The Role of the Periodic Table of the Elements of Green and Sustainable Chemistry in a High School Educational Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pedagogical Approach and Participants
2.2. Instruments
2.2.1. Questionnaires
2.2.2. Case Study (CS) Method
2.3. Procedure
2.4. Data Analysis
2.5. Research Questions
- (a)
- What are the impacts on the learning experience of final-year high school students when the PT-GSC is employed as a didactic and interdisciplinary resource within the framework of a case study, particularly in the context of GSCE?
- (b)
- What challenges and opportunities are associated with this alternative periodic table?
3. Results
3.1. General Perceptions Regarding Learning Strategies
3.2. Prior Knowledge of Research Terms or Expressions
3.3. Knowledge in Pre- and Post-Tests
3.4. Written Productions
3.5. Final Perceptions Regarding Research Methods
4. Discussion
4.1. PT-GSC in an Educational Context
4.1.1. Impacts on the Learning Experience of Students: Moving from Conceptual to Critical Scientific Literacy Level
4.1.2. Challenges and Opportunities
4.2. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Items | Statements |
---|---|
1 | I seek to put into practice what I have learned. |
2 | I enjoy reading articles or news published in newspapers, TV, the internet, and other media. |
3 | I enjoy engaging in activities or working in groups. |
4 | I like to engage in the discussion of social and environmental issues that affect my region. |
5 | I believe that the activities proposed in my environmental studies course help me in solving environmental problems. |
6 | I don’t see much relevance of Chemistry topics in my daily life. |
7 | I find reading scientific articles challenging. |
8 | I enjoy writing argumentative texts, such as the essay in the National High School Exam. |
9 | I enjoy studying Chemistry. |
Appendix B
Item | Statement | Answer |
---|---|---|
Q1 | An understanding of toxicology and environmental chemistry assists in designing safer chemicals | True |
Q2 | A reaction that has 100% yield will result in a 100% atom economical reaction | False |
Q3 | Reactions at elevated temperatures should be prioritized over reactions at room temperature | False |
Q4 | Fossil fuels are a renewable feedstock | False |
Q5 | Reduction of exposure to hazards is the best way to minimize accidents | True |
Q6 | Designing reactions with fewer byproducts is a good method of waste prevention | True |
Q7 | Ethanol derived from sugar cane is an example of a biomass chemical | True |
Q8 | The environmental factor equals the mass of waste produced in a chemical process | False |
Q9 | When designing a synthesis, the use of personal protective equipment is sufficient for controlling exposure to hazards | False |
Q10 | Real-time monitoring of the process helps to avoid incidents caused by side reactions | True |
Q11 | A disadvantage of enzymes is that they suffer from poor selectivity, thus producing more derivatives | False |
Q12 | A catalyst lowers the activation energy, which allows for reduced reactions times | True |
Appendix C
Items | Statements |
---|---|
1 | Attending classes improved my understanding of Green Chemistry. |
2 | Attending classes made me think about using water more consciously in my daily life. |
3 | Attending classes enhanced my ability to argue. |
4 | Attending classes improved my ability to proactively address issues with the distribution of drinking water in my region. |
