Modeling the Interactive Patterns of International Migration Network through a Reverse Gravity Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Complex Network Theory
2.2.1. Scale-Free and Small-World Properties
2.2.2. Betweenness Centrality
2.2.3. PageRank
2.3. Reverse Gravity Model Based on Genetic Algorithm
2.3.1. The Gravity Model
2.3.2. The Reverse Gravity Model
3. Results
3.1. Structural Properties of the International Migration Networks
3.1.1. Scale-Free
3.1.2. Small-World
3.2. Interactive Patterns of the International Migration Networks
3.2.1. The General Results of Our Method
3.2.2. Node Attraction Patterns
3.2.3. Node Position Patterns
3.3. Comparative Analysis of Our Method
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raymer, J.; Willekens, F.; Rogers, A. Spatial demography: A unifying core and agenda for further research. Popul. Space Place 2019, 25, e2179. [Google Scholar] [CrossRef]
- Lewis, G.J. Human Migration: A Geographical Perspective; Routledge: Oxfordshire, UK, 2021. [Google Scholar]
- Likić-Brborić, B. Global migration governance, civil society and the paradoxes of sustainability. Globalizations 2018, 15, 762–778. [Google Scholar] [CrossRef]
- Gavonel, M.F.; Adger, W.N.; de Campos, R.S.; Boyd, E.; Carr, E.R.; Fabos, A.; Fransen, S.; Jolivet, D.; Zickgraf, C.; Codjoe, S.N. The migration-sustainability paradox: Transformations in mobile worlds. Curr. Opin. Environ. Sustain. 2021, 49, 98–109. [Google Scholar] [CrossRef]
- Tranos, E.; Gheasi, M.; Nijkamp, P. International migration: A global complex network. Environ. Plan. B Plan. Des. 2015, 42, 4–22. [Google Scholar] [CrossRef]
- Leal, D.F.; Harder, N.L. Migration networks and the intensity of global migration flows, 1990–2015. J. Ethn. Migr. Stud. 2023, 49, 445–464. [Google Scholar] [CrossRef]
- Davis, K.F.; D’Odorico, P.; Laio, F.; Ridolfi, L. Global Spatio-Temporal Patterns in Human Migration: A Complex Network Perspective. PLoS ONE 2013, 8, e53723. [Google Scholar] [CrossRef]
- Fagiolo, G.; Mastrorillo, M. International migration network: Topology and modeling. Phys. Rev. E 2013, 88, 012812. [Google Scholar] [CrossRef]
- Fagiolo, G.; Mastrorillo, M. Does Human Migration Affect International Trade? A Complex-Network Perspective. PLoS ONE 2014, 9, e97331. [Google Scholar] [CrossRef]
- Abel, G.J.; DeWaard, J.; Ha, J.T.; Almquist, Z.W. The form and evolution of international migration networks, 1990–2015. Popul. Space Place 2021, 27, e2432. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Wang, Y.; Ma, X. Discovering spatial interaction communities from mobile phone data. Trans. GIS 2013, 17, 463–481. [Google Scholar] [CrossRef]
- Li, Z.; Tang, J.; Zhao, C.; Gao, F. Improved centrality measure based on the adapted PageRank algorithm for urban transportation multiplex networks. Chaos Solitons Fractals 2023, 167, 112998. [Google Scholar] [CrossRef]
- Haynes, K.E.; Fotheringham, A.S. Gravity and Spatial Interaction Models; Regional Research Institute, West Virginia University: Morgantown, WV, USA, 2020. [Google Scholar]
- Oshan, T.M. The spatial structure debate in spatial interaction modeling: 50 years on. Prog. Hum. Geogr. 2021, 45, 925–950. [Google Scholar] [CrossRef]
- Ramos, R. Modelling migration. In The Econometrics of Multi-Dimensional Panels: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 455–478. [Google Scholar]
- Ramos, R. Gravity Models: A Tool for Migration Analysis; IZA World of Labor; Institute for the Study of Labor (IZA): Bonn, Germany, 2016. [Google Scholar]
- Simini, F.; González, M.C.; Maritan, A.; Barabási, A.-L. A universal model for mobility and migration patterns. Nature 2012, 484, 96–100. [Google Scholar] [CrossRef]
- Liu, E.-J.; Yan, X.-Y. A universal opportunity model for human mobility. Sci. Rep. 2020, 10, 4657. [Google Scholar] [CrossRef]
- Zipf, G.K. The P1 P2/D Hypothesis: On the Intercity Movement of Persons. Am. Sociol. Rev. 1946, 11, 677–686. [Google Scholar] [CrossRef]
- Dueñas, M.; Fagiolo, G. Modeling the International-Trade Network: A gravity approach. J. Econ. Interact. Coord. 2013, 8, 155–178. [Google Scholar] [CrossRef]
- Krings, G.; Calabrese, F.; Ratti, C.; Blondel, V.D. Urban gravity: A model for inter-city telecommunication flows. J. Stat. Mech. Theory Exp. 2009, 2009, L07003. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhang, Z.K.; Chen, L.J.; Liu, C.; Yang, C.C.; Wang, X.Q. Gravity Effects on Information Filtering and Network Evolving. PLoS ONE 2014, 9, e91070. [Google Scholar] [CrossRef]
