Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Contribution
2. Materials and Methods
2.1. The Studied Building—Baseline Scenario
2.1.1. Building Envelope Description
2.1.2. Energy System Description
2.2. The Renovation Scenario of the Examined Building
2.2.1. Ground-Source Heat Pump
2.2.2. Borehole Thermal Energy Storage System
2.2.3. Building-Integrated Photovoltaic System
2.2.4. Insulation of the Roof
2.2.5. Replacement of the Windows
2.2.6. Installation of Standard PV Panels
2.2.7. Installation of an LED Lighting System
2.3. Basic Mathematical Modeling
2.4. Simulation Strategy
3. Results and Discussion
3.1. Energy Analysis of the Baseline Scenario
3.2. Energy Analysis of the Renovation Scenario
3.3. Discussion
4. Conclusions
- The results indicate that even in a quite challenging building typology (an old protected building, with different uses and common areas), there are solutions that can have a very positive impact in terms of energy performance.
- The building envelope renovation actions discussed in this study reduce the heating and cooling loads of the building by about 13.74% and 6.52%, respectively.
- In the renovation scenario, a reduction of approximately 48% in the natural gas consumption is achieved through the use of a ground-source heat pump.
- The total electricity produced by the PV and the BIPV systems is calculated at 99.1 MWh, covering 22.8% of the building’s electricity needs in the renovation scenario.
- The implementation of the renovation strategy is calculated to result in a 30.49% reduction in the primary energy demand, a 36.74% reduction in the final energy demand, and an 8.72% decrease in the net electricity demand.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
A | Area, m2 |
COP | Heating mode coefficient of performance |
E | Energy, kWh |
EER | Cooling mode coefficient of performance/Energy Efficiency Ratio |
g | Solar heat gain factor for the windows |
GT | Incident solar irradiation, W/m2 |
hin | Inside convection coefficient, W/m2K |
hout | Outside convection coefficient, W/m2K |
I | Current, A |
k | Thermal conductivity, W/mK |
Pel | Electrical energy, kWh |
PV | Photovoltaic |
Q | Thermal load, W |
t | Layer thickness, m |
U | Thermal transmittance, W/m2K |
V | Voltage, V |
Subscripts and Superscripts | |
b | Boiler |
cool | Cooling |
dis | Distribution thermal losses |
el | Electricity |
frame | Window’s opening frame |
geoth | Geothermal |
glass | Window’s glass |
heat | Heating |
max | Maximum |
oc | Open-circuit |
sc | Short-circuit |
split | Heat pump split units |
Greek symbols | |
γ | Azimuth angle, ° |
η | Efficiency |
Abbreviations | |
ACH | Air changes per hour |
BHE | Borehole heat exchanger |
BIPV | Building-integrated photovoltaic |
DHW | Domestic hot water |
ESC | Energy system configuration for heating, cooling, and DHW purposes |
GSHP | Ground-source heat pump |
HVAC | Heating, cooling, and air-conditioning |
References
- Lidelöw, S.; Örn, T.; Luciani, A.; Rizzo, A. Energy-Efficiency Measures for Heritage Buildings: A Literature Review. Sustain. Cities Soc. 2019, 45, 231–242. [Google Scholar] [CrossRef]
- Zhang, Y.; Teoh, B.K.; Wu, M.; Chen, J.; Zhang, L. Data-Driven Estimation of Building Energy Consumption and GHG Emissions Using Explainable Artificial Intelligence. Energy 2023, 262, 125468. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Directive (EU) 2023/1791 of the European Parliament and of the Council of 13 September 2023 on energy efficiency and amending Regulation (EU) 2023/955. Available online: https://eur-lex.europa.eu/eli/dir/2023/1791/oj (accessed on 11 January 2024).
