Land-Use Change Dynamics in Areas Subjected to Direct Urbanization Pressure: A Case Study of the City of Olsztyn
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Identification of the Scope of Urban Function
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parysek, J.J. Duze miasta Europy i ich rola w procesie urbanizacji, rozwoju spoleczno-gospodarczego i europejskiej integracji u schylku XX wieku. Przegląd Geograficzny. Pol. Akad. Nauk 1995, 67, 225–248. [Google Scholar]
- Węcławowicz, G. Geografia Społeczna Miast w Polsce = Urban Social Geography in Poland. Prz. Geogr. 2017, 89, 535–563. [Google Scholar] [CrossRef]
- Soliman, A.M. Urbanization and Urban Informality in the Era of Globalization. In Urban Informality; Springer International Publishing: Cham, Switzerland, 2021; pp. 85–120. ISBN 978-3-030-68987-2. [Google Scholar]
- Solon, J. Spatial Context of Urbanization: Landscape Pattern and Changes between 1950 and 1990 in the Warsaw Metropolitan Area, Poland. Landsc. Urban Plan. 2009, 93, 250–261. [Google Scholar] [CrossRef]
- Kazak, J.K.; Błasik, M.; Świąder, M. Land use change in suburban zone: European context of urban sprawl. J. Water Land Dev. 2022, 92–98. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Huang, X.; Ye, C. The Integration of New-Type Urbanization and Rural Revitalization Strategies in China: Origin, Reality and Future Trends. Land 2021, 10, 207. [Google Scholar] [CrossRef]
- Delgado-Viñas, C.; Gómez-Moreno, M.-L. The Interaction between Urban and Rural Areas: An Updated Paradigmatic, Methodological and Bibliographic Review. Land 2022, 11, 1298. [Google Scholar] [CrossRef]
- Henderson, J.V.; Wang, H.G. Aspects of the Rural-Urban Transformation of Countries. J. Econ. Geogr. 2005, 5, 23–42. [Google Scholar] [CrossRef]
- Cieślak, I. Identification of Areas Exposed to Land Use Conflict with the Use of Multiple-Criteria Decision-Making Methods. Land Use Policy 2019, 89, 104225. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Duan, K. Evolutionary Overview of Urban Expansion Based on Bibliometric Analysis in Web of Science from 1990 to 2019. Habitat Int. 2020, 95, 102100. [Google Scholar] [CrossRef]
- Degórska, B. Urbanizacja Przestrzenna Terenów Wiejskich na Obszarze Metropolitalnym Warszawy: Kontekst Ekologiczno-Krajobrazowy; IGiPZ PAN: Warsaw, Poland, 2017; ISBN 978-83-61590-86-6. [Google Scholar]
- Mills, E.S. Studies in the Structure of the Urban Economy; The Johns Hopkins Press: Baltimore, MA, USA, 2021. [Google Scholar]
- O’Sullivan, A. Urban Economics; McGraw Hill: New York, NY, USA, 2018; ISBN 978-0-07-802178-7. [Google Scholar]
- Geshkov, M. Urban Sprawl in Eastern Europe. The Sofia City Example. Econ. Altern. 2015, 2, 101–116. [Google Scholar]
- Kocur-Bera, K.; Pszenny, A. Conversion of Agricultural Land for Urbanization Purposes: A Case Study of the Suburbs of the Capital of Warmia and Mazury, Poland. Remote Sens. 2020, 12, 2325. [Google Scholar] [CrossRef]
- Lityński, P. The Intensity of Urban Sprawl in Poland. ISPRS Int. J. Geo-Inf. 2021, 10, 95. [Google Scholar] [CrossRef]
