Evaluating the Fast Frequency Support Ability of the Generation Units in Modern Power Systems
Abstract
:1. Introduction
- A comprehensive review of the existing techniques of the FFS of the IBRs;
- Proposing the FFS ability indexes and the corresponding postcontingency evaluation method;
- A discussion of the different FFS abilities for different kinds of IBRs.
2. Technical Background: Fast Frequency Support for Modern Power System
2.1. The Timescale of FFS
2.2. FFS Control Techniques of IBRs
2.2.1. Grid−Following IBR with FFS
2.2.2. Grid−Forming IBR with FFS
3. Evaluation Method for the FFS Ability
3.1. Indexes of FFS Support Ability
3.2. Evaluating Equivalent Inertia Constant
3.3. Evaluating Virtual Droop Constant
3.4. Implement of the Evaluation Method
4. Case Study
4.1. Accuracy Analysis for the Proposed Method
- Scenario i: a sudden load increase;
- Scenario ii: the loss of G10;
- Scenario iii: a sudden load decrease.
- Scenario i: , , ;
- Scenario ii: , , ;
- Scenario iii: , , .
4.2. Analysis of the FFS Ability of the IBR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahmoud, K.; Astero, P.; Peltoniemi, P.; Lehtonen, M. Promising Grid-Forming VSC Control Schemes Toward Sustainable Power Systems: Comprehensive Review and Perspectives. IEEE Access 2022, 10, 130024–130039. [Google Scholar] [CrossRef]
- Verma, P.; K, S.; Dwivedi, B. A Self-Regulating Virtual Synchronous Generator Control of Doubly Fed Induction Generator-Wind Farms. IEEE Can. J. Electr. Comput. Eng. 2023, 46, 35–43. [Google Scholar] [CrossRef]
- Rafiee, A.; Batmani, Y.; Ahmadi, F.; Bevrani, H. Robust Load-Frequency Control in Islanded Microgrids: Virtual Synchronous Generator Concept and Quantitative Feedback Theory. IEEE Trans. Power Syst. 2021, 36, 5408–5416. [Google Scholar] [CrossRef]
- Strunz, K.; Almunem, K.; Wulkow, C.; Kuschke, M.; Valescudero, M.; Guillaud, X. Enabling 100 Renewable Power Systems Through Power Electronic Grid-Forming Converter and Control: System Integration for Security, Stability, and Application to Europe. Proc. IEEE 2023, 111, 891–915. [Google Scholar] [CrossRef]
- Mohammed, N.; Ravanji, M.H.; Zhou, W.; Bahrani, B. Enhanced Frequency Control for Power-Synchronized PLL-Less Grid-Following Inverters. IEEE Open J. Ind. Electron. Soc. 2023, 4, 189–204. [Google Scholar] [CrossRef]
- Bahrani, B. Power-Synchronized Grid-Following Inverter Without a Phase-Locked Loop. IEEE Access 2021, 9, 112163–112176. [Google Scholar] [CrossRef]
- Shen, R.; Zhong, S.; Wen, X.; An, Q.; Zheng, R.; Li, Y.; Zhao, J. Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy. Appl. Energy 2022, 312, 118724. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Qiu, Q.; Wang, J. Risk Control of Mission-Critical Systems: Abort Decision-Makings Integrating Health and Age Conditions. IEEE Trans. Ind. Inform. 2022, 18, 6887–6894. [Google Scholar] [CrossRef]
- Cui, X.; Dong, S.; Hoke, A.; Tan, J. A Unified Metric for Fast Frequency Response in Low-Inertia Power Systems. In Proceedings of the 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16–19 January 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Binbing, W.; Abuduwayiti, X.; Yuxi, C.; Yizhi, T. RoCoF Droop Control of PMSG-Based Wind Turbines for System Inertia Response Rapidly. IEEE Access 2020, 8, 181154–181162. [Google Scholar] [CrossRef]
- Li, H.; Qiao, Y.; Lu, Z.; Zhang, B.; Teng, F. Frequency-Constrained Stochastic Planning Towards a High Renewable Target Considering Frequency Response Support From Wind Power. IEEE Trans. Power Syst. 2021, 36, 4632–4644. [Google Scholar] [CrossRef]
- Fang, Q.; Chen, Z.; Zou, Y.; Zhou, L.; Yin, M. Improved Stepwise Inertial Control for Wind Turbines Considering Frequency Response of Synchronous Generators. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 2587–2593. [Google Scholar] [CrossRef]
- Pulgar-Painemal, H.; Wang, Y.; Silva-Saravia, H. On Inertia Distribution, Inter-Area Oscillations and Location of Electronically-Interfaced Resources. IEEE Trans. Power Syst. 2018, 33, 995–1003. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Peng, X.; Zhang, S. Configuration of an Energy Storage System for Primary Frequency Reserve and Inertia Response of the Power Grid. IEEE Access 2021, 9, 41965–41975. [Google Scholar] [CrossRef]
- Wang, Y.; Yokoyama, A. On-line estimation of power system inertia using short-time synchronous phasor measurements under high generator damping. In Proceedings of the 2021 International Conference on Power System Technology (POWERCON), Haikou, China, 10–11 November 2021; pp. 1919–1924. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, D.; Hu, J.; Zou, X.; Kang, Y.; Guerrero, J.M. Inertial PLL of Grid-connected Converter for Fast Frequency Support. CSEE J. Power Energy Syst. 2023, 9, 1594–1599. [Google Scholar] [CrossRef]