- Zhu, X.; Zhang, X.; Gong, P.; Li, Y. A Review of Distributed Energy System Optimization for Building Decarbonization. J. Build. Eng. 2023, 73, 106735. [Google Scholar] [CrossRef]
- Kataray, T.; Nitesh, B.; Yarram, B.; Sinha, S.; Cuce, E.; Shaik, S.; Vigneshwaran, P.; Roy, A. Integration of Smart Grid with Renewable Energy Sources: Opportunities and Challenges—A Comprehensive Review. Sustain. Energy Technol. Assess. 2023, 58, 103363. [Google Scholar] [CrossRef]
- Semprini, G.; Gulli, R.; Ferrante, A. Deep Regeneration vs Shallow Renovation to Achieve Nearly Zero Energy in Existing Buildings. Energy Build. 2017, 156, 327–342. [Google Scholar] [CrossRef]
- Assimakopoulos, M.-N.; De Masi, R.F.; Fotopoulou, A.; Papadaki, D.; Ruggiero, S.; Semprini, G.; Vanoli, G.P. Holistic Approach for Energy Retrofit with Volumetric Add-Ons toward nZEB Target: Case Study of a Dormitory in Athens. Energy Build. 2020, 207, 109630. [Google Scholar] [CrossRef]
- Moran, F.; Blight, T.; Natarajan, S.; Shea, A. The Use of Passive House Planning Package to Reduce Energy Use and CO2 Emissions in Historic Dwellings. Energy Build. 2014, 75, 216–227. [Google Scholar] [CrossRef]
- Cho, H.M.; Yun, B.Y.; Yang, S.; Wi, S.; Chang, S.J.; Kim, S. Optimal Energy Retrofit Plan for Conservation and Sustainable Use of Historic Campus Building: Case of Cultural Property Building. Appl. Energy 2020, 275, 115313. [Google Scholar] [CrossRef]
- Ma, Z.; Cooper, P.; Daly, D.; Ledo, L. Existing Building Retrofits: Methodology and State-of-the-Art. Energy Build. 2012, 55, 889–902. [Google Scholar] [CrossRef]
- Arumägi, E.; Kalamees, T. Analysis of Energy Economic Renovation for Historic Wooden Apartment Buildings in Cold Climates. Appl. Energy 2014, 115, 540–548. [Google Scholar] [CrossRef]
- Ardente, F.; Beccali, M.; Cellura, M.; Mistretta, M. Energy and Environmental Benefits in Public Buildings as a Result of Retrofit Actions. Renew. Sustain. Energy Rev. 2011, 15, 460–470. [Google Scholar] [CrossRef]
- Fonseca, D.J.; Bisen, K.B.; Clark Midkiff, K.; Moynihan, G.P. An Expert System for Lighting Energy Management in Public School Facilities. Expert Syst. 2006, 23, 194–211. [Google Scholar] [CrossRef]
- Cohen, S.; Goldman, C.; Harris, J. Energy Savings and Economics of Retrofitting Single-Family Buildings. Energy Build. 1991, 17, 297–311. [Google Scholar] [CrossRef]
- Boait, P.J.; Fan, D.; Stafford, A. Performance and Control of Domestic Ground-Source Heat Pumps in Retrofit Installations. Energy Build. 2011, 43, 1968–1976. [Google Scholar] [CrossRef]
- Hens, H. Energy Efficient Retrofit of an End of the Row House: Confronting Predictions with Long-Term Measurements. Energy Build. 2010, 42, 1939–1947. [Google Scholar] [CrossRef]
- Gravagnuolo, A.; Angrisano, M.; Bosone, M.; Buglione, F.; De Toro, P.; Fusco Girard, L. Participatory Evaluation of Cultural Heritage Adaptive Reuse Interventions in the Circular Economy Perspective: A Case Study of Historic Buildings in Salerno (Italy). J. Urban Manag. 2024, 13, 107–139. [Google Scholar] [CrossRef]
- De Toro, P.; Nocca, F.; Renna, A.; Sepe, L. Real Estate Market Dynamics in the City of Naples: An Integration of a Multi-Criteria Decision Analysis and Geographical Information System. Sustainability 2020, 12, 1211. [Google Scholar] [CrossRef]
- Akkurt, G.G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Costanzo, V.; Del Pero, C.; Evola, G.; Huerto-Cardenas, H.E.; et al. Dynamic Thermal and Hygrometric Simulation of Historical Buildings: Critical Factors and Possible Solutions. Renew. Sustain. Energy Rev. 2020, 118, 109509. [Google Scholar] [CrossRef]