- Bryan, G.; Glaeser, E.; Tsivanidis, N. Cities in the Developing World. Annu. Rev. Econ. 2020, 12, 273–297. [Google Scholar] [CrossRef]
- Tang, J.; Li, S. Can Public Participation Promote Regional Green Innovation?—Threshold Effect of Environmental Regulation Analysis. Heliyon 2022, 8, e11157. [Google Scholar] [CrossRef]
- Nechyba, T.J.; Walsh, R.P. Urban Sprawl. J. Econ. Perspect. 2004, 18, 177–200. [Google Scholar] [CrossRef]
- Antrop, M. Rural-Urban Conflicts and Opportunities. In The New Dimensions of the European Landscape; Jongman, R.H.G., Ed.; Wageningen UR Frontis Series; Springer Netherlands: Dordrecht, The Netherlands, 2004; Volume 4, pp. 83–91. ISBN 978-1-4020-2910-3. [Google Scholar]
- Biłozor, A.; Cieślak, I.; Czyza, S. An Analysis of Urbanisation Dynamics with the Use of the Fuzzy Set Theory-A Case Study of the City of Olsztyn. Remote Sens. 2020, 12, 1784. [Google Scholar] [CrossRef]
- Biłozor, A.; Czyża, S.; Bajerowski, T. Identification and Location of a Transitional Zone between an Urban and a Rural Area Using Fuzzy Set Theory, CLC, and HRL Data. Sustainability 2019, 11, 7014. [Google Scholar] [CrossRef]
- Simon, D. Urban Environments: Issues on the Peri-Urban Fringe. Annu. Rev. Environ. Resour. 2008, 33, 167–185. [Google Scholar] [CrossRef]
- Siemiński, J.L. Kontinuum miejsko-wiejskie i niektóre jego problemy infrastrukturalne. Infrastrukt. Ekol. Teren. Wiej. 2010, 2, 215–228. [Google Scholar]
- Sobotka, S. Przekształcenia historycznych układów przestrzennych wsi w strefie podmiejskiej Olsztyna, ze szczególnym uwzględnieniem Brąswałdu, Dorotowa i Jonkowa. Acta Sci. Pol. Adm. Locorum 2014, 13, 39–57. [Google Scholar]
- Szmytkie, R. Metody Analizy Morfologii i Fizjonomii Jednostek Osadniczych; Instytut Geografii i Rozwoju Regionalnego Uniwersytetu Wrocławskiego: Wrocław, Poland, 2014; ISBN 978-83-62673-45-2. [Google Scholar]
- Konecka-Szydłowska, B. Najmniejsze Miasta w Polsce w Ujęciu Koncepcji Kontinuum Miejsko-Wiejskiego. Rozw. Reg. I Polityka Reg. 2018, 41, 151–165. [Google Scholar] [CrossRef]
- Labbé, D. Facing the Urban Transition in Hanoi: Recent Urban Planning Issues and Initiatives; Urbanisation Culture Société: Montréal, QC, Canada, 2010. [Google Scholar]
- Loibl, W.; Piorr, A.P.; Ravetz, J. Concepts and Methods. In Life Sciences; University of Copenhagen, Academic Books: København, Denmark, 2011. [Google Scholar]
- Ravetz, J.; Warhurst, P. Manchester: Re-Inventing the Local–Global in the Peri-Urban City-Region. In Peri-Urban Futures: Scenarios and Models for Land Use Change in Europe; Nilsson, K., Pauleit, S., Bell, S., Aalbers, C., Sick Nielsen, T.A., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2013; pp. 169–207. ISBN 978-3-642-30528-3. [Google Scholar]
- Degórska, B. Urbanizacja przestrzenna terenów wiejskich na obszarze metropo + Spatial urbanization of rural areas of the Warsaw Metropolitan Area: Ecological and ladscape contextlitalnym Warszawy: Kontekst ekologiczno-krajobrazowy. Pr. Geogr.-Pol. Akad. Nauk 2017. Available online: https://rcin.org.pl/dlibra/doccontent?id=66131 (accessed on 27 March 2024).