5 | I believe that group work helped me act personally and collectively with responsibility and citizenship. |
6 | I believe that group work helped me express and share information, ideas, and produce meanings that lead to mutual understanding. |
7 | I believe that the teacher’s role in organizing and evaluating the classes was important. |
8 | I believe that the time spent was appropriate in resolving the investigative cases. |
9 | I believe my team members were essential in solving the cases. |
10 | I believe that Green Chemistry classes helped me become more aware of social and environmental issues and encouraged responsible consumption locally and globally. |
11 | I believe that sustainable development is a mission that involves everyone. |
12 | I believe that participating in the project could help me in the National High School Exam. |
13 | I would like the PT-GSC to be discussed more in other subjects of my technical course. |
14 | I want more discussion in chemistry classes about Green Chemistry and human responsibility in sustainable development. |
15 | I would like to participate again in other projects on Green Chemistry in different subjects of my technical course. |
Appendix D
Tests | Pre-Test | Post-Test |
---|---|---|
Mean | 45.0083 | 75.0167 |
Variance | 849.5663 | 473.9961 |
Observations | 12 | 12 |
Pearson Correlation | 0.5865 | |
Hypothesized Mean Difference | 0.0000 | |
Df | 11 | |
P(T <= t) two-tail | 0.0012 |
References
- Zuin, V.G.; Eilks, I.; Elschami, M.; Kümmerer, K. Education in Green Chemistry and in Sustainable Chemistry: Perspectives towards Sustainability. Green Chem. 2021, 23, 1594–1608. [Google Scholar] [CrossRef]
- Paschalidou, K.; Salta, K.; Koulougliotis, D. Exploring the Connections between Systems Thinking and Green Chemistry in the Context of Chemistry Education: A Scoping Review. Sustain. Chem. Pharm. 2022, 29, 100788. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Linthorst, J.A. Research between Science, Society and Politics: The History and Scientific Development of Green Chemistry; Eburon Academic Publishers: Utrecht, The Netherlands, 2023. [Google Scholar]
- Gomes, C.J.C.; Zuin Zeidler, V.G. Green and Sustainable Chemistry Teacher Education: Experiences from a Brazilian University. Sustain. Chem. 2023, 4, 272–281. [Google Scholar] [CrossRef]
- Gaspar, C.S.; Bouzon, J.D.; Brandão, J.B.; Chrispino, A. Ensino de Química Verde No Brasil: Mapeamento de publicações a Partir Da Análise de Redes Sociais [Mapping of Publications on the Teaching of Green Chemistry in Brazil from Social Networks]. Educ. Química 2023, 34, 156–172. [Google Scholar] [CrossRef]
- Andrade, R.S.; Zuin, V.G. Formative Dimensions for Green and Sustainable Chemical Education: A Qualitative Evaluation Tool of the Formative Level of Experimental Processes. J. Chem. Educ. 2023, 100, 2281–2291. [Google Scholar] [CrossRef]
- Silva, G.A.L.; Almeida, Q.A.R.; Gomes, S.S.; Gomes, T.N.d.C.; Aversa, T.M. Inserção Da Química Verde No Ensino Visando Uma Sociedade Mais Sustentável [Insertion of Green Chemistry in Education of Chemistry Aiming at a More Sustainable Society]. Rev. Da Soc. Bras. De Ensino De Química 2023, 4, e042301. [Google Scholar] [CrossRef]
- MacKellar, J.J.; Constable, D.J.C.; Kirchhoff, M.M.; Hutchison, J.E.; Beckman, E. Toward a Green and Sustainable Chemistry Education Road Map. J. Chem. Educ. 2020, 97, 2104–2113. [Google Scholar] [CrossRef]
