Hungary. Environ. Geol. 2009, 57, 601–609. [Google Scholar] [CrossRef]
- Swakoń, J.; Kozak, K.; Paszkowski, M.; Gradziński, R.; Łoskiewicz, J.; Mazur, J.; Janik, M.; Bogacz, J.; Horwacik, T.; Olko, P. Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area. J. Environ. Radioact. 2005, 78, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Vaupotič, J.; Gregorič, A.; Kobal, I.; Žvab, P.; Kozak, K.; Mazur, J.; Kochowska, E.; Grządziel, D. Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat. Hazards Earth Syst. Sci. 2010, 10, 895–899. [Google Scholar] [CrossRef]
- Rohmingliana, P.C.; Vanchhawng, L.; Thapa, R.K.; Sahoo, B.K.; Mishra, R.; Zoliana, B.; Mayya, Y.S. Measurement of indoor concentrations of radon and thoron in Mizoram, India. Sci. Vis. 2010, 10, 148–152. [Google Scholar]
- Dai, D.; Neal, F.B.; Diem, J.; Deocampo, D.M.; Stauber, C.; Dignam, T. Confluent impact of housing and geology on indoor radon concentrations in Atlanta, Georgia, United States. Sci. Tot. Environ. 2019, 668, 500–511. [Google Scholar] [CrossRef]
- Long, S.C.; Fenton, D.; Scivyer, C.; Monahan, E. Factors underlying persistently high radon levels in a house located in a karst limestone region of Ireland—Lessons learned about remediation. Nukleonika 2016, 61, 327–332. [Google Scholar] [CrossRef]
- Peake, R.T. Radon and geology in the United States. Radiat. Prot. Dosim. 1988, 24, 173–178. [Google Scholar] [CrossRef]
- Žvab, P.; Vaupotič, J.; Dolenec, T. Reasons for elevated radon levels inside the building in Divača. Geologija 2006, 49, 405–415. [Google Scholar] [CrossRef]
- Gammage, R.B.; Dudney, C.S.; Wilson, D.L. Unusually amplified summer or winter indoor levels of radon. In Proceedings of the 6th International Conference on Indoor Air Quality and Climate, Helsinki, Finland, 4–8 July 1993; pp. 511–516. [Google Scholar]
- Vaupotič, J.; Brodar, A.; Gregorič, A.; Kobal, I. Radon dynamics in a dwelling with high radon levels in a karst area. In Radon, Health and Natural Hazards; Gillmore, G.K., Perrier, F.E., Crockett, R.G.M., Eds.; The Geological Society: London, UK, 2018; pp. 63–82. [Google Scholar]
- Popit, A.; Vaupotič, J. Indoor radon concentrations in relation to geology in Slovenia. Environ. Geol. 2002, 42, 330–337. [Google Scholar] [CrossRef]
- Kardos, R.; Gregorič, A.; Jónás, J.; Vaupotič, J.; Kovács, T.; Ishimori, Y. Dependence of radon emanation of soil on lithology. J. Radioanal. Nucl. Chem. 2015, 304, 1321–1327. [Google Scholar] [CrossRef]
- Kovács, T.; Szeiler, G.; Fábián, F.; Kardos, R.; Gregorič, A.; Vaupotič, J. Systematic survey of natural radioactivity of soil in Slovenia. J. Environ. Radioact. 2013, 122, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.C.H.; Appleton, J.D. Mapping variation in radon potential both between and within geological units. J. Radiol. Prot. 2005, 25, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Pillai, G.S.; Khan, S.M.M.N.; Hameed, P.S.; Balasundar, S. Radon exhalation rate from the building materials of Tiruchirappalli district (Tamil Nadu State, India). Radiat. Prot. Environ. 2014, 37, 150–156. [Google Scholar]
- Singh, K.; Semwal, P.; Pant, P.; Gusain, G.S.; Joshi, M.; Sapra, B.K.; Ramola, R.C. Measurement of radon, thoron and their progeny in different types of dwelling in Almora district of Kumaun Himalayan region. Radiat. Prot. Dosim. 2016, 171, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Deka, P.C.; Sarkar, S.; Bhattacharjee, B.; Goswami, T.D.; Sarma, B.K.; Ramachandran, T.V. Measurement of radon and thoron concentration by using LR-115 type-II plastic track detectors in the environ of Brahmaputra Valley, Assam, India. Radiat. Meas. 2003, 36, 431–434. [Google Scholar] [CrossRef]