- Acevedo, W.; Masuoka, P. Time-Series Animation Techniques for Visualizing Urban Growth. Comput. Geosci. 1997, 23, 423–435. [Google Scholar] [CrossRef]
- Tacoli, C. The Links between Urban and Rural Development. Environ. Urban. 2003, 15, 3–12. [Google Scholar] [CrossRef]
- Simon, D.; Mcgregor, D.; Nsiah-Gyabaah, K. The Changing Urban–Rural Interface of African Cities: Definitional Issues and an Application to Kumasi, Ghana. Environ. Urban 2004, 16, 235–247. [Google Scholar] [CrossRef]
- Gallent, N. The Rural–Urban Fringe: A New Priority for Planning Policy? Plan. Pract. Res. 2006, 21, 383–393. [Google Scholar] [CrossRef]
- Csatári, B.; Farkas, J.Z.; Lennert, J. Land Use Changes in the Rural-Urban Fringe of Kecskemét after the Economic Transition. J. Settl. Spat. Plan. 2013, 4. [Google Scholar]
- Nabielek, K.; Kronberger-Nabielek, P.; Hamers, D. The Rural-Urban Fringe in the Netherlands: Recent Developments and Future Challenges. SPOOL 2013, 1, 1–18. [Google Scholar] [CrossRef]
- Hao, P.; Geertman, S.; Hooimeijer, P.; Sliuzas, R. The Land-Use Diversity in Urban Villages in Shenzhen. Environ. Plan. A 2012, 44, 2742–2764. [Google Scholar] [CrossRef]
- Gant, R.L.; Robinson, G.M.; Fazal, S. Land-Use Change in the ‘Edgelands’: Policies and Pressures in London’s Rural–Urban Fringe. Land Use Policy 2011, 28, 266–279. [Google Scholar] [CrossRef]
- Datta, R. Territorial Integration: An Approach to Address Urbanising Villages in the Planning for Delhi Metropolitan Area, India. In Proceedings of the Territorial Integration of Urbanising Villages 40th ISoCaRP Congress, Geneva, Switzerland, 18–22 September 2004; Volume 22. [Google Scholar]
- Renigier-Biłozor, M.; Biłozor, A. Optimization of the Variables Selection in the Process of Real Estate Markets Rating. Oeconomia Copernic. 2015, 6, 139. [Google Scholar] [CrossRef]
- Bilozor, A.; Renigier-Bilozor, M.; Cellmer, R. Assessment Procedure of Suburban Land Attractiveness and Usability for Housing. In Proceedings of the 2018 Baltic Geodetic Congress (BGC Geomatics), Olsztyn, Poland, 21–23 June 2018; pp. 91–96. [Google Scholar]
- Bagnoli, C.; Smith, H. The Theory of Fuzz Logic and Its Application to Real Estate Valuation. J. Real Estate Res. 1998, 16, 169–200. [Google Scholar] [CrossRef]
- Ready, R.; Abdalla, C. GIS Analysis of Land Use on the Rural-Urban Fringe: The Impact of Land Use and Potential Local Disamenities on Residential Property Values and on the Location of Residential Development in Berks County, Pennsylvania; Northeast Regional Center for Rural Development, Pennsylvania State University: University Park, PA, USA, 2003. [Google Scholar]
- López, V.; Santos, M.; Montero, J. Fuzzy Specification in Real Estate Market Decision Making. Int. J. Comput. Intell. Syst. 2010, 3, 8–20. [Google Scholar] [CrossRef]
- Renigier-Biłozor, M. Modern Classification System of Real Estate Markets. Geod. Vestn. 2017, 61, 441–460. [Google Scholar] [CrossRef]
- Renigier-Biłozor, M.; Walacik, M.; Źróbek, S.; d’Amato, M. Forced Sale Discount on Property Market—How to Assess It? Land Use Policy 2018, 78, 104–115. [Google Scholar] [CrossRef]
- Renigier-Biłozor, M.; Źróbek, S.; Walacik, M.; Borst, R.; Grover, R.; d’Amato, M. International Acceptance of Automated Modern Tools Use Must-Have for Sustainable Real Estate Market Development. Land Use Policy 2022, 113, 105876. [Google Scholar] [CrossRef]