- González-García, P.J.; Marbà-Tallada, A.; Espinet, M. A Model of Curricular Content for the Educational Reconstruction of Green Chemistry: The Voice of Chilean Science Teachers and Science Education Researchers. Chem. Educ. Res. Pract. 2023, 24, 1190–1203. [Google Scholar] [CrossRef]
- Matus, K.J.M.; Clark, W.C.; Anastas, P.T.; Zimmerman, J.B. Barriers to the Implementation of Green Chemistry in the United States. Environ. Sci. Technol. 2012, 46, 10892–10899. [Google Scholar] [CrossRef]
- de Almeida, Q.A.; Silva, B.B.; Silva, G.A.; Gomes, S.S.; da Conceição Gomes, T.N. Química Verde Nos Cursos de Licenciatura Em Química Do Brasil: Mapeamento e Importância Na Prática Docente [Green Chemistry in Brazilian Lecturer Graduation: Mapping and its Importance at Teaching Practice]. Amaz. Rev. De Educ. Em Ciências E Matemáticas 2019, 15, 178–187. [Google Scholar] [CrossRef]
- de Souza Gomes, L.; de Andrade, J.R.; Leal, A.B.; Nunes, R.C. Panorama Da Inclusão Dos Conceitos de Química Verde Nas Licenciaturas Em Química Dos Institutos Federais [Overview of Green Chemistry Inclusion In Brazilian Chemistry Teacher Training Courses Offered By Institutos Federais]. Ambiente Educ. 2022, 27, 1–24. [Google Scholar] [CrossRef]
- Vaz, C.R.; Girotto Junior, G.; Pastre, J.C. A Adoção Da Química Verde No Ensino Superior Brasileiro [The Adoption of Green Chemistry in Brazilian Higher Education]. Quim. Nova 2024, 47, e-20230117. [Google Scholar] [CrossRef]
- Marques, C.A.; Sandri, M.C.M.; Marcelino, L.V.; Dias, E.D.S.; Machado, A.A.S.C. Green Chemistry Teaching: A Panorama from Brazilian Authors. Actio Docência Em Ciências 2023, 8, 1–27. [Google Scholar] [CrossRef]
- Cannon, A.S.; Anderson, K.R.; Enright, M.C.; Kleinsasser, D.G.; Klotz, A.R.; Neil, N.J.O.; Tucker, L.J. Green Chemistry Teacher Professional Development in New York State High Schools: A Model for Advancing Green Chemistry. J. Chem. Educ. 2023, 100, 2224–2232. [Google Scholar] [CrossRef]
- Da Silva Júnior, C.A.; de Jesus, D.P.; Girotto Júnior, G. Química Verde e a Tabela Periódica de Anastas e Zimmerman: Tradução e Alinhamentos Com o Desenvolvimento Sustentável [Green Chemistry and The Periodic Table by Anastas and Zimmerman: Translation and Alignment with a Sustainable Development]. Quim. Nova 2022, 45, 1010–1019. [Google Scholar] [CrossRef]
- Andrade, R.d.S.; Zuin, V.G. A Alfabetização Científica Em Química Verde e Sustentável [Scientific Literacy in Green and Sustainable Chemistry]. Educ. Química En. Punto De Vista 2023, 7, 1–15. [Google Scholar]
- Sandri, M.C.M.; Santin Filho, O. Os Modelos de Abordagem da Química Verde No Ensino de Química [The Green Chemistry Approach Models in Chemistry Teaching]. Educ. Química 2019, 30, 34. [Google Scholar] [CrossRef]
- Burmeister, M.; Rauch, F.; Eilks, I. Education for Sustainable Development (ESD) and Chemistry Education. Chem. Educ. Res. Pract. 2012, 13, 59–68. [Google Scholar] [CrossRef]
- Machado, A. Introdução Às Métricas da Química Verde—Uma Visão Sistêmica [Introduction to Metrics of Green Chemistry—A Systematic View], 1st ed.; Editora da UFSC: Florianópolis, Brazil, 2014. [Google Scholar]
- Anastas, P.T.; Zimmerman, J.B. The Periodic Table of the Elements of Green and Sustainable Chemistry. Green Chem. 2019, 21, 6545–6566. [Google Scholar] [CrossRef]
- Anastas, P.T.; Zimmerman, J.B. The Periodic Table of the Elements of Green and Sustainable Chemistry, 1st ed.; Press Zero: Madison, WI, USA, 2019. [Google Scholar]