- Ascione, F.; De Rossi, F.; Vanoli, G.P. Energy Retrofit of Historical Buildings: Theoretical and Experimental Investigations for the Modelling of Reliable Performance Scenarios. Energy Build. 2011, 43, 1925–1936. [Google Scholar] [CrossRef]
- Harrestrup, M.; Svendsen, S. Full-Scale Test of an Old Heritage Multi-Storey Building Undergoing Energy Retrofitting with Focus on Internal Insulation and Moisture. Build. Environ. 2015, 85, 123–133. [Google Scholar] [CrossRef]
- Şahin, C.D.; Arsan, Z.D.; Tunçoku, S.S.; Broström, T.; Akkurt, G.G. A Transdisciplinary Approach on the Energy Efficient Retrofitting of a Historic Building in the Aegean Region of Turkey. Energy Build. 2015, 96, 128–139. [Google Scholar] [CrossRef]
- Zagorskas, J.; Paliulis, G.M.; Burinskienė, M.; Venckauskaitė, J. Energetic Refurbishment of Historic Brick Buildings: Problems and Opportunities. Sci. J. Riga Tech. Univ. Environ. Clim. Technol. 2013, 12, 20–27. [Google Scholar] [CrossRef]
- Serrano, T.; Kampmann, T.; Ryberg, M.W. Comparative Life-Cycle Assessment of Restoration and Renovation of a Traditional Danish Farmer House. Build. Environ. 2022, 219, 109174. [Google Scholar] [CrossRef]
- Roman, O.; Farella, E.M.; Rigon, S.; Remondino, F.; Ricciuti, S.; Viesi, D. From 3D Surveying Data to Bim to Bem: The Incube Dataset. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1-W3-2023, 175–182. [Google Scholar] [CrossRef]
- Andreucci, M.B. Linking Future Energy Systems with Heritage Requalification in Smart Cities. On-Going Research and Experimentation in the City of Trento (IT). TECHNE—J. Technol. Archit. Environ. 2018, 1, 87–91. [Google Scholar] [CrossRef]
- Fabbri, K.; Zuppiroli, M.; Ambrogio, K. Heritage Buildings and Energy Performance: Mapping with GIS Tools. Energy Build. 2012, 48, 137–145. [Google Scholar] [CrossRef]
- Modelica. Available online: https://modelica.org/ (accessed on 1 December 2023).
- Dymola. Available online: https://www.3ds.com/products/catia/dymola (accessed on 1 December 2023).
- Lucchi, E. Renewable Energies and Architectural Heritage: Advanced Solutions and Future Perspectives. Buildings 2023, 13, 631. [Google Scholar] [CrossRef]
- Greek Technical Chamber. ΤΟΤΕΕ 20701-1 Technical Guidelines on Buildings’ Energy Performance 2017. Greek Technical Chamber: Athens, Greece, 2017. [Google Scholar]
- Thomas, D.; Bagheri, A.; Feldheim, V.; Deblecker, O.; Ioakimidis, C.S. Energy and Thermal Comfort Management in a Smart Building Facilitating a Microgrid Optimization. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 3621–3626. [Google Scholar]
- Bellos, E.; Iliadis, P.; Papalexis, C.; Rotas, R.; Mamounakis, I.; Sougkakis, V.; Nikolopoulos, N.; Kosmatopoulos, E. Holistic Renovation of a Multi-Family Building in Greece Based on Dynamic Simulation Analysis. J. Clean. Prod. 2022, 381, 135202. [Google Scholar] [CrossRef]
- Arandelovic, B.; Musil, R. The Renovation, Rehabilitation and Adaptation of Historical Heritage Buildings in Public Ownership. The Case of Historical Buildings of Exceptional Importance in Vienna. Build. Environ. 2023, 246, 110937. [Google Scholar] [CrossRef]
- Masullo, M.; Pellegrino, R.; Scorpio, M.; Maffei, L. Auditory and Visual Impact of Split Systems on the Façade of Historical Buildings. Appl. Acoust. 2021, 178, 107997. [Google Scholar] [CrossRef]
- newwave-media.it, N. srl- GSP Pompe di calore geotermiche polivalenti. Eneren. Available online: https://eneren.it/prodotti/gsp/ (accessed on 11 January 2024).