- Cieślak, I.; Górecka, K. An Evaluation of Urbanisation Processes in Suburban Zones Using Land-Cover Data and Fuzzy Set Theory. Bull. Geography. Socio-Econ. Ser. 2021, 54, 49–62. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-Resolution Multi-Temporal Mapping of Global Urban Land Using Landsat Images Based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Schug, F.; Okujeni, A.; Hauer, J.; Hostert, P.; Nielsen, J.Ø.; van der Linden, S. Mapping Patterns of Urban Development in Ouagadougou, Burkina Faso, Using Machine Learning Regression Modeling with Bi-Seasonal Landsat Time Series. Remote Sens. Environ. 2018, 210, 217–228. [Google Scholar] [CrossRef]
- Benedek, J.; Sebestyén, T.T.; Bartók, B. Evaluation of Renewable Energy Sources in Peripheral Areas and Renewable Energy-Based Rural Development. Renew. Sustain. Energy Rev. 2018, 90, 516–535. [Google Scholar] [CrossRef]
- Akay, S.S.; Sertel, E. Urban land cover/use change detection using high resolution spot 5 and spot 6 images and urban atlas nomenclature. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 789–796. [Google Scholar] [CrossRef]
- Balz, T.; Washaya, P.; Jendryke, M. Urban Change Monitoring Using Globally Available Sentinel-1 Imagery. In Proceedings of the 2018 International Workshop on Big Geospatial Data and Data Science (BGDDS), Wuhan, China, 22–23 September 2018; pp. 1–4. [Google Scholar]
- Kong, F.; Yin, H.; Nakagoshi, N.; James, P. Simulating Urban Growth Processes Incorporating a Potential Model with Spatial Metrics. Ecol. Indic. 2012, 20, 82–91. [Google Scholar] [CrossRef]
- Hansen, H. A Fuzzy Logic Approach to Urban Land-Use Mapping. In Proceedings of the 9th Scandinavian Research Conference on Geographical Information Science, Espoo, Finland, 4–6 June 2003; p. 56. [Google Scholar]
- Loia, V. (Ed.) Studies in fuzziness and soft computing. In Fuzzy Logic and the Internet; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-3-540-20180-9. [Google Scholar]
- Cardone, B.; Di Martino, F. A New Geospatial Model Integrating a Fuzzy Rule-Based System in a GIS Platform to Partition a Complex Urban System in Homogeneous Urban Contexts. Geosciences 2018, 8, 440. [Google Scholar] [CrossRef]
- Ghajari, Y.; Alesheikh, A.; Modiri, M.; Hosnavi, R.; Abbasi, M. Spatial Modelling of Urban Physical Vulnerability to Explosion Hazards Using GIS and Fuzzy MCDA. Sustainability 2017, 9, 1274. [Google Scholar] [CrossRef]
- Asadi, P.; Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Fuzzy Vulnerability Mapping of Urban Groundwater Systems to Nitrate Contamination. Environ. Model. Softw. 2017, 96, 146–157. [Google Scholar] [CrossRef]
- Men, B.; Liu, H.; Tian, W.; Liu, H. Evaluation of Sustainable Use of Water Resources in Beijing Based on Rough Set and Fuzzy Theory. Water 2017, 9, 852. [Google Scholar] [CrossRef]
- Hwang, S.; Thill, J.-C. Using Fuzzy Clustering Methods for Delineating Urban Housing Submarkets. In Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, Seattle, WA, USA, 7 November 2007; ACM: Seattle, WA, USA, 2007; pp. 1–8. [Google Scholar]
- Łuczak, A.; Kalinowski, S. Fuzzy Clustering Methods to Identify the Epidemiological Situation and Its Changes in European Countries during COVID-19. Entropy 2021, 24, 14. [Google Scholar] [CrossRef] [PubMed]
- Biłozor, A. Urban Land Use Changes Forecasting. In Proceedings of the 9th International Conference “Environmental Engineering 2014”, Vilnius, Lithuania, 22–24 May 2014; Vilnius Gediminas Technical University Press Technika: Vilnius, Lithuania, 2014. [Google Scholar]
- Sui, D.Z. A Fuzzy GIS Modeling Approach for Urban Land Evaluation. Comput. Environ. Urban Syst. 1992, 16, 101–115. [Google Scholar] [CrossRef]