- Kim, C.K.; Kim, Y.J.; Lee, H.Y.; Chang, B.U.; Tokonami, S. 220Rn and its progeny in dwellings of Korea. Radiat. Meas. 2007, 42, 1409–1414. [Google Scholar] [CrossRef]
- Proctor, L.A. A study of indoor 220Rn and 222Rn decay product concentrations in the UK. Radiat. Prot. Dosim. 2006, 121, 175–178. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Januseski, J.; Bossew, P.; Zunic, Z.S.; Tollefsen, T.; Ristova, M. Seasonal indoor radon concentration in FYR of Macedonia. Radiat. Meas. 2011, 46, 602–610. [Google Scholar] [CrossRef]
- Syuryavin, A.C.; Park, S.; Nirwono, M.M.; Lee, S.H. Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment. Nucl. Eng. Technol. 2020, 52, 2370–2378. [Google Scholar] [CrossRef]
- Bahtijari, M.; Stegnar, P.; Shemsidini, Z.; Ajazaj, H.; Halimi, Y.; Vaupotič, J.; Kobal, I. Seasonal variation of indoor air radon concentration in schools in Kosovo. Radiat. Meas. 2007, 42, 286–289. [Google Scholar] [CrossRef]
- Buchli, R.; Burkart, W. Influence of subsoil geology and construction technique on indoor air 222Rn levels in 80 houses of the central Swiss Alps. Health Phys. 1989, 56, 423–429. [Google Scholar] [CrossRef]
- Dudney, C.S.; Hawthorne, A.R.; Wallace, R.G.; Reed, R.P. Levels of 222Rn and its short-lived progeny in Alabama houses. Health Phys. 1988, 54, 89–92. [Google Scholar] [PubMed]
- Hadad, K.; Hakimdavoud, M.R.; Hashemi-Tilehnoee, M. Indoor radon survey in Shiraz-Iran using developed passive measurement method. Iran. J. Radiat. Res. 2011, 9, 175–182. [Google Scholar]
- Jasaitis, D.; Girgždys, A. The investigation of tobacco smoke influence on the changes of indoor radon and its short-lived decay products volumetric activities. J. Environ. Eng. Landsc. Manag. 2013, 21, 59–66. [Google Scholar] [CrossRef]
- Al-Azmi, D.; Abu-Shady, A.I.; Sayed, A.M.; Al-Zayed, Y. Indoor radon in Kuwait. Health Phys. 2008, 94, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Tu, K.W.; George, A.C.; Lowder, W.M.; Gogolak, C.V. Indoor thoron and radon progeny measurements. Radiat. Prot. Dosim. 1992, 45, 557–560. [Google Scholar] [CrossRef]
- Vaupotič, J. Identification of sources of high radon levels in Slovenian schools. Radiat. Prot. Dosim. 2002, 102, 75–80. [Google Scholar] [CrossRef]
- Vaupotič, J.; Gregorič, A.; Leban, M.; Bezek, M.; Žvab Rožič, P.; Zmazek, B.; Kobal, I. Radon survey within a regular grid in homes in Slovenia. In VII. Hungarian Radon Forum and Radon and Environment Satellite Workshop; University of Pannonia: Veszprém, Hungary, 2013; pp. 195–200. [Google Scholar]
- Finne, I.E.; Kolstad, T.; Larsson, M.; Olsen, B.; Prendergast, J.; Rudjord, A.L. Significant reduction in indoor radon in newly built houses. J. Environ. Radioact. 2019, 196, 259–263. [Google Scholar] [CrossRef]
- Pampuri, L.; Caputo, P.; Valsangiacomo, C. Effects of buildings’ refurbishment on indoor air quality. Results of a wide survey on radon concentrations before and after energy retrofit interventions. Sustain. Cities Soc. 2018, 42, 100–106. [Google Scholar] [CrossRef]
- Collignan, B.; Powaga, E. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration. J. Environ. Radioact. 2019, 196, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Baeza, A.; García-Paniagua, J.; Guillén, J.; Montalbán, B. Influence of architectural style on indoor radon concentration in a radon prone area: A case study. Sci. Tot. Environ. 2018, 610–611, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Tokonami, S.; Yamada, Y.; Akiba, S. Main meteorological parameters to influence indoor radon level. Radioisotopes 2002, 51, 120–126. [Google Scholar] [CrossRef]