- Viesi, D.; Galgaro, A.; Visintainer, P.; Crema, L. GIS-Supported Evaluation and Mapping of the Geo-Exchange Potential for Vertical Closed-Loop Systems in an Alpine Valley, the Case Study of Adige Valley (Italy). Geothermics 2018, 71, 70–87. [Google Scholar] [CrossRef]
- Viesi, D.; Mahbub, M.S.; Brandi, A.; Thellufsen, J.Z.; Østergaard, P.A.; Lund, H.; Baratieri, M.; Crema, L. Multi-Objective Optimization of an Energy Community: An Integrated and Dynamic Approach for Full Decarbonisation in the European Alps. Int. J. Sustain. Energy Plan. Manag. 2023, 38, 8–29. [Google Scholar] [CrossRef]
- Tegola Canadese. Available online: https://www.aleo-solar.de/en (accessed on 10 January 2024).
- Technical Guidelines of Technical Chamber of Greece; TEE: Athens, Greece, 2020.
- ISO 6946:2017; Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Methods. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/65708.html (accessed on 9 January 2024).
- Kitsopoulou, A.; Zacharis, A.; Ziozas, N.; Bellos, E.; Iliadis, P.; Lampropoulos, I.; Chatzigeorgiou, E.; Angelakoglou, K.; Nikolopoulos, N. Dynamic Energy Analysis of Different Heat Pump Heating Systems Exploiting Renewable Energy Sources. Sustainability 2023, 15, 11054. [Google Scholar] [CrossRef]
- Duffie, J.; Beckman, W.; Blair, N. Design of Photovoltaic Systems. In Solar Engineering of Thermal Processes, Photovoltaics and Wind; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 760–788. ISBN 978-1-119-54032-8. [Google Scholar]
- Maoucha, A.; Djeffal, F.; Arar, D.; Lakhdar, N.; Bendib, T.; Abdi, M.A. An Accurate Organic Solar Cell Parameters Extraction Approach Based on the Illuminated I-V Characteristics for Double Diode Modeling. In Proceedings of the 2012 First International Conference on Renewable Energies and Vehicular Technology, Nabeul, Tunisia, 26–28 March 2012; pp. 74–77. [Google Scholar]
- Hairer, E.; Norsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I; Springer Series in Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 1993; Volume 8, ISBN 978-3-540-56670-0. [Google Scholar]
- Bellos, E.; Iliadis, P.; Papalexis, C.; Rotas, R.; Nikolopoulos, N.; Kosmatopoulos, E.; Halmdienst, C. Dynamic Investigation of Centralized and Decentralized Storage Systems for a District Heating Network. J. Energy Storag. 2022, 56, 106072. [Google Scholar] [CrossRef]
- EN 15265:2007; Energy Performance of Buildings—Calculation of Energy Needs for Space Heating and Cooling Using Dynamic Methods—General Criteria and Validation Procedures. European Standards: Brussels, Belgium, 2007. Available online: https://standards.iteh.ai/catalog/standards/cen/3b7d56e1-21c8-4f7f-8fe0-eb9a39c80893/en-15265-2007 (accessed on 13 December 2023).
- Balaras, C.A.; Dascalaki, E.G.; Psarra, I.; Cholewa, T. Primary Energy Factors for Electricity Production in Europe. Energies 2023, 16, 93. [Google Scholar] [CrossRef]
- Senior, C.; Salaj, A.T.; Vukmirovic, M.; Jowkar, M.; Kristl, Ž. The Spirit of Time—The Art of Self-Renovation to Improve Indoor Environment in Cultural Heritage Buildings. Energies 2021, 14, 4056. [Google Scholar] [CrossRef]
- Integrated National Energy and Climate Plan. | UNEP Law and Environment Assistance Platform. Available online: https://leap.unep.org/en/countries/it/national-legislation/integrated-national-energy-and-climate-plan (accessed on 5 March 2024).