- Foroutan, E.; Delavar, M.R. Urban Growth Modeling Using Fuzzy Logic. In Proceedings of the ASPRS 2012 Annual Conference, Sacramento, CA, USA, 19–23 March 2012. [Google Scholar]
- Kurtener, D.; Badenko, V. A GIS Methodological Framework Based on Fuzzy Sets Theory for Land Use Management. J. Braz. Comp. Soc. 2000, 6, 26–32. [Google Scholar] [CrossRef]
- Bielinis, L.; Bielinis, E.; Zawadzka, A.; Omelan, A.; Makowska, M. The Touristic, Recreational and Natural Assets of Olsztyn City and Its Neighbouring Area in the Opinion of the Residents/Walory Turystyczne, Rekreacyjne, Przyrodnicze Olsztyna i Okolic Według Opinii Mieszkańców. Ekon. I Sr. 2015, 4, 235. [Google Scholar]
- Viegas, J.M.; Martinez, L.M.; Silva, E.A. Effects of the Modifiable Areal Unit Problem on the Delineation of Traffic Analysis Zones. Environ. Plann. B Plann. Des. 2009, 36, 625–643. [Google Scholar] [CrossRef]
- Współczesne Problemy Oceny i Waloryzacji Przestrzeni. Współczesna Waloryzacja Przestrzeni Zurbanizowanej/pod Red. Iwony Cieślak; Wydawnictwo UWM: Olsztyn, Poland, 2012. [Google Scholar]
- Longley, P.A.; Adnan, M.; Lansley, G. The Geotemporal Demographics of Twitter Usage. Environ. Plan. A 2015, 47, 465–484. [Google Scholar] [CrossRef]
- Encalada-Abarca, L.; Ferreira, C.C.; Rocha, J. Revisiting City Tourism in the Longer Run: An Exploratory Analysis Based on LBSN Data. Curr. Issues Tour. 2024, 27, 584–599. [Google Scholar] [CrossRef]
- Rutkowska, D.; Hayashi, Y. Fuzzy Inference Neural Networks with Fuzzy Parameters. TASK Quarterly Sci. Bull. Acad. Comput. Cent. Gdan. 2003, 7, 7–22. [Google Scholar]
- Zadeh, L. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zilberstein, S. What Is “Fuzzy Logic”? Are There Computers That Are Inherently Fuzzy and Do Not Apply the Usual Binary Logic? Available online: https://www.scientificamerican.com/article/what-is-fuzzy-logic-are-t/ (accessed on 19 January 2024).
- Piegat, A. Fuzzy Modeling and Control: With 96 Tables; Studies in fuzziness and soft computing; Physica-Verl: Heidelberg, Germany, 2001; ISBN 978-3-7908-1385-2. [Google Scholar]
- Łachwa, A. Rozmyty Świat Zbiorów, Liczb, Relacji, Faktów, Reguł i Decyzji; Akademicka Oficyna Wydawnicza EXIT: Katowice, Poland, 2001; ISBN 978-83-87674-21-2. [Google Scholar]
- Cieślak, M.; Smoluk, A. Zbiory Rozmyte; Rozpoznawanie Obrazów; Teoria Katastrof: Wybór Tekstów; Państ. Wydaw. Naukowe: Warsa, Poland, 1988. [Google Scholar]
- Molecki, B. Algorytmy Genetyczne a Logika Rozmyta; Politechnika Wrocławska: Wrocław, Poland, 1998. [Google Scholar]
- Pissourios, I.A. Urban Land Use Survey Methods: A Discussion on Their Evolution. Urban Sci. 2023, 7, 76. [Google Scholar] [CrossRef]
- Linder, W. Digital Photogrammetry: A Practical Course; Springer: Berlin, Germany, 2006; ISBN 978-3-540-29153-4. [Google Scholar]
- Bishop, M.P.; Giardino, J.R. Technology-Driven Geomorphology: Introduction and Overview. In Treatise on Geomorphology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–17. ISBN 978-0-12-818235-2. [Google Scholar]
- Bieda, A. Increase in the Number of Submitted Maps for Design Purposes as a Determinant of Proper Spatial Planning Policy. J. Water Land Dev. 2017, 34, 65–75. [Google Scholar] [CrossRef]
- Vermeulen, F.; Antrop, M.; Hageman, B.; Wiedemann, T. Ancient Roads and Fields in Northwestern Gaul—A GIS-Based Analysis. In BAR International Series 931; Archaeopress: Oxford, UK, 2000; Volume 931; Available online: https://proceedings.caaconference.org/files/2000/27_Vermeulen_et_al_CAA_2000.pdf (accessed on 23 January 2024).