- Gillmore, G.K.; Phillips, P.S.; Denman, A.R. The effects of geology and the impact of seasonal correction factors on indoor radon levels: A case study approach. J. Environ. Radioact. 2005, 84, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Karpińska, M.; Mnich, Z.; Kapała, J.; Antonowicz, K.; Przestalski, M. Time changeability in radon concentration in one-family dwelling houses in the northeastern region of Poland. Radiat. Prot. Dosim. 2005, 113, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Musolff, A.; Weiss, H. Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials. J. Environ. Radioact. 2018, 192, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, L.M.; Mellander, H.; Swedjemark, G.A. Studies on temporal variations of radon in Swedish single-family houses. Environ. Int. 1996, 22 (Suppl. 1), 715–722. [Google Scholar] [CrossRef]
- De Francesco, S.; Tommasone, F.P.; Cuoco, E.; Tedesco, D. Indoor radon seasonal variability at different floors of buildings. Radiat. Meas. 2010, 45, 928–934. [Google Scholar] [CrossRef]
- Groves-Kirkby, C.J.; Crockett, R.G.M.; Denman, A.R.; Phillips, P.S. A critical analysis of climatic influences on indoor radon concentrations: Implications for seasonal correction. J. Environ. Radioact. 2015, 148, 16–26. [Google Scholar] [CrossRef]
- Font, L.; Baixeras, C.; Domingo, C. Uncertainty, variability and sensitivity analysis applied to the RAGENA model of radon generation, entry and accumulation indoors. Sci. Total Environ. 2001, 272, 25–31. [Google Scholar] [CrossRef]
- Froňka, A. Indoor and soil gas radon simultaneous measurements for the purpose of detail analysis of radon entry pathways into houses. Radiat. Prot. Dosim. 2011, 145, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Keskikuru, T.; Kokotti, H.; Lammi, S.; Kalliokoski, P. Effect of various factors on the rate of radon entry into two different types of houses. Build. Environ. 2001, 36, 1091–1098. [Google Scholar] [CrossRef]
- Wang, F.; Ward, I.C. Radon entry, migration and reduction in houses with cellars. Build. Environ. 2002, 37, 1153–1165. [Google Scholar] [CrossRef]
- Kozak, K.; Mazur, J.; Kozłowska, B.; Karpińska, M.; Przylibski, T.A.; Mamont-Cieśla, K.; Grządziel, D.; Stawarz, O.; Wysocka, M.; Dorda, J.; et al. Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon. Appl. Radiat. Isot. 2011, 69, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.C.H. Temporal variation of radon levels in houses and implications for radon measurement strategies. Radiat. Prot. Dosim. 2001, 93, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.C.H.; Howarth, C.B.; Hunter, N. Seasonal variation of radon concentrations in UK homes. J. Radiol. Prot. 2012, 32, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, M.; Kozłowska, B.; Dorda, J.; Kłos, B.; Chmielewska, I.; Rubin, J.; Karpińska, M.; Dohojda, M. Annual observations of radon activity concentrations in dwellings of Silesian Voivodeship. Nukleonika 2010, 55, 369–375. [Google Scholar]
- Xie, D.; Liao, M.; Kearfott, K.J. Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building—A case study. Radiat. Meas. 2015, 82, 52–58. [Google Scholar] [CrossRef]
- Bossew, P.; Lettner, H. Investigations on indoor radon in Austria, Part 1: Seasonality of indoor radon concentration. J. Environ. Radioact. 2007, 98, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Groves-Kirkby, C.J.; Denman, A.R.; Phillips, P.S.; Crockett, R.G.M.; Sinclair, J.M. Comparison of seasonal variability in European domestic radon measurements. Nat. Hazards Earth Syst. Sci. 2010, 10, 565–569. [Google Scholar] [CrossRef]
