Reference Power Cable Models for Floating Offshore Wind Applications
Abstract
:1. Introduction
2. Methodology and Numerical Models
2.1. Physical Power Cable Model
2.2. Numerical Model of the Dynamic Power Cable
2.3. Mesh Sensitivity Study
2.4. Local Analysis Results—Cable Cross-Section Properties
3. Case Study
3.1. Environmental Conditions
3.2. Global Response of the FOWT
3.3. Extreme Loading Conditions
3.4. Dynamic Simulations
3.5. Fatigue Life Estimates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IberBlue Wind, January 2023. Available online: https://www.iberbluewind.com (accessed on 16 January 2023).
- Global Wind Energy Council (GWEC). Floating Offshore Wind—A Global Opportunity. Global Wind Energy Council. Available online: https://gwec.net/wp-content/uploads/2022/03/GWEC-Report-Floating-Offshore-Wind-A-Global-Opportunity.pdf (accessed on 10 November 2023).
- Jonkman, J.M.; Matha, D. Dynamics of offshore floating wind turbines—Analysis of three concepts. Wind Energy 2011, 14, 557–569. [Google Scholar] [CrossRef]
- Cozzi, L.; Wanner, B.; Donovan, C.; Toril, A.; Yu, W. Offshore Wind Outlook 2019: World Energy Outlook Special Report. Available online: https://iea.blob.core.windows.net/assets/495ab264-4ddf-4b68-b9c0-514295ff40a7/Offshore_Wind_Outlook_2019.pdf (accessed on 6 June 2023).
- Worzyk, T. Submarine Power Cables: Design Installation Repair Environmental Aspects; Springer: Dordrecht, Germany, 2009. [Google Scholar]
- Maioli, P. Bending stiffness of submarine cables. In Proceeding of the International Conference on Insulated Power Cables, Versailles, France, 21–25 June 2015. [Google Scholar]
- Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity, 4th ed.; Dover Publications: New York, NY, USA, 1944. [Google Scholar]
- Phillips, J.W.; Costello, G.A. Contact stresses in twisted wire cables. J. Eng. Mech. Div. 1973, 99, 331–341. [Google Scholar] [CrossRef]
- Costello, G.A.; Phillips, J.W. Effective modulus of twisted wire cables. J. Eng. Mech. Div. 1976, 102, 171–181. [Google Scholar] [CrossRef]
- Lutchansky, M. Axial stresses in armor wires of bent submarine cables. J. Eng. Ind. 1969, 91, 687. [Google Scholar] [CrossRef]
- Vinogradov, O.; Atatekin, I.S. Internal friction due to wire twist in bent cable. J. Eng. Mech. 1986, 112, 859–873. [Google Scholar] [CrossRef]
- Hobbs, R.E.; Raoof, M. Interwire slippage and fatigue prediction in stranded cables for TLP tethers. In Behaviour of Offshore Structures; Chryssostomidis, C., Connor, J.J., Eds.; Hemisphere Publishing/McGraw-Hill: New York, NY, USA, 1982; Volume 2, pp. 77–99. [Google Scholar]
- Jolicoeur, C. Comparative study of two semicontinuous models for wire strand analysis. J. Eng. Mech. 1997, 123, 792–799. [Google Scholar] [CrossRef]
- Sævik, S. A finite element model for predicting stresses and slip in flexible pipe armouring tendons at bending gradients. Comput. Struct. 1993, 46, 219–230. [Google Scholar] [CrossRef]
- Sævik, S. A finite element model for predicting longitudinal stresses in non-bonded pipe pressure armours. In Proceedings of the Third European Conference on Flexible Pipes, Umbilicals and Marine Cables, MARINFLEX-99, London, UK, 26–27 May 1999. [Google Scholar]
- Sævik, S. Theoretical and experimental studies of stresses in flexible pipes. Comput. Struct. 2011, 89, 2273–2291. [Google Scholar] [CrossRef]