- Antrop, M. Changing Patterns in the Urbanized Countryside of Western Europe. Landsc. Ecol. 2000, 15, 257–270. [Google Scholar] [CrossRef]
- Antrop, M.; Van Eetvelde, V. Holistic Aspects of Suburban Landscapes: Visual Image Interpretation and Landscape Metrics. Landsc. Urban Plan. 2000, 50, 43–58. [Google Scholar] [CrossRef]
- Butt, A.; Shabbir, R.; Ahmad, S.S.; Aziz, N. Land Use Change Mapping and Analysis Using Remote Sensing and GIS: A Case Study of Simly Watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef]
- Salehi, B.; Zhang, Y.; Zhong, M.; Dey, V. Object-Based Classification of Urban Areas Using VHR Imagery and Height Points Ancillary Data. Remote Sens. 2012, 4, 2256–2276. [Google Scholar] [CrossRef]
- Brelsford, C.; Martin, T.; Hand, J.; Bettencourt, L.M.A. Toward Cities without Slums: Topology and the Spatial Evolution of Neighborhoods. Sci. Adv. 2018, 4, eaar4644. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Zhai, W.; Shen, Y.; Ye, X. Understanding Uneven Urban Expansion with Natural Cities Using Open Data. Landsc. Urban Plan. 2018, 177, 281–293. [Google Scholar] [CrossRef]
- Encalada-Abarca, L.; Ferreira, C.C.; Rocha, J. Measuring Tourism Intensification in Urban Destinations: An Approach Based on Fractal Analysis. J. Travel Res. 2022, 61, 394–413. [Google Scholar] [CrossRef]
- Samsonova, V.P.; Blagoveshchenskii, Y.N.; Meshalkina, Y.L. Use of Empirical Bayesian Kriging for Revealing Heterogeneities in the Distribution of Organic Carbon on Agricultural Lands. Eurasian Soil Sci. 2017, 50, 305–311. [Google Scholar] [CrossRef]
- Wieskotten, M.; Crozet, M.; Iooss, B.; Lacaux, C.; Marrel, A. A Comparison between Bayesian and Ordinary Kriging Based on Validation Criteria: Application to Radiological Characterisation. Math. Geosci. 2024, 56, 143–168. [Google Scholar] [CrossRef]
- Jia, W.; Sun, M.; Lian, J.; Hou, S. Feature Dimensionality Reduction: A Review. Complex Intell. Syst. 2022, 8, 2663–2693. [Google Scholar] [CrossRef]
- Biłozor, A.; Renigier-Bilozor, M. The Use of Geoinformation in the Process of Optymalizing the Use of Land. In Proceedings of the 9th International Conference “Environmental Engineering 2014”, Vilnius, Lithuania, 22–24 May 2014; Vilnius Gediminas Technical University Press Technika: Vilnius, Lithuania, 2014. [Google Scholar]
- Lefebvre, A.; Sannier, C.; Corpetti, T. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree. Remote Sens. 2016, 8, 606. [Google Scholar] [CrossRef]
- Lisini, G.; Salentinig, A.; Du, P.; Gamba, P. SAR-Based Urban Extents Extraction: From ENVISAT to Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2683–2691. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Tian, B.; Liang, D. Multi-Temporal SAR Image Classification of Coastal Plain Wetlands Using a New Feature Selection Method and Random Forests. Remote Sens. Lett. 2019, 10, 312–321. [Google Scholar] [CrossRef]