- Chen, C.-J.; Liu, C.-C.; Lin, Y.-M. Diurnal variation of radon progeny in indoor and outdoor air of a subtropical city. Environ. Int. 1996, 22, 723–728. [Google Scholar] [CrossRef]
- Leghrouz, A.A.; Abu-Samreh, M.M.; Shehadeh, A.K. Seasonal variation of indoor radon-222 levels in dwellings in Ramallah province and East Jerusalem suburbs, Palestine. Radiat. Prot. Dosim. 2012, 148, 268–273. [Google Scholar] [CrossRef]
- Muntean, L.E.; Cosma, C.; Cucos Dinu, A.; Dicu, T.; Moldovan, D.V. Assessment of annual and seasonal variation of indoor radon levels in dwelling houses from Alba County, Romania. Rom. J. Phys. 2014, 59, 163–171. [Google Scholar]
- Bochicchio, F.; Campos-Venuti, G.; Piermattei, S.; Nuccetelli, C.; Risica, S.; Tommasino, L.; Torri, G.; Magnoni, M.; Agnesod, G.; Sgorbati, G.; et al. Annual average and seasonal variations of residential radon concentration for all the Italian Regions. Radiat. Meas. 2005, 40, 686–694. [Google Scholar] [CrossRef]
- Burke, Ó.; Murphy, P. Regional variation of seasonal correction factors for indoor radon levels. Radiat. Meas. 2011, 46, 1168–1172. [Google Scholar] [CrossRef]
- Papaefthymiou, H.; Mavroudis, A.; Kritidis, P. Indoor radon levels and influencing factors in houses of Patras, Greece. J. Environ. Radioact. 2003, 66, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Kandari, T.; Aswal, S.; Prasad, M.; Pant, P.; Bourai, A.A.; Ramola, R.C. Study of radiation exposure due to radon, thoron and their progeny in the indoor environment of Rajpur region of Uttarakhand Himalya. Radiat. Prot. Dosim. 2016, 171, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Vaupotič, J.; Streil, T.; Tokonami, S.; Žunić, Z.S. Diurnal variations of radon and thoron activity concentrations and effective doses in dwellings in Niška Banja, Serbia. Radiat. Prot. Dosim. 2013, 157, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Saini, K.; Mishra, R.; Sahoo, B.K.; Bajwa, B.S. Attached, unattached fraction of progeny concentrations and equilibrium factor for dose assessments from 222Rn and 220Rn. Radiat. Environ. Biophys. 2016, 55, 401–410. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Saputra, M.A.; Song, Y.; Yang, G.; Tokonami, S. Radiation exposure due to 222Rn, 220Rn and their progenies in three metropolises in China and Japan with different air quality levels. J. Environ. Radioact. 2022, 244–245, 106830. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, S.H.; Akber, R.A. Radon and thoron concentrations in public workplaces in Brisbane, Australia. J. Environ. Radioact. 2015, 144, 69–76. [Google Scholar] [CrossRef]
- Ashok, G.V.; Nagaiah, N.; Shiva Prasad, N.G. Indoor radon concentration and its possible dependence on ventilation rate and flooring type. Radiat. Prot. Dosim. 2012, 148, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Misdaq, M.A.; Ezzahery, H.; Lamine, J. Influence of the building material and ventilation rate on the concentration of radon, thoron and their progenies in dwelling rooms using SSNTD and Monte Carlo simulation. J. Radioanal. Nucl. Chem. 2002, 252, 67–74. [Google Scholar] [CrossRef]
- Misdaq, M.A.; Flata, K. The influence of the cigarette smoke pollution and ventilation rate on alpha-activities per unit volume due to radon and its progeny. J. Environ. Radioact. 2003, 67, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Abdo, M.A.S.; Boukhair, A.; Fahad, M.; Ouakkas, S.; Arhouni, F.E.; Hakkar, M.; Belahbib, L.; Al-Suhbani, M.N. Estimation of unattached and aerosol-attached activities of airborne short-lived radon progeny in indoor environments. J. Environ. Radioact. 2021, 237, 106665. [Google Scholar] [CrossRef] [PubMed]