- Sævik, S.; Ekeberg, K.I. Non-linear stress analysis of complex umbilicals. In Proceedings of the OMAE’2002, Oslo, Norway, 23–28 June 2002. [Google Scholar]
- Sævik, S.; Gray, L.J.; Phan, A. A method for calculating residual and transverse stress effects in flexible pipe pressure spirals. In Proceedings of the OMAE’2001, Rio de Jaineiro, Brazil, 3–8 June 2001. [Google Scholar]
- Sævik, S.; Li, H. Shear interaction and transverse buckling of tensile armours in flexible pipes. In Proceedings of the OMAE’2013, Nantes, France, 9–15 June 2013. [Google Scholar]
- Sævik, S.; Thorsen, M.J. Techniques for predicting tensile armour buckling and fatigue in deep water flexible pipes. In Proceedings of the OMAE’2012, Rio de Jaineiro, Brazil, 1–6 July 2012. [Google Scholar]
- ISO 13628-2; Petroleum and Natural Gas Industries—Design and Operation of Subsea Production Systems—Part 2: Unbonded Flexible Pipe Systems for Subsea and Marine Applications. ISO: Geneva, Switzerland, 2006.
- DNV-OS-F201Offshore Standard: Dynamic Risers, Det Norske Veritas: Oslo, Norway, 2010.
- DNV-OS-501; Offshore Standard: Composite Components. Det Norske Veritas: Oslo, Norway, 2009.
- API 17J; Specifications for Unbonded Flexible Pipe. American Petroleum Institute (API): Washington, DC, USA, 2008; Technical Report.
- Zhang, D.; Ostoja-Starzewski, M. Finite element solutions to the bending stiffness of a single-layered helically wound cable with internal friction. J. Appl. Mech. 2016, 83, 031003. [Google Scholar] [CrossRef]
- Jiang, W.-G. A concise finite element model for pure bending analysis of simple wire strand. Int. J. Mech. Sci. 2012, 54, 69–73. [Google Scholar] [CrossRef]
- Sævik, S.; Bruaseth, S. Theoretical and experimental studies of the axisymmetric behaviour of complex umbilical cross-sections. Appl. Ocean Res. 2005, 27, 97–106. [Google Scholar] [CrossRef]
- Lukassen, T.V.; Gunnarsson, E.; Krenk, S.; Glejbøl, K.; Lyckegaard, A.; Berggreen, C. Tension-bending analysis of flexible pipe by a repeated unit cell finite element model. Mar. Struct. 2019, 64, 401–420. [Google Scholar] [CrossRef]
- Lu, H.; Vaz, M.A.; Caire, M. A finite element model for unbonded flexible pipe under combined axisymmetric and bending loads. Mar. Struct. 2020, 74, 102826. [Google Scholar] [CrossRef]
- Lu, H.; Vaz, M.A.; Caire, M. Alternative analytical and finite element models for unbonded flexible pipes under axisymmetric loads. Ocean Eng. 2021, 225, 108766. [Google Scholar] [CrossRef]
- Fang, P.; Li, X.; Jiang, X.; Hopman, H.; Bai, Y. Bending Study of Submarine Power Cables Based on a Repeated Unit Cell Model. Eng. Struct. 2023, 293, 116606. [Google Scholar] [CrossRef]
- Ménard, F.; Cartraud, P. Solid and 3D beam finite element models for the nonlinear elastic analysis of helical strands within a computational homogenization framework. Comput. Struct. 2021, 257, 106675. [Google Scholar] [CrossRef]
- Ménard, F.; Cartraud, P. A computationally efficient finite element model for the analysis of the non-linear bending behaviour of a dynamic submarine power cable. Mar. Struct. 2023, 91, 103465. [Google Scholar] [CrossRef]
- DNV Helica. Available online: https://www.dnv.com/Publications/helica-69612 (accessed on 1 May 2023).