- Sjöström, J.; Eilks, I.; Talanquer, V. Didaktik Models in Chemistry Education. J. Chem. Educ. 2020, 97, 910–915. [Google Scholar] [CrossRef]
- Marcelino, L.V.; Dias, E.D.S.; Rüntzel, P.L.; Milli, J.C.L.; Santos, J.S.; Souza, L.C.A.B.; Marques, C.A. Didactic Features Specific to Green Chemistry Teaching in the Journal of Chemical Education. J. Chem. Educ. 2023, 100, 2529–2538. [Google Scholar] [CrossRef]
- Da Silva Júnior, C.A.; de Jesus, D.P.; Girotto Junior, G. A Tabela Periódica da Química Verde e Sustentável Na Perspectiva Da Formação de Professores de Química: O Que, Como e Por Que Ensinar? [The Periodic Table of the Elements of Green and Sustainable Chemistry from the Perspective of Chemistry Teacher Education: What, How, and Why to Teach?]. In Química Verde: Propostas, Experiências de Ensino e Reflexões para a Formação de Professores [Green Chemistry: Proposals, Teaching Experiences, and Reflections for Teacher Education]; Sandri, M.C.M., Marques, C.A., Marcelino, L.V., Magalhães, C.G., Eds.; Texto e Contexto: Ponta Grossa, Brazil, 2023; pp. 97–127. [Google Scholar]
- Herreid, C.F. What Makes a Good Case? J. Coll. Sci. Teach. 1998, 27, 163–165. [Google Scholar]
- Bernardi, F.M.; Pazinato, M.S. The Case Study Method in Chemistry Teaching: A Systematic Review. J. Chem. Educ. 2022, 99, 1211–1219. [Google Scholar] [CrossRef]
- Queiroz, S.L.; Sotério, C. Estudos de Caso: Abordagem Para o Ensino de Química [Case Studies: Approach to Teaching Chemistry]; Diagrama Editorial: São Carlos, Brazil, 2023. [Google Scholar]
- Delizoicov, D.; Angotti, J.A.; Pernambuco, M.M. Ensino de Ciências: Fundamentos e Métodos [Science Education: Fundamentals and Methods], 5th ed.; Cortez: São Paulo, Brazil, 2021. [Google Scholar]
- Grieger, K.; Schiro, A.; Leontyev, A. Development of the Assessment of Student Knowledge of Green Chemistry Principles (ASK-GCP). Chem. Educ. Res. Pract. 2022, 23, 531–544. [Google Scholar] [CrossRef]
- Scheiterle, L.; Ulmer, A.; Birner, R.; Pyka, A. From Commodity-Based Value Chains to Biomass-Based Value Webs: The Case of Sugarcane in Brazil’s Bioeconomy. J. Clean. Prod. 2018, 172, 3851–3863. [Google Scholar] [CrossRef]
- dos Passos, K.; Campo, L.F.; Daniel, D.P.; Lima, F.S.C.d.; Passos, C.G. O Tema Carboidratos Através Da Metodologia de Estudos de Caso: Desenvolvimento de Conteúdos Conceituais, Procedimentais e Atitudinais [The Carbohydrate Theme Through The Methodology of Case Studies: Development of Conceptual, Procedural and Attitudinal Contents]. Quim. Nova 2018, 41, 1209–1217. [Google Scholar] [CrossRef]
- de Lima, M.S.; Queiroz, S.L. Examination of the Epistemic Status of Propositions Incorporated within Arguments of Undergraduate Chemistry Students. J. Chem. Educ. 2024, 101, 467–473. [Google Scholar] [CrossRef]
- de Lima, M.S.; Pozzer, L.; Queiroz, S.L. Use of Interrupted Case Studies to Teach Scientific Communication: Examples from the Effects of Mining on Water Resources in Brazil. J. Chem. Educ. 2023, 100, 722–731. [Google Scholar] [CrossRef]
- Heaton, A.; Hodgson, S.; Overton, T.; Powell, R. The Challenge to Develop CFC (Chlorofluorocarbon) Replacements: A Problem Based Learning Case Study in Green Chemistry. Chem. Educ. Res. Pract. 2006, 7, 280–287. [Google Scholar] [CrossRef]
- Beyond Benign. Teaching Green Chemistry to Deaf Students in Brazil—A Pioneer Case Study. Available online: https://www.beyondbenign.org/news/teaching-green-chemistry-to-deaf-students-in-brazil-a-pioneer-case-study/ (accessed on 24 September 2023).