- Lerner, A.M.; Eakin, H. An Obsolete Dichotomy? Rethinking the Rural-Urban Interface in Terms of Food Security and Production in the Global South: An Obsolete Dichotomy? Geogr. J. 2011, 177, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Rogan, J.; Chen, D. Remote Sensing Technology for Mapping and Monitoring Land-Cover and Land-Use Change. Prog. Plan. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Treitz, P. Remote Sensing for Mapping and Monitoring Land-Cover and Land-Use Change. Prog. Plan. 2004, 61, 267. [Google Scholar] [CrossRef]
- Alqurashi, A.F.; Kumar, L. Investigating the Use of Remote Sensing and GIS Techniques to Detect Land Use and Land Cover Change: A Review. Adv. Remote Sens. 2013, 02, 193–204. [Google Scholar] [CrossRef]
- Danielaini, T.T.; Maheshwari, B.; Hagare, D. Defining Rural–Urban Interfaces for Understanding Ecohydrological Processes in West Java, Indonesia: Part II. Its Application to Quantify Rural–Urban Interface Ecohydrology. Ecohydrol. Hydrobiol. 2018, 18, 37–51. [Google Scholar] [CrossRef]
- Śleszyński, P.; Gibas, P.; Sudra, P. The Problem of Mismatch between the CORINE Land Cover Data Classification and the Development of Settlement in Poland. Remote Sens. 2020, 12, 2253. [Google Scholar] [CrossRef]
- Xu, J.; Chen, C.; Zhou, S.; Hu, W.; Zhang, W. Land Use Classification in Mine-Agriculture Compound Area Based on Multi-Feature Random Forest: A Case Study of Peixian. Front. Sustain. Food Syst. 2024, 7, 1335292. [Google Scholar] [CrossRef]
- Morgan, J.L.; Gergel, S.E.; Coops, N.C. Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience 2010, 60, 47–59. [Google Scholar] [CrossRef]
- Vanderhaegen, S.; Canters, F. Mapping Urban Form and Function at City Block Level Using Spatial Metrics. Landsc. Urban Plan. 2017, 167, 399–409. [Google Scholar] [CrossRef]
- Leung, Y. On the Imprecision of Boundaries. Geogr. Anal. 1987, 19, 125–151. [Google Scholar] [CrossRef]
- Thomas, N.; Hendrix, C.; Congalton, R.G. A Comparison of Urban Mapping Methods Using High-Resolution Digital Imagery. Photogramm. Eng. Remote Sens. 2003, 69, 963–972. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
No | Land-Use Types | Degree of Membership in a Set of Urban Functions |
---|---|---|
1 | Single-family homes | 0.69 |
2 | Multi-family housing | 1.00 |
3 | Services | 0.92 |
4 | Sports and recreational areas | 0.66 |
5 | Commercial facilities with a sales area larger than 2000 m2 | 0.90 |
6 | Agricultural land | 0.09 |
7 | Orchards and horticulture farms | 0.26 |
8 | Auxiliary services for farms, breeding centers, horticulture farms, forests, and fish farms | 0.10 |
9 | Farmstead buildings in crop, livestock, and horticulture farms | 0.16 |
10 | Industrial plants and warehouses | 0.97 |
11 | Mining areas | 0.34 |
12 | Forests | 0.20 |
13 | Organized green spaces | 0.68 |
14 | Natural (unorganized) green spaces | 0.35 |
15 | Gardens | 0.45 |
16 | Cemeteries | 0.51 |
17 | Marine surface waters | 0.20 |
18 | Inland surface waters | 0.20 |
19 | Public roads | 0.82 |
20 | Internal roads | 0.80 |
21 | Water transport routes | 0.52 |
22 | Technical infrastructure | 0.66 |
23 | Special areas—military, police | 0.76 |
24 | Construction sites | 0.64 |
Membership Interval in the Set of Urban Functions | 2005 | 2010 | 2017 | 2022 |