- SINTEF UFLEX. Available online: https://www.sintef.no/en/software/uflex-stress-analysis-of-power-cables-and-umbilicals/ (accessed on 1 May 2023).
- Sobhaniasl, M.; Petrini, F.; Karimirad, M.; Bontempi, F. Fatigue Life Assessment for Power Cables in Floating Offshore Wind Turbines. Energies 2020, 13, 3096. [Google Scholar] [CrossRef]
- Rentschler, M.U.T.; Adam, F.; Chainho, P. Design optimization of dynamic inter-array cable systems for floating offshore wind turbines. Renew. Sustain. Energy Rev. 2019, 111, 622–635. [Google Scholar] [CrossRef]
- Thies, P.R.; Johanning, L.; Smith, G.H. Assessing mechanical loading regimes and fatigue life of marine power cables in marine energy applications. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2011, 226, 18–32. [Google Scholar] [CrossRef]
- Okpokparoro, S.; Sriramula, S. Reliability analysis of floating wind turbine dynamic cables under realistic environmental loads. Ocean Eng. 2023, 278, 114594. [Google Scholar] [CrossRef]
- Martinelli, L.; Lamberti, A.; Ruol, P.; Ricci, P.; Kirrane, P.; Fenton, C.; Johanning, L. Power Umbilical for Ocean Renewable Energy Systems—Feasibility and Dynamic Response Analysis. In Proceedings of the 3rd International Conference on Ocean Energy, Bilbao, Spain, 6–9 October 2010. [Google Scholar]
- Robinson, P. ASM Handbook. Properties of Wrought Coppers and Copper Alloys, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Almere, The Netherlands, 1990; Volume 2, pp. 265–345. [Google Scholar]
- SINTEF. UFLEX Theory Manual; SINTEF: Trondheim, Norway, 2018. [Google Scholar]
- Ye, N.; Yuan, Z. On Modelling Alternatives of Non-Critical Components in Dynamic Offshore Power Cables. In Proceedings of the 30th International Ocean and Polar Engineering Conference, Virtual, 11–16 October 2020. [Google Scholar]
- Guo, Y.; Ye, N. Numerical and Experimental Study on Full-Scale Test of Typical Offshore Dynamic Power Cable. In Proceedings of the 30th International Ocean and Polar Engineering Conference, Virtual, 11–16 October 2020. [Google Scholar]
- Jonkman, J.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; NREL: Golden, CO, USA, 2009; TP-500-38060. [Google Scholar]
- Zhao, S.; Cheng, Y.; Chen, P.; Nie, Y.; Fan, K. A comparison of two dynamic power cable configurations for a floating offshore wind turbine in shallow water. AIP Adv. 2021, 11, 035302. [Google Scholar] [CrossRef]
- Orcina. OrcaFlex ©, Version 11.3. Orcina: Ulverston, UK.
- Schnepf, A.; Pavon, C.L.; Ong, M.C.; Yin, G.; Johnsen, Ø. Feasibility study on suspended inter-array power cables between two spar-type offshore wind turbines. Ocean Eng. 2023, 277, 114215. [Google Scholar] [CrossRef]
- Ahmad, I.B.; Schnepf, A.; Ong, M.C. An Optimisation Methodology for Suspended Inter-Array Power Cable Configurations between Two Floating Offshore Wind Turbines. Ocean Eng. 2023, 278, 114406. [Google Scholar] [CrossRef]
- Johannessen, K.; Meling, T.S.; Haver, S. Joint Distribution for Wind and Waves in the Northern North Sea. Int. J. Offshore Polar Eng. 2002, 12, 19–28. [Google Scholar]
- IEC 61400-3-1:2019; Wind Energy Generation Systems—Part 3-1: Design Requirements for Fixed Offshore Wind Turbines. IEC: Geneva, Switzerland, 2019.