- Katona, T.; Kanyár, B.; Somlai, J. Cost assessment of ventilation and averted dose due to radon in dwellings. J. Environ. Radioact. 2005, 79, 223–230. [Google Scholar] [CrossRef]
- García-Tobar, J. A comparative study of indoor radon levels between two similar dwellings using CONTAM Software. Environments 2018, 5, 59. [Google Scholar] [CrossRef]
- García-Tobar, J. Weather-dependent modelling of the indoor radon concentration in two dwellings using CONTAM. Indoor Built Environ. 2019, 28, 1341–1349. [Google Scholar] [CrossRef]
- Dovjak, M.; Virant, B.; Krainer, A.; Šijanec-Zavrl, M.; Vaupotič, J. Determination of optimal ventilation rates in educational environment in terms of radon dosimetry. Int. J. Hyg. Environ. Health 2021, 234, 113742. [Google Scholar] [CrossRef]
- Dovjak, M.; Vene, O.; Vaupotič, J. Analysis of ventilation efficiency as simultaneous control of radon and carbon dioxide levels in indoor air applying transient modelling. Int. J. Environ. Res. Public Health 2022, 19, 2125. [Google Scholar] [CrossRef]
- Grządziel, D.; Kozak, K.; Mazur, J.; Połednik, B.; Dudzińska, M.R.; Bilska, I. The influence of air conditioning changes on the effective dose due to radon and its short-lived decay products. Nukleonika 2016, 61, 239–244. [Google Scholar] [CrossRef]
- Kozak, K.; Grządziel, D.; Połednik, B.; Mazur, J.; Dudzińska, M.R.; Mroczek, M. Air conditioning impact on the dynamics of radon and its daughters concentration. Radiat. Prot. Dosim. 2014, 162, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Iwaoka, K.; Tokonami, S.; Ishikawa, T.; Yonehara, H. Mitigation effects of radon decay products by air cleaner. J. Radioanal. Nucl. Chem. 2013, 295, 639–642. [Google Scholar] [CrossRef]
- Kojima, H.; Abe, S.; Fujitaka, K. Detailed behaviour of indoor radon daughters focused on effectiveness of an air cleaner. Radiat. Prot. Dosim. 1992, 45, 589–592. [Google Scholar] [CrossRef]
- Tokonami, S.; Ishikawa, T.; Yonehara, H.; Yamada, Y.; Matsuzawa, T.; Iimoto, T. Changes of indoor aerosol characteristics and their associated variation on the dose conversion factor due to radon progeny inhalation. Radioisotopes 2003, 52, 285–292. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Ishikawa, T.; Tokonami, S.; Takahashi, H.; Sorimachi, A.; Shinogi, M. Radon mitigation using an air cleaner. J. Radioanal. Nucl. Chem. 2009, 279, 885–891. [Google Scholar] [CrossRef]
- Song, Y.; Shang, B.; Cui, H.; Wu, Y. Study on the effect of air purifier for reducing indoor radon exposure. Appl. Radiat. Isot. 2021, 173, 109706. [Google Scholar]
- Reineking, A.; Becker, K.H.; Porstendörfer, J. Measurements of the unattached fractions of radon daughters in houses. Sci. Total Environ. 1985, 45, 261–270. [Google Scholar] [CrossRef]
- Smerajec, M.; Vaupotič, J. Nanoaerosols including radon decay products in outdoor and indoor air at a suburban site. J. Toxicol. 2012, 2012, 510876. [Google Scholar] [CrossRef]
- Luoma, M.; Batterman, S.A. Characterization of particulate emissions from occupant activities in offices. Indoor Air 2001, 11, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; He, C.; Hitchins, J.; Mengersen, K.; Gilbert, D. Characteristics of particle number and mass concentrations in residential houses in Brisbane, Australia. Atmos. Environ. 2003, 37, 4195–4203. [Google Scholar] [CrossRef]
- Afshari, A.; Matson, U.; Ekberg, L.E. Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air 2005, 15, 141–150. [Google Scholar] [CrossRef]