- Anderson, J.E. The Gravity Model. Annu. Rev. Econ. 2011, 3, 133–160. [Google Scholar] [CrossRef]
- Shepherd, B. The Gravity Model of International Trade: A User Guide; United Nations ESCAP: Bangkok, Thailand, 2013. [Google Scholar]
- Alis, C.; Legara, E.F.; Monterola, C. Generalized radiation model for human migration. Sci. Rep. 2021, 11, 22707. [Google Scholar] [CrossRef]
- Niu, F. A push-pull model for inter-city migration simulation. Cities 2022, 131, 104005. [Google Scholar] [CrossRef]
- Yan, X.Y.; Zhao, C.; Fan, Y.; Di, Z.; Wang, W.X. Universal predictability of mobility patterns in cities. J. R. Soc. Interface 2014, 11, 20140834. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.; Suriñach, J. A Gravity Model of Migration Between the ENC and the EU. Tijdschr. Voor Econ. Soc. Geogr. 2017, 108, 21–35. [Google Scholar] [CrossRef]
- Shen, G. Reverse-fitting the gravity model to inter-city airline passenger flows by an algebraic simplification. J. Transp. Geogr. 2004, 12, 219–234. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, F.H.; Liu, Y.; Wang, J. Reconstructing Gravitational Attractions of Major Cities in China from Air Passenger Flow Data, 2001–2008: A Particle Swarm Optimization Approach. Prof. Geogr. 2013, 65, 265–282. [Google Scholar] [CrossRef]
- Abel, G.J.; Cohen, J.E. Bilateral international migration flow estimates for 200 countries. Sci. Data 2019, 6, 82. [Google Scholar] [CrossRef]
- Benveniste, H.; Oppenheimer, M.; Fleurbaey, M. Climate change increases resource-constrained international immobility. Nat. Clim. Chang. 2022, 12, 634–641. [Google Scholar] [CrossRef]
- Petropoulos, F.; Apiletti, D.; Assimakopoulos, V.; Babai, M.Z.; Barrow, D.K.; Taieb, S.B.; Bergmeir, C.; Bessa, R.J.; Bijak, J.; Boylan, J.E. Forecasting: Theory and practice. Int. J. Forecast. 2022, 38, 705–871. [Google Scholar] [CrossRef]
- Mayda, A.M. International migration: A panel data analysis of the determinants of bilateral flows. J. Popul. Econ. 2010, 23, 1249–1274. [Google Scholar] [CrossRef]
- Garas, A.; Lapatinas, A.; Poulios, K. The Relation between Migration and Fdi in the Oecd from a Complex Network Perspective. Adv. Complex Syst. 2016, 19, 1650009. [Google Scholar] [CrossRef]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, B.; Chen, G.Q. Carbon network embodied in international trade: Global structural evolution and its policy implications. Energy Policy 2020, 139, 111316. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. Siam Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]
- Humphries, M.D.; Gurney, K.; Prescott, T.J. The brainstem reticular formation is a small-world, not scale-free, network. Proc. R. Soc. B Biol. Sci. 2006, 273, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Fagiolo, G. Clustering in complex directed networks. Phys. Rev. E 2007, 76, 026107. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in Social Networks Conceptual Clarification. Soc. Netw. 1979, 1, 215–239. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Yu, X.S.; Li, X.; Qin, K. Identification and analysis of urban influential regions using spatial interaction networks. Trans. GIS 2021, 25, 2821–2839. [Google Scholar] [CrossRef]
- Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Brin, S.; Page, L. The anatomy of a large-scale hypertextual Web search engine. Comput. Netw. Isdn Syst. 1998, 30, 107–117. [Google Scholar] [CrossRef]
- Masuda, N.; Porter, M.A.; Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. Rev. Sect. Phys. Lett. 2017, 716, 1–58. [Google Scholar] [CrossRef]
- Barbosa, H.; Barthelemy, M.; Ghoshal, G.; James, C.R.; Lenormand, M.; Louail, T.; Menezes, R.; Ramasco, J.J.; Simini, F.; Tomasini, M. Human mobility: Models and applications. Phys. Rep. Rev. Sect. Phys. Lett. 2018, 734, 1–74. [Google Scholar] [CrossRef]
- Morley, C.; Rosselló, J.; Santana-Gallego, M. Gravity models for tourism demand: Theory and use. Ann. Tour. Res. 2014, 48, 1–10. [Google Scholar] [CrossRef]
- Windzio, M. The network of global migration 1990-2013 Using ERGMs to test theories of migration between countries. Soc. Netw. 2018, 53, 20–29. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Luo, H.; Shi, Y.Y. Complex network analysis for international talent mobility based on bibliometrics. Int. J. Innov. Sci. 2019, 11, 419–435. [Google Scholar] [CrossRef]