- National Renewable Energy Laboratory (2022). TurbSim. Available online: https://www.nrel.gov/wind/nwtc/turbsim.html (accessed on 14 January 2024).
- DNV-RP-C205; Environmental Conditions and Environmental Loads. Det Norske Veritas: Oslo, Norway, 2019.
- NORSOK N-003; Actions and Action Effects. Standards Norway: Lysaker, Norway, 2017.
- Ramachandran, G.K.V.; Robertson, A.; Jonkman, J.M.; Masciola, M.D. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines. In Proceedings of the Twenty-third International Offshore and Polar Engineering Conference, Anchorage, AK, USA, 30 June–5 July 2013. [Google Scholar]
- Karlsen, S. Fatigue of copper conductors for dynamic subsea power cables. In Proceedings of the OMAE’2010, Shanghai, China, 6–11 June 2010. [Google Scholar]
- DNV-RP-C203; Fatigue Design of Offshore Steel Structures. Det Norske Veritas: Oslo, Norway, 2021.
- Nasution, F.P.; Sævik, S.; Gjøsteen, J.K.Ø. Finite Element Analysis of the Fatigue Strength of Copper Power Conductors Exposed to Tension and Bending Loads. Int. J. Fatigue 2014, 59, 114–128. [Google Scholar] [CrossRef]
No | Physical Model | Material | Layer Outer Diameter [mm] | Lay Angle [°] | ||
---|---|---|---|---|---|---|
33 kV | 66 kV | 132 kV | ||||
1 | Conductor | Copper | 29.90 | 29.90 | 29.90 | conductor bundle 10 |
2 | Conductor Screen | Copper tape | 33.90 | 33.90 | 33.90 | |
3 | Insulation | XLPE 1 | 53.90 | 57.70 | 64.30 | |
4 | Insulation Screen | Copper | 59.80 | 64.00 | 71.00 | |
5 | Conductor Sheath | MDPE 2 | 65.90 | 70.40 | 77.90 | |
6 | Filler | MDPE | 142.20 | 151.80 | 168.00 | 10 |
7 | Bedding | PPY 3 | 143.00 | 152.60 | 168.80 | - |
8 | Inner Sheath | MDPE | 151.00 | 160.70 | 176.60 | - |
9 | Armor (inner layer) | Steel | 157.30 | 167.00 | 184.60 | 13 |
10 | Bedding | PPY | 157.70 | 167.40 | 185.00 | - |
11 | Armor (outer layer) | Steel | 164.00 | 173.70 | 193.00 | 10 |
12 | Outer Sheath | HDPE 4 | 174.50 | 184.00 | 204.00 | - |
Material | Density [kg/m3] | Elasticity Modulus [MPa] | Poisson Ratio [-] | Friction Stiffness [MPa/mm] | Friction Coefficient [-] |
---|---|---|---|---|---|
Copper | 8890 | 112,200 | 0.34 | 1500 | 0.30 |
Steel | 7800 | 200,000 | 0.26 | 2000 | 0.20 |
XLPE | 925 | 1000 | 0.40 | 1200 | 0.25 |
MDPE | 956 | 1000 | 0.40 | 1200 | 0.46 |
HDPE | 980 | 1000 | 0.40 | 1500 | 0.10 |
PPY | 895 | 150 | 0.40 | 1500 | 0.10 |
No | Physical Model | Numerical Model | Element Type | Material |
---|---|---|---|---|
1 | Conductor | Conductor | Beam | Copper |
2 | Conductor Screen | |||
3 | Insulation | Insulation | Shell | XLPE |
4 | Insulation Screen | |||
5 | Conductor Sheath | Conductor Sheath | Shell | MDPE |
6 | Filler | Filler | Beam | MDPE |
7 | Bedding | Inner Sheath | Shell | MDPE |
8 | Inner Sheath | |||
9 | Armor (inner layer) | Armor Inner | Beam | Steel |
10 | Bedding | Bedding | Shell | PPY |