- Tavares, M.J.F. (Federal Institute of Paraiba, Joao Pessoa, Paraiba, Brazil). Estudo de Caso e Produção Audiovisual Inclusiva Relacionados aos Princípios da Química Verde [Case Study and Inclusive Audiovisual Production Related to the Principles of Green Chemistry]. Unpublished monograph. 2021. [Google Scholar]
- de Souza, N.S.; Figueirêdo, A.M.T.A.d.; da Silva Júnior, C.A.; Ferraz, J.M.S.; Tavares, M.J.F. Inclusive Teaching in Organic Chemistry: A Visual Approach in the Time of COVID-19 for Deaf Students. Int. J. Innov. Educ. Res. 2022, 10, 290–306. [Google Scholar] [CrossRef]
- Da Silva Júnior, C.A.; de Souza, N.S.; Velozo, M.C.S.; Ferraz, J.M.S.; Tavares, M.J.F.; De Figueirêdo, A.M.T.A. Challenges and Successes: Online and Inclusive Teaching of Green Chemistry in Brazil in the Time of COVID-19. Int. J. Innov. Educ. Res. 2022, 10, 106–118. [Google Scholar] [CrossRef]
- Lamim, A.R.d.S.; Queiroz, S.L. Argumentation in Chemistry Education: Analysis of Articles Published in Brazilian Journals. New Trends Qual. Res. 2022, 12, e595. [Google Scholar] [CrossRef]
- de Lima, J.R.A.; Pereira, M.d.C.A.; Silva, C.J.V.; Ibiapina, K.B.; Souza, C.M.d. Saneamento Básico No Brasil e No Município de Sousa-PB [Basic Sanitation in Brazil and in The Municipality of Sousa, PB]. Rev. Foco 2022, 15, 1–16. [Google Scholar] [CrossRef]
- Mahaffy, P. Moving Chemistry Education into 3D: A Tetrahedral Metaphor for Understanding Chemistry. Union Carbide Award for Chemical Education. J. Chem. Educ. 2006, 83, 49. [Google Scholar] [CrossRef]
- Mahaffy, P. The Future Shape of Chemistry Education. Chem. Educ. Res. Pract. 2004, 5, 229–245. [Google Scholar] [CrossRef]
- Da Silva Júnior, C.A. Triangular Bipyramid Metaphor (TBM), an Imagetic Representation for the Awareness of Inclusion in Chemical Education (ICE). Braz. J. Dev. 2023, 9, 10567–10578. [Google Scholar] [CrossRef]
- Scheuer, O.; McLaren, B.M.; Weinberger, A.; Niebuhr, S. Promoting Critical, Elaborative Discussions through a Collaboration Script and Argument Diagrams. Instr. Sci. 2014, 42, 127–157. [Google Scholar] [CrossRef]
- Souza, N.D.S.; Queiroz, S.L. Quadro Analítico Para Discussões Argumentativas Em Fóruns On-Line: Aplicação No Ensino de Química [Analytical Framework for Argumentative Discussions in Online Forums: Application in Teaching Chemistry]. Investig. Em Ensino De Ciências 2018, 23, 145. [Google Scholar] [CrossRef]
- Batinga, V.T.S.; Barbosa, T.V.d.S. Questão Sociocientífica e Emergência da Argumentação No Ensino de Química [Socioscientific Issue and the Emergence of Argumentation in Chemistry Education]. Química Nova Na Esc. 2021, 43, 29–37. [Google Scholar] [CrossRef]
- Sá, L.P.; Kasseboehmer, A.C.; Queiroz, S.L. Casos Investigativos de Caráter Sociocientífico: Aplicação No Ensino Superior de Química [Investigative Socioscientific Cases: Application in Higher Education Chemistry Teaching]. Educ. Química 2013, 24, 522–528. [Google Scholar] [CrossRef]
- Landrieu, Y.; De Smedt, F.; Van Keer, H.; De Wever, B. Assessing the Quality of Argumentative Texts: Examining the General Agreement Between Different Rating Procedures and Exploring Inferences of (Dis)Agreement Cases. Front. Educ. 2022, 7, 1–16. [Google Scholar] [CrossRef]
- Da Silva Júnior, C.A.; de Figueirêdo, A.M.T.A. Química Verde—“Fator E”: Atividade Lúdica Aplicada Em Uma Turma Inclusiva [Green Chemistry—E-Factor: Playful Activity Applied in an Inclusive Classroom]. Educ. Ambient. Em Ação 2018, 16, 1–15. [Google Scholar]