- Vaupotič, J. Nano particles including radon decay products in ambient air. In Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality; Mazzeo, N.A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 153–190. [Google Scholar]
- Wallace, L. Indoor sources of ultrafine and accumulation mode particles: Size distributions, size-resolved concentrations, and source strengths. Aerosol Sci. Technol. 2006, 40, 348–360. [Google Scholar] [CrossRef]
- Khalaf, H.N.; Mostafa, M.Y.A.; Zhukovsky, M. Effect of electronic cigarette (EC) aerosols on particle size distribution in indoor air and in a radon chamber. Nukleonika 2019, 64, 31–38. [Google Scholar] [CrossRef]
- Skubacz, K.; Wołoszczuk, K. Size distribution of ambient and radioactive aerosols formed by the short-lived radon progeny. J. Sustain. Min. 2019, 18, 61–66. [Google Scholar] [CrossRef]
Eα per 1 Atom | per 1 Bq | ||||||
---|---|---|---|---|---|---|---|
Radionuclide | j | t1/2 | MeV | pJ | MeV | nJ | kj |
222Rn | 0 | 3.82 d | 19.18 | 3.07 | 9.2 × 106 | 147 | / |
218Po | 1 | 3.05 min | 13.69 | 2.19 | 3620 | 0.579 | 0.106 |
214Pb | 2 | 26.8 min | 7.69 | 1.23 | 17,800 | 2.86 | 0.515 |
214Bi | 3 | 19.9 min | 7.69 | 1.23 | 13,100 | 2.1 | 0.379 |
214Po | 4 | 164 μs | 7.69 | 1.23 | 2 × 10−3 | 2.9 × 10−5 | 6 × 10−8 |
34.52 × 103 | |||||||
220Rn | 0 | 55.6 s | 20.88 | 3.34 | 1660 | 0.265 | / |
216Po | 1 | 0.15 s | 14.59 | 2.33 | 3.32 | 5.3 × 10−4 | 7 × 10−6 |
212Pb | 2 | 10.6 h | 7.81 | 1.25 | 4.3 × 105 | 6.91 | 0.913 |
212Bi | 3 | 60.5 min | 7.81 | 1.25 | 4.1 × 104 | 6.56 | 0.087 |
212Po | 4 | 299 ns | 8.78 | 1.41 | 3.9 × 10−6 | 6.9 × 10−10 | 8 × 10−12 |
47.1 × 104 |
Unattached | Attached | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N mm−3 | Eα μJ m−3 | RnP | TnP | RnP | TnP | |||||
EαRnP | EαTnP | AMTD | GSD | AMTD | GSD | AMTD | GSD | AMTD | GSD | |
2.3 | 1.4 | 1.52 | 2 | 1.36 | 2 | 1.42 | 153 | 2.44 | 165 | 1.78 |
5.2 | 3.45 | 13.5 | 3 | 1.77 | 4 | 1.73 | 181 | 2.04 | 162 | 2.22 |
30 | 5.95 | 26.6 | 2 | 1.49 | 2 | 1.48 | 174 | 2.30 | 183 | 2.06 |
180 | 1.31 | 7.32 | 4 | 1.95 | 2 | 1.47 | 136 | 2.35 | 120 | 2.04 |
(a) Radon | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
QRn | N | λv | β/10−3 | λa | r | Reference | ||||
q m−3 s−1 | mm−3 | h−1 | cm3 h−1 | h−1 | h−1 | h−1 | m h−1 | m h−1 | ||
0.3−1.0 | 20−180 | 1−200 | 0.7 | Jacobi [119] | ||||||
0.5−1.25 | 1−200 | Bruno [122] | ||||||||
<0.3 | 2.2−4.7 | 10 | 0.1 | 2 | 0.2 | Porstendörfer [56] | ||||
1−2 | 30 | 0.3 | Porstendörfer [56] | |||||||
86 | 100 | 0.1 | Zarcone et al. [123] | |||||||
0.55 0.2−1.5 | 50 5−500 | 20 10−40 | 0.2 0.1−0.4 | Knutson [120] | ||||||
138 | 7−389 | <0.5 | 5.2 | 54 | 0.21 | 0.83 | Reineking and Porstendörfer [54] | |||
218Po 0.72−1.4 | Gadgil et al. [124] | |||||||||
15 | 50−200 | 8 | 0.08 | Tu et al. [95] | ||||||
4.5−9.3 | 4.5−9.3 | Morawska and Jamriska [97] | ||||||||
100 | 0.57 2−81 | 3 | 300 | 46.8 30−67 | 0.47 0.33−0.67 | 0.80 | Islam et al. [125] | |||
7−14 | 2.9 1.3−4.6 | 0.3 | 91 56−184 | 170 94−354 | 0.225 0.05−0.66 | 0.63 | El-Hussein [118] | |||
260 | <0.3 | 3600 | 0.47 0.28 | El-Hussein [118] | ||||||
0.2−0.25 | 1.5−930 | 20 | 0.2 | 0.83 | Huet [79] | |||||
0.59−0.6 | 50−52 105−112 0.5−0.8 | 102−103 112−120 0.6−2.1 | 4.9−5.0 0.9−1.0 3.7−4.0 | Nikolopoulos and Vogiannis [126] | ||||||
0.59−0.6 | 200−203 90−96 0.8−0.9 | 169−171 98−105 0.5−0.6 | 0.9−1.1 0.25−0.26 1.8−2.1 | Nikolopoulos and Vogiannis [126] | ||||||
0.55 0.1−2 | 50 10−100 | 20 | 0.2 | Nikezić and Stevanović [109] | ||||||
0.075 | Mishra et al. [127] | |||||||||