11 | Armor (outer layer) | Armor Outer | Beam | Steel |
12 | Outer Sheath | Outer Sheath | Shell | HDPE |
Mesh Variant | Very Coarse | Coarse | Normal | Dense |
---|---|---|---|---|
Numerical Model Layer | Number of Elements | |||
Conductor | 8 | 12 | 16 | 20 |
Insulation | 48 | 72 | 96 | 120 |
Conductor Sheath | 48 | 72 | 96 | 120 |
Filler | 44 | 66 | 88 | 110 |
Inner Sheath | 200 | 300 | 400 | 500 |
Armor Inner | 8 | 12 | 16 | 20 |
Bedding | 200 | 300 | 400 | 500 |
Armor Outer | 8 | 12 | 16 | 20 |
Outer Sheath | 200 | 300 | 400 | 500 |
Parameter | Unit | Value |
---|---|---|
OC3-Hywind FOWT specifications (Jonkman et al. [45]) | ||
Rotor diameter | m | 126 |
Hub height | m | 90 |
Spar platform draft | m | 120 |
Number of mooring lines | - | 3 |
Angle between mooring lines | deg | 120 |
Water depth | m | 200 |
Cut-in wind speed | m/s | 3 |
Rated wind speed | m/s | 11.4 |
Cut-out wind speed | m/s | 25 |
Properties of the power cable | ||
Voltage rating | kV | 66 |
Outer diameter | m | 0.184 |
Weight in air | N/m | 547 |
Drag coefficient normal | - | Re dependent |
Drag coefficient axial | - | 0.008 |
Added mass coefficient normal | - | 1.0 |
Added mass coefficient axial | - | 0.0 |
Properties of the power cable with buoyancy modules | ||
Outer diameter | m | 0.390 |
Weight in air | N/m | 948 |
Drag coefficient normal | - | Re dependent |
Drag coefficient axial | - | 0.35 |
Added mass coefficient normal | - | 1.00 |
Added mass coefficient axial | - | 0.50 |
Load Case | Wind Speed at the Hub Height [m/s] | Turbulence Intensity [-] | Significant Wave Height [m] | Peak Period [s] | Wind-Induced Current Speed [m/s] |
---|---|---|---|---|---|
EC1 | 5 | 0.224 | 2.10 | 9.74 | 0.11 |
EC2 | 10 | 0.157 | 2.88 | 9.98 | 0.22 |
EC3 | 14 | 0.138 | 3.62 | 10.29 | 0.31 |
EC4 | 18 | 0.127 | 4.44 | 10.66 | 0.39 |
EC5 | 22 | 0.121 | 5.32 | 11.06 | 0.48 |
EC6 | 25 | 0.117 | 6.02 | 11.38 | 0.55 |
EC50X | 37.44 | 0.0759 | 12.95 | 16.06 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janocha, M.J.; Ong, M.C.; Lee, C.F.; Chen, K.; Ye, N. Reference Power Cable Models for Floating Offshore Wind Applications. Sustainability 2024, 16, 2899. https://doi.org/10.3390/su16072899
Janocha MJ, Ong MC, Lee CF, Chen K, Ye N. Reference Power Cable Models for Floating Offshore Wind Applications. Sustainability. 2024; 16(7):2899. https://doi.org/10.3390/su16072899
Chicago/Turabian StyleJanocha, Marek Jan, Muk Chen Ong, Chern Fong Lee, Kai Chen, and Naiquan Ye. 2024. "Reference Power Cable Models for Floating Offshore Wind Applications" Sustainability 16, no. 7: 2899. https://doi.org/10.3390/su16072899
APA StyleJanocha, M. J., Ong, M. C., Lee, C. F., Chen, K., & Ye, N. (2024). Reference Power Cable Models for Floating Offshore Wind Applications. Sustainability, 16(7), 2899. https://doi.org/10.3390/su16072899