- Santos, D.M.; Royer, M.R. Análise Da Percepção Dos Alunos Sobre a Química Verde e a Educação Ambiental No Ensino de Química [Analysis of The Perception of Students on The Green Chemistry and Environmental Education in Chemical Teaching]. Rev. Debates Em Ensino De Química 2018, 4, 142–164. [Google Scholar]
- Armstrong, L.B.; Irie, L.M.; Chou, K.; Rivas, M.; Douskey, M.C.; Baranger, A.M. What’s in a Word? Student Beliefs and Understanding about Green Chemistry. Chem. Educ. Res. Pract. 2024, 25, 115–132. [Google Scholar] [CrossRef]
- Eldridge, D.S. Using Elephant’s Toothpaste as an Engaging and Flexible Curriculum Alignment Project. J. Chem. Educ. 2015, 92, 1406–1408. [Google Scholar] [CrossRef]
- Pratt, J.M.; Yezierski, E.J. College Students Teaching Chemistry through Outreach: Conceptual Understanding of the Elephant Toothpaste Reaction and Making Liquid Nitrogen Ice Cream. J. Chem. Educ. 2018, 95, 2091–2102. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E Factor 25 Years on: The Rise of Green Chemistry and Sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor at 30: A passion for pollution prevention. Green Chem. 2023, 25, 1704–1728. [Google Scholar] [CrossRef]
- Moreira, M.A. Ensino e Aprendizagem Significativa [Teaching and Meaningful Learning], 1st ed.; Editora Livraria da Física: São Paulo, Brazil, 2017. [Google Scholar]
- Masini, E.F.S.; Moreira, M.A. Aprendizagem Significativa Na Escola [Meaningful Learning in School], 1st ed.; CRV: Curitiba, Brazil, 2017. [Google Scholar]
- Płotka-Wasylka, J.; Kurowska-Susdorf, A.; Sajid, M.; de la Guardia, M.; Namieśnik, J.; Tobiszewski, M. Green Chemistry in Higher Education: State of the Art, Challenges, and Future Trends. ChemSusChem 2018, 11, 2845–2858. [Google Scholar] [CrossRef]
- Reyes, K.M.D.; Bruce, K.; Shetranjiwalla, S. Green Chemistry, Life Cycle Assessment, and Systems Thinking: An Integrated Comparative-Complementary Chemical Decision-Making Approach. J. Chem. Educ. 2023, 100, 209–220. [Google Scholar] [CrossRef]
- Bastin, L.D.; Dicks, A.P. Advances in Green Chemistry Education. Green Chem. Lett. Rev. 2023, 16, 2192320. [Google Scholar] [CrossRef]
- Hurst, G.A. Systems Thinking Approaches for International Green Chemistry Education. Curr. Opin. Green Sustain. Chem. 2020, 21, 93–97. [Google Scholar] [CrossRef]
- Brunnert, R.; Tausch, M.W. Green Chemistry in STEM Education: Light for Basic Concepts. World J. Chem. Educ. 2023, 11, 65–73. [Google Scholar] [CrossRef]
- Hurst, G.A.; Slootweg, J.C.; Balu, A.M.; Climent-Bellido, M.S.; Gomera, A.; Gomez, P.; Luque, R.; Mammino, L.; Spanevello, R.A.; Saito, K.; et al. International Perspectives on Green and Sustainable Chemistry Education via Systems Thinking. J. Chem. Educ. 2019, 96, 2794–2804. [Google Scholar] [CrossRef]
- Miller, J.L.; Wentzel, M.T.; Clark, J.H.; Hurst, G.A. Green Machine: A Card Game Introducing Students to Systems Thinking in Green Chemistry by Strategizing the Creation of a Recycling Plant. J. Chem. Educ. 2019, 96, 3006–3013. [Google Scholar] [CrossRef]
- Mammino, L. How Green Chemistry Education Can Empower Chemistry Students to Be Promoters of Sustainable Substance-Handling Practices in Their Communities. ACS Sustain. Chem. Eng. 2023, 11, 14391–14398. [Google Scholar] [CrossRef]
- Grieger, K.; Leontyev, A. Promoting Student Awareness of Green Chemistry Principles via Student-Generated Presentation Videos. J. Chem. Educ. 2020, 97, 2657–2663. [Google Scholar] [CrossRef]
- Marques, C.A.; Marcelino, L.V.; Dias, É.D.S.; Rüntzel, P.L.; Souza, L.C.A.B.; Machado, A. Green Chemistry Teaching for Sustainability in Papers Published by the Journal of Chemical Education. Quim. Nova 2020, 43, 1510–1521. [Google Scholar] [CrossRef]