0.1−1.0 | 3−110 | 0.015−0.35 | Stevanovic et al. [58] | |||||||
1−10 | 60−170 41−120 43−122 | 39−47 30−36 31−37 | (20−40) × 10−4 (7−1.5) × 10−4 (9−1.5) × 10−4 | Stevanovic et al. [128] | ||||||
0.1−1.0 | 10−100 | 0.012−0.46 | Stevanovic et al. [129] | |||||||
0.6−50 | 212Pb: 0.28 | 0.11 | Meisenberg and Tschiersch [61] | |||||||
5−11 | 2.6 1.3−4.3 | 0.4 | 67 23−103 | 94 36−172 | 0.12 0.05−0.43 | Mohery et al. [103] | ||||
5−11 | 29 8−43 | 0.5 | 69 24−108 | 110 28−202 | 0.09 0.05−0.42 | 0.54 0.24−1 | Mohery et al. [103] | |||
0.55 | 50 | 20 | 0.2 | Yu and Nikezic [130] | ||||||
0.045 | Li et al. [131] | |||||||||
: 0.126 | Rout et al. [57] | |||||||||
20 | 1 | : 0.169 | Mishra et al. [132] | |||||||
(b) Thoron | ||||||||||
N | λv | β/10−3 | Reference | |||||||
mm−3 | h−1 | cm3 h−1 | h−1 | m h−1 | m h−1 | |||||
212Pb: 0.36−1.1 | Gadgil et al. [124] | |||||||||
0.132 ± 0.004 | Mishra et al. [127] | |||||||||
30 | 0.5−1.0 | 0.075 | Mishra et al. [127] | |||||||
0.083 | 0.028 | Mishra et al. [59] | ||||||||
0.6−50 | 212Pb: 0.28 | 0.11 | Meisenberg and Tschiersch [61] | |||||||
: 0.059 | Rout et al. [57] | |||||||||
20 | 1 | : 0.079 | Mishra et al. [132] |
Radon Exhalation Rate | |||||
---|---|---|---|---|---|
mBq kg−1 h−1 | mBq m−2 h−1 | ||||
Material | No. of Samples | Range | GM or AM | Range | GM or AM |
Sedimentary rock | 14 | 1.8−29 | 6.2×/:2.28 | 13−215 | 46.2×/:2.29 |
Igneous rock | 9 | 13−156 | 31.5×/:2.24 | 94−1127 | 388×/:2.13 |
River sand | 5 | 16−90 | 36.6×/:2.84 | 118−49 | 265×/:1.18 |
Bricks | 10 | 4.2−76 | 18.6×/:2.14 | 31−551 | 135×/:2.14 |
Cement | 11 | 24−41 | 31.7 ± 4.9 * | 170−297 | 229 ± 36 * |
Building Material | No | ARn | ARnP | ATn | ATnP |
---|---|---|---|---|---|
Mud | 17 | 111 (45−180) | 37 (13−76) | 76 (14−151) | 2.69 (0.99−2.30) |
Stone, cement plaster | 17 | 97 (42−208) | 38 (21−72) | 76 (9−196) | 2.66 (1.25−5.88) |
Cement | 18 | 94 (41−200) | 31 (7.9−65) | 87 (10−253) | 2.26 (1.25−5.43) |
Winter | Summer | ||||||
---|---|---|---|---|---|---|---|
Parameter | Min | Max | GM | Min | Max | GM | W/S |
ARn/Bq m−3 | 36 ± 4 | 182 ± 9 | 66 | 5 ± 1 | 174 ± 9 | 34 | 1.94 |
ARnP/Bq m−3 | 6.7 ± 1 | 65.1 ± 2.5 | 22.6 | 2.1 ± 0.4 | 37.6 ± 1.9 | 13.0 | 1.74 |
/Bq m−3 | 5.7 ± 1.1 | 47.5 | 16.7 | 1.4 ± 0.5 | 34 ± 2.7 | 11.1 | 1.50 |
/Bq m−3 | 0.2 | 27.8 | 2.6 | 0.26 | 13.0 | 1.3 | 2.0 |
0.01 | 0.84 | 0.11 | 0.01 | 0.87 | 0.11 | 1.0 | |
FRn | 0.10 | 0.91 | 0.34 | 0.10 | 0.83 | 0.37 | 0.92 |
ATn/Bq m−3 | 2 ± 1 | 210 ± 10 | 33 | 4 ± 1 | 195 ± 10 | 27 | 1.22 |
ATnP/Bq m−3 | 0.3 ± 0.1 | 4.8 ± 0.2 | 1.6 | 0.3 ± 0.1 | 11.2 ± 0.3 | 1.2 | 1.33 |
/Bq m−3 | 0.3 ± 0.1 | 4.7 ± 0.3 | 1.4 | 0.2 ± 0.1 | 9.6 ± 0.5 | 0.9 | 1.56 |
/Bq m−3 | <0.05 | 1.8 | 0.1 | 0.1 | 1.8 | 0.3 | 0.33 |
0.01 | 0.46 | 0.07 | 0.01 | 0.70 | 0.21 | 0.33 | |
FTn | 0.01 | 0.21 | 0.05 | 0.01 | 0.31 | 0.05 | 1.0 |
(a) Radon and its products | ||||||
λv | ARn | A218Po | A214Pb | A214Bi | A214Po | FRn |
0.20 | 69.4 ± 4.9 | 54.8 ± 3.0 | 42.2 ± 1.9 | 34.6 ± 1.7 | 34.3 ± 2.0 | 0.58 ± 0.03 |
0.25 | 67.7 ± 4.7 | 53.4 ± 2.1 | 40.1 ± 2.2 | 32.1 ± 1.7 | 31.7 ± 1.6 | 0.56 ± 0.03 |
0.30 | 58.4 ± 4.0 | 46.1 ± 3.2 | 33.7 ± 2.4 | 26.3 ± 1.3 | 26.0 ± 1.8 | 0.55 ± 0.03 |
0.35 | 49.4 ± 3.4 | 39.0 ± 1.9 | 28.1 ± 1.4 | 21.9 ± 1.1 | 21.7 ± 0.7 | 0.54 ± 0.03 |
0.50 | 38.4 ± 2.7 | 29.9 ± 1.5 | 19.8 ± 1.0 | 14.4 ± 0.9 | 14.7 ± 0.7 | 0.48 ± 0.02 |
0.2/0.5 * | 1.81 | 1.83 | 2.13 | 2.40 | 2.33 | 1.21 |
(b) Thoron and its products | ||||||
λv | ATn | A216Po | A212Pb | A212Bi | A212Po | FTn |
0.20 | 2.22 ± 0.11 | 2.19 ± 0.12 | 0.260 ± 0.010 | 0.158 ± 0.008 | 0.156 ± 0.006 | 0.110 ± 0.008 |