- Saeedian, M.; Pournazarian, B.; Taheri, S.; Pouresmaeil, E. Provision of Synthetic Inertia Support for Converter-Dominated Weak Grids. IEEE Syst. J. 2022, 16, 2068–2077. [Google Scholar] [CrossRef]
- Ngo, H.T.; Kamal, E.; Marinescu, B. Fast Frequency Support at a Wind Energy System Using Time-Varying Inertia and Droop Controls based on Globally Optimal H∞ Control Design. In Proceedings of the 2021 22nd International Middle East Power Systems Conference (MEPCON), Assiut, Egypt, 14–16 December 2021; pp. 32–37. [Google Scholar] [CrossRef]
- Ekomwenrenren, E.; Tang, Z.; Simpson-Porco, J.W.; Farantatos, E.; Patel, M.; Hooshyar, H. Hierarchical Coordinated Fast Frequency Control Using Inverter-Based Resources. IEEE Trans. Power Syst. 2021, 36, 4992–5005. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Ge, C.; Wang, K.; Chang, X.; Zhao, Q. Index System for Evaluating the Supporting Capability of the Inverter-based Resource. In Proceedings of the 2023 IEEE Power & Energy Society General Meeting (PESGM), Orlando, FL, USA, 16–20 July 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, W.; Geng, G.; Jiang, Q.; Fan, H.; Yu, J. Model-Free Fast Frequency Control Support With Energy Storage System. IEEE Trans. Power Syst. 2020, 35, 3078–3086. [Google Scholar] [CrossRef]
- Fernandez-Muñoz, D.; Guisandez, I.; Perez-Diaz, J.I.; Chazarra, M.; Femandez-Espina, A.; Burke, F. Fast Frequency Control Services in Europe. In Proceedings of the 2018 15th International Conference on the European Energy Market (EEM), Lodz, Poland, 27–29 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-Synchronization Stability of Converter-Based Resources—An Overview. IEEE Open J. Ind. Appl. 2020, 1, 115–134. [Google Scholar] [CrossRef]
- Geng, H.; He, C.; Liu, Y.; He, X.; Li, M. Overview on Transient Synchronization Stability of Renewable-rich Power Systems. High Volt. Eng. 2022, 48, 3367–3383. [Google Scholar] [CrossRef]
- Cheema, K.M. A comprehensive review of virtual synchronous generator. Int. J. Electr. Power Energy Syst. 2020, 120, 106006. [Google Scholar] [CrossRef]
- Kundur, P. Power System Stability and Control; McGraw-Hill Education: New York, NY, USA, 1994. [Google Scholar]
- Harnefors, L.; Schweizer, M.; Kukkola, J.; Routimo, M.; Hinkkanen, M.; Wang, X. Generic pll-based grid-forming control. IEEE Trans. Power Electron. 2022, 37, 1201–1204. [Google Scholar] [CrossRef]
- Morán-Río, D.P.; Roldán-Pérez, J.; Prodanović, M.; García-Cerrada, A. Influence of the phase-locked loop on the design of microgrids formed by diesel generators and grid-forming converters. IEEE Trans. Power Electron. 2022, 5, 5122–5137. [Google Scholar] [CrossRef]
- Milano, F.; Ortega, A.; Conejo, A.J. Model-Agnostic Linear Estimation of Generator Rotor Speeds Based on Phasor Measurement Units. IEEE Trans. Power Syst. 2018, 33, 7258–7268. [Google Scholar] [CrossRef]
- Milano, F.; Ortega, A. A Method for Evaluating Frequency Regulation in an Electrical Grid—Part I: Theory. IEEE Trans. Power Syst. 2021, 36, 183–193. [Google Scholar] [CrossRef]
- Ortega, A.; Milano, F. A Method for Evaluating Frequency Regulation in an Electrical Grid—Part II: Applications to Non-Synchronous Devices. IEEE Trans. Power Syst. 2021, 36, 194–203. [Google Scholar] [CrossRef]
- Peng, S.; Lu, J.; Cao, J.; Peng, Q.; Yang, Z. Adaptive graph regularization method based on least square regression for clustering. Signal Process. Image Commun. 2023, 114, 116938. [Google Scholar] [CrossRef]
- Milano, F. A python-based software tool for power system analysis. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Milano, F. Power System Modelling and Scripting; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
Parameters | Values | |||
---|---|---|---|---|
/ | 10 | 15 | 15 | 10 |
/ | 60.6 | 71.6 | 57.2 | 69.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Mo, R.; Lai, Y.; Li, Z.; Qie, Z.; Zheng, H. Evaluating the Fast Frequency Support Ability of the Generation Units in Modern Power Systems. Sustainability 2024, 16, 2506. https://doi.org/10.3390/su16062506
Liu M, Mo R, Lai Y, Li Z, Qie Z, Zheng H. Evaluating the Fast Frequency Support Ability of the Generation Units in Modern Power Systems. Sustainability. 2024; 16(6):2506. https://doi.org/10.3390/su16062506
Chicago/Turabian StyleLiu, Muyang, Ruo Mo, Yening Lai, Zhaowei Li, Zhaohui Qie, and Hua Zheng. 2024. "Evaluating the Fast Frequency Support Ability of the Generation Units in Modern Power Systems" Sustainability 16, no. 6: 2506. https://doi.org/10.3390/su16062506
APA StyleLiu, M., Mo, R., Lai, Y., Li, Z., Qie, Z., & Zheng, H. (2024). Evaluating the Fast Frequency Support Ability of the Generation Units in Modern Power Systems. Sustainability, 16(6), 2506. https://doi.org/10.3390/su16062506