- Ministry of the Environment and Energy Security, Italian National Integrated Plan for Energy and Climate—June 2023. Available online: https://commission.europa.eu/system/files/2023-07/ITALY%20-%20DRAFT%20UPDATED%20NECP%202021%202030%20%281%29.pdf (accessed on 5 March 2024).
- Anelli, D.; Tajani, F. Valorization of Cultural Heritage and Land Take Reduction: An Urban Compensation Model for the Replacement of Unsuitable Buildings in an Italian UNESCO Site. J. Cult. Herit. 2022, 57, 165–172. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Opaque structural elements | |
U-value of the external walls (W/m2K) | 0.70 |
U-value of the roof (W/m2K) | 0.50 |
U-value of the basement ceiling (W/m2K) | 1.80 |
U-value of the ground slab (W/m2K) | 2.20 |
Slope of the roof (°) | 22 |
Absorbance (%) | 60 |
Emittance (%) | 80 |
Slope of the roof (°) | 22 |
Transparent structural elements | |
U-value of the window (W/m2K) | 2.5 |
g-value of the window | 0.84 |
Emittance (%) | 80 |
Summary Table of Areas [m2] | ||||||
---|---|---|---|---|---|---|
Roofs | Windows | External Walls | External Walls in Contact with: | |||
Orientation | Total Area | Total Area | Total Area | Ambient Air | Neighboring Building | Ground |
North (γ = −10°) | 1157 | 134 | 1916 | 1695 | 0 | 221 |
South (γ = 170°) | 1122 | 215 | 1704 | 1388 | 95 | 221 |
East (γ = −100°) | 521 | 182 | 1145 | 907 | 135 | 103 |
Parameter | Value |
---|---|
Mean daily occupants | 200 |
Thermal load of the occupants (W/person) | 80 |
Mean operating fraction of the occupants (%) | 30 |
Specific electrical load of the lighting (W/m2) | 9 |
Mean operating fraction of the lighting (%) | 40 |
Specific electrical load of the appliances (W/m2) | 4 |
Mean operating fraction of the appliances (%) | 50 |
Infiltration rate (ACH) | 0.35 |
Natural ventilation rate (ACH) | 0.7 |
Parameter | Value |
---|---|
Heating system (condensing gas boiler) | |
Temperature setpoint (°C) | 20 |
Nominal capacity of the first condensing gas boiler (kW) | 534 |
Nominal capacity of the second condensing gas boiler (kW) | 584 |
Boiler nominal efficiency (%) | 98.2 |
Distribution thermal losses (%) | 15 |
Water temperature at the boiler outlet (°C) | 80 |
Cooling system (air-to-air heat pumps) | |
Temperature setpoint (°C) | 26 |
Nominal EER | 2.16 |
DHW system (electrical heaters) | |
Nominal efficiency, including distribution losses (%) | 90 |
DHW specific demand (L/person) | 22 |
DHW desired temperature (°C) | 48 |
Mean temperature of the cold tap water (°C) | 12 |
Parameter | Value |
---|---|
Heating mode | |
Nominal source inlet temperature (°C) | −3 |
Nominal source outlet temperature (°C) | 0 |
Nominal terminal unit inlet temperature (°C) | 50 |
Nominal terminal unit outlet temperature (°C) | 40 |
Nominal COP | 2.83 |
Nominal heating capacity (kW) | 248.9 |
Compressor isentropic efficiency (%) | 55.2 |
Cooling mode | |
Nominal source inlet temperature (°C) | 35 |
Nominal source outlet temperature (°C) | 30 |
Nominal terminal unit inlet temperature (°C) | 7 |
Nominal terminal unit outlet temperature (°C) | 12 |
Nominal EER | 3.94 |
Nominal heating capacity (kW) | 295.1 |
Compressor isentropic efficiency (%) | 55.2 |
Borehole Parameters | Values |
---|---|