- Aubrecht, K.B.; Bourgeois, M.; Brush, E.J.; Mackellar, J.; Wissinger, J.E. Integrating Green Chemistry in the Curriculum: Building Student Skills in Systems Thinking, Safety, and Sustainability. J. Chem. Educ. 2019, 96, 2872–2880. [Google Scholar] [CrossRef]
- de Sousa, A.C.; Alves, L.A.; Bertini, L.M.; do Nascimento, T.L. Química Verde Para a Sustentabilidade: Natureza, Objetivos e Aplicação Prática [Green Chemistry for Sustainability: Nature, Objectives, and Practical Application], 1st ed.; Appris: Curitiba, Brazil, 2020. [Google Scholar]
Tests | Types of Questions | Goals |
---|---|---|
Pre-test N = 27 | Open-ended (N = 3) Closed-ended (N = 3) Likert scale (N = 9) True–false (N = 12) 1 | Assess the class’s learning strategies and perceptions regarding the discipline of chemistry and evaluate the student’s knowledge of Green Chemistry. |
Post-test N = 30 | Open-ended (N = 3) True–false (N = 12) 1 Likert scale (N = 15) | Assess the class’s thoughts on research methods and general questions and evaluate the student’s knowledge of Green Chemistry. |
Group | Number of Units of Analysis (UAs) |
---|---|
G1 | 15 |
G2 | 14 |
G3 | 28 |
G4 | 17 |
G5 | 8 |
Group | Elements of the PT-GSC | Numbers and Symbols for Each Element |
---|---|---|
G1 |
| |
G2 |
| |
G3 |
| |
G4 |
|
Group | Excerpts Written and Number of the Units of Analysis | Mentioned Elements |
---|---|---|
G1 | According to the Periodic Table of the Elements of Green and Sustainable Chemistry, financial investment, represented by Ci, implies that investing could lead to quality management, thereby eliminating a lack of oversight and improving services for the population. (UA6-G1) | |
G2 | So, it is important to analyze how the figurative elements Z (zero waste) and Sw (access to safe and reliable water) can help in addressing such issues. (UA3-G2) | |
G3 | In this case, we can analyze that there is no assurance of access to water reliably (Sw), as residents allege that the water comes with a cloudy coloration and unpleasant odors, deviating from the standards established in the regulation. (UA12-G3) | |
G4 | The national water resources policy posits that water is a public good. Therefore, financial investment in the field of treated water not only represents an opportunity for financial returns but also plays a fundamental role in promoting access to clean water, environmental preservation, and the advancement of sustainable practices. (UA14-G4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Júnior, C.A.; Morais, C.; Jesus, D.P.d.; Girotto Júnior, G. The Role of the Periodic Table of the Elements of Green and Sustainable Chemistry in a High School Educational Context. Sustainability 2024, 16, 2504. https://doi.org/10.3390/su16062504
da Silva Júnior CA, Morais C, Jesus DPd, Girotto Júnior G. The Role of the Periodic Table of the Elements of Green and Sustainable Chemistry in a High School Educational Context. Sustainability. 2024; 16(6):2504. https://doi.org/10.3390/su16062504
Chicago/Turabian Styleda Silva Júnior, Carlos Alberto, Carla Morais, Dosil Pereira de Jesus, and Gildo Girotto Júnior. 2024. "The Role of the Periodic Table of the Elements of Green and Sustainable Chemistry in a High School Educational Context" Sustainability 16, no. 6: 2504. https://doi.org/10.3390/su16062504
APA Styleda Silva Júnior, C. A., Morais, C., Jesus, D. P. d., & Girotto Júnior, G. (2024). The Role of the Periodic Table of the Elements of Green and Sustainable Chemistry in a High School Educational Context. Sustainability, 16(6), 2504. https://doi.org/10.3390/su16062504