---|---|---|---|---|
0.000–0.100 | 22 | 20 | 11 | 9 |
0.101–0.150 | 94 | 90 | 63 | 57 |
0.151–0.200 | 181 | 175 | 175 | 149 |
0.201–0.250 | 192 | 184 | 183 | 184 |
0.251–0.300 | 82 | 83 | 93 | 105 |
0.301–0.350 | 42 | 47 | 49 | 51 |
0.351–0.400 | 46 | 48 | 55 | 58 |
0.401–0.450 | 32 | 26 | 29 | 31 |
0.451–0.500 | 24 | 26 | 31 | 31 |
0.501–0.550 | 23 | 23 | 19 | 23 |
0.551–0.600 | 21 | 28 | 31 | 30 |
0.601–0.650 | 18 | 18 | 20 | 27 |
0.651–0.700 | 15 | 18 | 19 | 20 |
0.701–0.750 | 18 | 20 | 18 | 16 |
0.751–0.800 | 11 | 13 | 19 | 15 |
0.801–0.850 | 18 | 19 | 15 | 21 |
0.851–0.900 | 13 | 12 | 20 | 20 |
0.901–0.950 | 16 | 17 | 16 | 9 |
0.951–1.000 | 2 | 3 | 4 | 4 |
Year | Number of Fields with a Predominance of Urban Functions | Percentage of Fields with a Predominance of Urban Functions | Total Area with a Predominance of Urban Functions |
---|---|---|---|
2005 | 155 | 15.32% | 3100 ha |
2010 | 171 | 16.90% | 3420 ha |
2017 | 181 | 17.98% | 3620 ha |
2022 | 185 | 18.28% | 3700 ha |
No | Land-Use Type | 2005–2010 (%) | 2010–2017 (%) | 2017–2022 (%) | 2005–2022 (%) |
---|---|---|---|---|---|
1 | Single-family homes | 9.32 | 7.21 | 8.77 | 25.3 |
2 | Multi-family housing | 3.01 | 2.79 | 3.62 | 9.42 |
3 | Services | 0.68 | 1.30 | 1.48 | 3.46 |
4 | Sports and recreational areas | 0.10 | 0.74 | 0.37 | 1.21 |
6 | Agricultural land | −10.04 | −19.87 | −11.33 | −41.24 |
7 | Orchards and horticulture farms | −1.28 | −0.27 | −0.62 | −2.17 |
10 | Industrial plants and warehouses | 2.15 | 0.41 | 1.37 | 3.93 |
12 | Forests | −2.38 | −7.60 | −3.37 | −13.35 |
13 | Organized green spaces | −1.16 | −0.20 | −0.18 | −1.54 |
14 | Natural (unorganized) green spaces | −2.96 | −6.79 | 0.68 | −9.07 |
18 | Inland surface waters | 0.09 | 1.08 | −0.07 | 1.10 |
19 | Public roads | 1.03 | 3.40 | 14.01 | 18.44 |
20 | Internal roads | 0.72 | 0.52 | 0.49 | 1.73 |
22 | Technical infrastructure | 0.44 | 0.41 | 0.82 | 1.67 |
24 | Construction sites | 0.33 | 15.65 | −16.33 | −0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biłozor, A.; Cieślak, I.; Czyża, S.; Szuniewicz, K.; Bajerowski, T. Land-Use Change Dynamics in Areas Subjected to Direct Urbanization Pressure: A Case Study of the City of Olsztyn. Sustainability 2024, 16, 2923. https://doi.org/10.3390/su16072923
Biłozor A, Cieślak I, Czyża S, Szuniewicz K, Bajerowski T. Land-Use Change Dynamics in Areas Subjected to Direct Urbanization Pressure: A Case Study of the City of Olsztyn. Sustainability. 2024; 16(7):2923. https://doi.org/10.3390/su16072923
Chicago/Turabian StyleBiłozor, Andrzej, Iwona Cieślak, Szymon Czyża, Karol Szuniewicz, and Tomasz Bajerowski. 2024. "Land-Use Change Dynamics in Areas Subjected to Direct Urbanization Pressure: A Case Study of the City of Olsztyn" Sustainability 16, no. 7: 2923. https://doi.org/10.3390/su16072923
APA StyleBiłozor, A., Cieślak, I., Czyża, S., Szuniewicz, K., & Bajerowski, T. (2024). Land-Use Change Dynamics in Areas Subjected to Direct Urbanization Pressure: A Case Study of the City of Olsztyn. Sustainability, 16(7), 2923. https://doi.org/10.3390/su16072923