- Okelly, M.E.; Song, W.; Shen, G.Q. New Estimates of Gravitational Attraction by Linear-Programming. Geogr. Anal. 1995, 27, 271–285. [Google Scholar] [CrossRef]
- Shen, G.Q. Estimating nodal attractions with exogenous spatial interaction and impedance data using the gravity model. Pap. Reg. Sci. 1999, 78, 213–220. [Google Scholar] [CrossRef]
- Song, W. Nodal Attractions in China’s Intercity Air Passenger Transportation. In Proceedings of the 29th Annual Applied Geography Conference, Tampa, FL, USA, 11–14 October 2006. [Google Scholar]
- Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274, 292–305. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Tinbergen, J. Shaping the World Economy; Suggestions for an International Economic Policy; Twentieth Century Fund: New York, NY, USA, 1962. [Google Scholar]
- Manna, S.S.; Sen, P. Modulated scale-free network in Euclidean space. Phys. Rev. E 2002, 66, 066114. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Miwa, H.; Konno, N. Geographical threshold graphs with small-world and scale-free properties. Phys. Rev. E 2005, 71, 036108. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, C.; Gao, S.; Xiao, Y.; Tian, Y. Understanding intra-urban trip patterns from taxi trajectory data. J. Geogr. Syst. 2012, 14, 463–483. [Google Scholar] [CrossRef]
- Noulas, A.; Scellato, S.; Lambiotte, R.; Pontil, M.; Mascolo, C. A tale of many cities: Universal patterns in human urban mobility. PLoS ONE 2012, 7, e37027. [Google Scholar] [CrossRef]
- Liu, Y.; Sui, Z.; Kang, C.; Gao, Y. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE 2014, 9, e86026. [Google Scholar] [CrossRef]
- Stillwell, J.; Bell, M.; Ueffing, P.; Daras, K.; Charles-Edwards, E.; Kupiszewski, M.; Kupiszewska, D. Internal migration around the world: Comparing distance travelled and its frictional effect. Environ. Plan. A Econ. Space 2016, 48, 1657–1675. [Google Scholar] [CrossRef]
- Bernard, A.; Rowe, F.; Bell, M.; Ueffing, P.; Charles-Edwards, E. Comparing internal migration across the countries of Latin America: A multidimensional approach. PLoS ONE 2017, 12, e0173895. [Google Scholar] [CrossRef] [PubMed]
- Durbin, J. Estimation of Parameters in Time-Series Regression-Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 1960, 22, 139–153. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, L.; Tong, Q. Quantifying the Distance Effect in Spatial Interactions. Acta Sci. Nat. Univ. Pekin. 2014, 50, 526–534. [Google Scholar]
Period | Number of Nodes | Number of Edges | Sum of Weights |
---|---|---|---|
1990–1995 | 194 | 24,937 | 66,160,782 |
1995–2000 | 194 | 25,372 | 66,025,147 |
2000–2005 | 194 | 25,729 | 71,575,382 |
2005–2010 | 194 | 26,088 | 83,411,284 |
2010–2015 | 194 | 26,371 | 90,879,826 |
2015–2020 | 194 | 26,598 | 93,155,493 |
Period | Gravity Model | Reverse Gravity Model | |||
---|---|---|---|---|---|
GDP | Population | GDP & Population Multivariable | Dummy Variables | Our Method | |
1990–1995 | 0.249 | 0.310 | 0.327 | 0.444 | 0.668 |
1995–2000 | 0.249 | 0.316 | 0.329 | 0.454 | 0.683 |
2000–2005 | 0.271 | 0.319 | 0.335 | 0.461 | 0.682 |
2005–2010 | 0.285 | 0.314 | 0.335 | 0.463 | 0.684 |
2010–2015 | 0.305 | 0.309 | 0.334 | 0.464 | 0.688 |
2015–2020 | 0.248 | 0.308 | 0.322 | 0.476 | 0.696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Qin, K.; Jia, T.; Zhou, Y.; Gao, X. Modeling the Interactive Patterns of International Migration Network through a Reverse Gravity Approach. Sustainability 2024, 16, 2502. https://doi.org/10.3390/su16062502
Yu X, Qin K, Jia T, Zhou Y, Gao X. Modeling the Interactive Patterns of International Migration Network through a Reverse Gravity Approach. Sustainability. 2024; 16(6):2502. https://doi.org/10.3390/su16062502
Chicago/Turabian StyleYu, Xuesong, Kun Qin, Tao Jia, Yang Zhou, and Xieqing Gao. 2024. "Modeling the Interactive Patterns of International Migration Network through a Reverse Gravity Approach" Sustainability 16, no. 6: 2502. https://doi.org/10.3390/su16062502
APA StyleYu, X., Qin, K., Jia, T., Zhou, Y., & Gao, X. (2024). Modeling the Interactive Patterns of International Migration Network through a Reverse Gravity Approach. Sustainability, 16(6), 2502. https://doi.org/10.3390/su16062502