0.25 | 2.51 ± 0.14 | 2.48 ± 0.11 | 0.273 ± 0.010 | 0.155 ± 0.008 | 0.154 ± 0.007 | 0.100 ± 0.005 |
0.30 | 2.75 ± 0.13 | 2.72 ± 0.10 | 0.270 ± 0.010 | 0.147 ± 0.008 | 0.145 ± 0.007 | 0.090 ± 0.004 |
0.35 | 2.30 ± 0.11 | 2.27 ± 0.13 | 0.210 ± 0.010 | 0.108 ± 0.006 | 0.107 ± 0.008 | 0.080 ± 0.004 |
0.50 | 1.48 ± 0.10 | 1.46 ± 0.07 | 0.100 ± 0.005 | 0.048 ± 0.002 | 0.047 ± 0.003 | 0.060 ± 0.004 |
0.2/0.5 * | 1.50 | 1.50 | 2.60 | 3.29 | 3.32 | 1.83 |
Operation Time | Airflow m3 h−1 | Addition of Fresh Air % | ARn Bq m−3 | ARnP Bq m−3 | N mm−3 | |
---|---|---|---|---|---|---|
1 | all time | 25 ± 16 | 1.2 ± 0.9 | 4.1 ± 3.6 | ||
2 | 8 a.m.–8 p.m. | 31 ± 19 | 5.0 ± 3.1 | 5.2 ± 4.1 | ||
3 | 6 a.m.–8 p.m. | 30 ± 18 | 4.4 ± 3.1 | 5.2 ± 4.6 | ||
4 | 9 p.m.–5 a.m. | 33 ± 19 | 6.1 ± 2.8 | 5.2 ± 3.1 | ||
5 | all time | 5400 | 85 | 17 ± 8 | 2.5 ± 1.1 | 2.7 ± 2.6 |
6 | all time | 7200 | 85 | 20 ± 10 | 0.8 ± 0.7 | 2.5 ± 1.7 |
7 | all time | 9000 | 85 | 12 ± 6 | 0.9 ± 0.6 | 1.8 ± 1.1 |
NM/mm–3 | NM/Nb | Qp/1011 s–1 | ||||
---|---|---|---|---|---|---|
Activity | Median | SD | Median | SD | Median | SD |
Cooking | 126 | 177 | 10.3 | 19.3 | 5.67 | 8.61 |
Frying | 154 | 21.3 | 10.0 | 6.1 | 4.75 | 2.34 |
Grilling | 161 | 69.9 | 8.69 | 5.27 | 7.34 | 5.06 |
Microwave | 16.3 | 28.6 | 1.12 | 1.55 | 0.55 | 1.94 |
Stove | 179 | 287 | 12.5 | 10.5 | 7.33 | 51.4 |
Toasting | 114 | 160 | 6.34 | 7.44 | 6.75 | 16.7 |
Smoking | 26.6 | 13.6 | 1.54 | 0.96 | 1.91 | 1.92 |
Vacuuming | 41.3 | 17.6 | 1.51 | 1.17 | 0.97 | 1.57 |
Sweep floor | 34.9 | 5.86 | 1.05 | 0.01 | 0.12 | 0.02 |
Washing | 30.9 | 18.5 | 1.30 | 0.83 | 0.96 | 2.60 |
Dusting | 14.1 | 1.00 | ||||
Fan heater | 87.1 | 27.2 | 4.07 | |||
Hair dryer | 9.5 | 1.06 | 0.11 | |||
Shower | 10.7 | 1.37 | 0.78 | |||
Washing machine | 11.1 | 1.18 | 0.15 |
Ranges of Particle Diameter/nm | |||||
---|---|---|---|---|---|
Particle Source | 10–100 (%) | 100–200 | 200–450 | 450–950 | Total |
No source | 2.56 (75) | 0.68 | 0.183 | 0.018 | 3.38 |
Outdoors | 9.52 (31) | 18.35 | 3.03 | 0.016 | 30.92 |
Tea | 5.76 (99) | 0.058 | 5.82 | ||
Tea + toast | 9.53 (100) | 0.001 | 9.53 | ||
Breakfast | 19.97 (99) | 0.117 | 0.013 | 20.10 | |
Fried eggs | 22.51 (90) | 2.20 | 0.317 | 0.053 | 25.08 |
Dinner | 30.46 (92) | 2.31 | 0.321 | 0.041 | 33.13 |
Tortillas | 39.70 (81) | 8.39 | 0.823 | 0.072 | 48.99 |
Broiled fish | 47.23 (95) | 2.63 | 0.098 | 0.017 | 49.98 |
Gas oven | 29.74 (95) | 1.40 | 0.068 | 0.021 | 31.23 |
Incense | 6.68 (69) | 2.31 | 0.722 | 9.71 | |
Citronella candle | 3.14 (45) | 1.61 | 1.63 | 0.576 | 6.96 |
Traditional Cigarette | Electronic Cigarette | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Smoking Step | N | dGM | FRn | N | dGM | FRn | ||||
a: before | 3.36 | 14.1 | 2.14 | 0.31 | 3.36 | 67 | 7.47 | 3.18 | 0.23 | |
b: at the end | 506 | 18.6 | 0.48 | 0.38 | 62.9 | 87 | 12.6 | 2.53 | 0.30 | |
b/a | 150 | 1.32 | 0.22 | 1.22 | 18 | 1.69 | 0.80 | 1.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaupotič, J. Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives. Sustainability 2024, 16, 2424. https://doi.org/10.3390/su16062424
Vaupotič J. Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives. Sustainability. 2024; 16(6):2424. https://doi.org/10.3390/su16062424
Chicago/Turabian StyleVaupotič, Janja. 2024. "Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives" Sustainability 16, no. 6: 2424. https://doi.org/10.3390/su16062424
APA StyleVaupotič, J. (2024). Radon and Its Short-Lived Products in Indoor Air: Present Status and Perspectives. Sustainability, 16(6), 2424. https://doi.org/10.3390/su16062424