Ground mean temperature (°C) | 14 |
Number of parallel boreholes (conventional grouting) | 20 |
Borehole distance (m) | 7 |
Borehole depth (m) | 150 |
Radius of each borehole (m) | 0.075 |
Thermal conductivity of filling material for grouting (W/mK) | 1.6 |
Grouting volume [m3] | 2.65 |
Soil Characteristics | |
Thermal conductivity (W/mK) | 2.30 |
Heat capacity (MJ/m3K) | 2.16 |
Geothermal heat flow (W/m2) | 0.06 |
Tubing System Specifications | |
Radius of the tubes (mm) | 16 |
Thickness of the tubes (mm) | 3 |
Parameter | Value |
---|---|
Module length (m) | 5.412 |
Module width (m) | 0.373 |
Number of cells | 22 |
Open-circuit voltage—Voc (V) | 46.2 |
Short-circuit current—Isc (A) | 5.3 |
Maximum power point (W) | 144 |
Temperature coefficient of Isc (%/°C) | 0.1 |
Temperature coefficient of Voc (%/°C) | −0.38 |
Parameters | Values |
---|---|
Panel surface (m2) | 1.76 |
Open-circuit voltage—Voc (V) | 40.8 |
Short-circuit current—Isc (A) | 10.7 |
Maximum power point (W) | 330 |
Temperature coefficient of Isc (%/°C) | +0.05 |
Temperature coefficient of Voc (%/°C) | −0.29 |
Parameters | Baseline [kWh] | Renovation [kWh] | Difference [%] |
---|---|---|---|
Heating energy demand | 762,866 | 658,079 | −13.74% |
Cooling energy demand | 55,762 | 52,126 | −6.52% |
Energy demand for DHW | 67,241 | 67,241 | 0% |
Electrical energy for appliances and lighting | 267,502 | 236,915 | −11.43% |
Natural gas boiler energy demand for heating | 914,352 | 475,325 | −48.02% |
Electricity consumption for heating | 0 | 102,603 | - |
Electricity consumption for cooling | 25,816 | 20,842 | −19.27% |
Electricity consumption for DHW | 74,653 | 74,653 | 0% |
Electricity production of BIPVs | 0 | 24,293 | - |
Electricity production of standard PV panels | 0 | 74,832 | - |
Total electricity production | 0 | 99,125 | - |
Total gross electricity demand | 367,971 | 435,013 | 18.22% |
Total net electricity demand | 367,971 | 335,888 | −8.72% |
Total primary energy demand | 1,650,294 | 1,147,101 | −30.49% |
Total final energy demand | 1,282,323 | 811,213 | −36.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziozas, N.; Kitsopoulou, A.; Bellos, E.; Iliadis, P.; Gonidaki, D.; Angelakoglou, K.; Nikolopoulos, N.; Ricciuti, S.; Viesi, D. Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building. Sustainability 2024, 16, 2784. https://doi.org/10.3390/su16072784
Ziozas N, Kitsopoulou A, Bellos E, Iliadis P, Gonidaki D, Angelakoglou K, Nikolopoulos N, Ricciuti S, Viesi D. Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building. Sustainability. 2024; 16(7):2784. https://doi.org/10.3390/su16072784
Chicago/Turabian StyleZiozas, Nikolaos, Angeliki Kitsopoulou, Evangelos Bellos, Petros Iliadis, Dimitra Gonidaki, Komninos Angelakoglou, Nikolaos Nikolopoulos, Silvia Ricciuti, and Diego Viesi. 2024. "Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building" Sustainability 16, no. 7: 2784. https://doi.org/10.3390/su16072784
APA StyleZiozas, N., Kitsopoulou, A., Bellos, E., Iliadis, P., Gonidaki, D., Angelakoglou, K., Nikolopoulos, N., Ricciuti, S., & Viesi, D. (2024). Energy Performance Analysis of the Renovation Process in an Italian Cultural Heritage Building. Sustainability, 16(7), 2784. https://doi.org/10.3390/su16072784