Grape Pomace (Vitis vinifera L.) Waste Valorization: Assessing Its Potential as a Sustainable Natural Dye for Textiles Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Raw Material
2.1.2. Textile Substrates
2.2. Methods
2.2.1. Extraction Process
2.2.2. Dyeing Procedure
2.2.3. Fastness Tests
2.2.4. Color Measurement
2.2.5. UV-Vis Absorption Spectra
2.2.6. Qualitative Phytochemical Tests
2.2.7. Antimicrobial Tests
2.3. A Step-by-Step Guide to the Experimental Procedures Employed
3. Results and Discussion
3.1. Extraction Performance
3.2. Qualitative Phytochemical Tests
3.3. Dyeing Performance and Final Color
- -
- The control samples always have higher L* coordinate values than the dyed samples, with the greatest difference observed for the cationized cotton samples (−30 < ΔL* < −37);
- -
- Although a* < 0 for control samples and a* > 0 for dyed samples, the Δa* coordinate difference is positive in all cases, indicating that the samples became redder after dyeing, regardless of the nature of the textile substrate (Figure 7);
- -
- When comparing the b* coordinate between control and dyed samples (always a positive value), it is higher for cotton samples (Δb* > 0) and lower for wool samples (Δb* < 0) after dyeing, which means that cotton samples become yellower, while wool samples become bluer with dyeing (Figure 7).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassaan, M.A.; El Nemr, A.; Hassaan, A. Health and Environmental Impacts of Dyes: Mini Review. Am. J. Environ. Sci. Eng. 2017, 1, 64–67. [Google Scholar]
- Nayak, R.; Panwar, T.; Van Thang Nguyen, L. Sustainability in Fashion and Textiles: A Survey from Developing Country. In Sustainable Technologies for Fashion and Textiles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–30. ISBN 9780081028674. [Google Scholar]
- Benkhaya, S.; M’rabet, S.; El Harfi, A. A Review on Classifications, Recent Synthesis and Applications of Textile Dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Rosen, M.A.; Chi, T.; Cao, H.; Lara, L.; Cabral, I.; Cunha, J. Ecological Approaches to Textile Dyeing: A Review. Sustainability 2022, 14, 8353. [Google Scholar] [CrossRef]
- Rana, S.; Pichandi, S.; Parveen, S.; Fangueiro, R. Natural Plant Fibers: Production, Processing, Properties and Their Sustainability Parameters. In Roadmap to Sustainable Textiles and Clothing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–35. [Google Scholar]
- Plakantonaki, S.; Kiskira, K.; Zacharopoulos, N.; Chronis, I.; Coelho, F.; Togiani, A.; Kalkanis, K.; Priniotakis, G. A Review of Sustainability Standards and Ecolabeling in the Textile Industry. Sustainability 2023, 15, 11589. [Google Scholar] [CrossRef]
- Pizzicato, B.; Pacifico, S.; Cayuela, D.; Mijas, G.; Riba-Moliner, M. Advancements in Sustainable Natural Dyes for Textile Applications: A Review. Molecules 2023, 28, 5954. [Google Scholar] [CrossRef] [PubMed]
- Elsahida, K.; Fauzi, A.M.; Sailah, I.; Siregar, I.Z. Sustainability of the Use of Natural Dyes in the Textile Industry. IOP Conf. Ser. Earth Environ. Sci. 2019, 399, 012065. [Google Scholar] [CrossRef]
- Che, J.; Yang, X. A Recent (2009–2021) Perspective on Sustainable Color and Textile Coloration Using Natural Plant Resources. Heliyon 2022, 8, e10979. [Google Scholar] [CrossRef] [PubMed]
- Brudzyńska, P.; Sionkowska, A.; Grisel, M. Plant-Derived Colorants for Food, Cosmetic and Textile Industries: A Review. Materials 2021, 14, 3484. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.N.C.; Lagoa, B.; Campos, L.; Silva, T.; Castro, L.M. Valorization of Arbutus Fruits Wastes as Bio-Dyes for Textiles Industry. In Proceedings of the Book of Poster Abstracts [P2.32]; International Symposium on Dyes & Pigments-Modern Colorants, Seville, Spain, 8–11 September 2019; p. 96. [Google Scholar]
- Lagoa, B.; Campos, L.; Silva, T.; Moreira, M.J.; Castro, L.M.; Veloso, A.C.A.; Pinheiro, M.N.C. Winery wastes: A potential source of natural dyes for textiles. In Wastes: Solutions, Treatments and Opportunities III (Selected Papers from the 5th International Conference Wastes 2019, 4–6 September 2019, Lisbon, Portugal); Vilarinho, C., Castro, F., Gonçalves, M., Fernando, A.L., Eds.; Taylor & Francis Group: Leiden, The Netherlands, 2020; pp. 69–74. ISBN 978-0367-25777-4. [Google Scholar] [CrossRef]
- Pinheiro, M.N.C.; Symochko, L.; Castro, L.M. Valorization of Cork Industry By-Products as Sustainable Natural Dyes for Textiles. ACS Sustain. Chem. Eng. 2023, 11, 10555–10565. [Google Scholar] [CrossRef]
- Dulo, B.; De Somer, T.; Phan, K.; Roosen, M.; Githaiga, J.; Raes, K.; De Meester, S. Evaluating the Potential of Natural Dyes from Nutshell Wastes: Sustainable Colouration and Functional Finishing of Wool Fabric. Sustain. Mater. Technol. 2022, 34, e00518. [Google Scholar] [CrossRef]
- Jose, S.; Pandit, P.; Pandey, R. Chickpea Husk–A Potential Agro Waste for Coloration and Functional Finishing of Textiles. Ind. Crops Prod. 2019, 142, 111833. [Google Scholar] [CrossRef]
- Olgierd, S. The Wine Sector Management in Portugal: An Overview on Its Three-Dimensional Sustainability. Manag. Sustain. Dev. Sibiu 2021, 13, 39–48. [Google Scholar]
- Genisheva, Z.; Soares, M.; Oliveira, J.M.; Carvalho, J. Wine Production Wastes, Valorization, and Perspectives. In Advances and Challenges in Hazardous Waste Management; IntechOpen: London, UK, 2023. [Google Scholar]
- European Commission. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; European Comission: Brussels, Belgium, 2020. [Google Scholar]
- Santos, J.R.F.; Rodrigues, R.P.; Quina, M.J.; Gando-Ferreira, L.M. Recovery of Value-Added Compounds from Winery Wastewater: A Review and Bibliometric Analysis. Water 2023, 15, 1110. [Google Scholar] [CrossRef]
- Cañadas, R.; Díaz, I.; Rodríguez, M.; González, E.J.; González-Miquel, M. An Integrated Approach for Sustainable Valorization of Winery Wastewater Using Bio-Based Solvents for Recovery of Natural Antioxidants. J. Clean. Prod. 2022, 334, 130181. [Google Scholar] [CrossRef]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Baaka, N.; Ben, T.M.; Haddar, W.; Hammami, S.; Mhenni, M.F. Extraction of Natural Dye from Waste Wine Industry: Optimization Survey Based on a Central Composite Design Method. Fibers Polym. 2015, 16, 38–45. [Google Scholar] [CrossRef]
- Baaka, N.; Haddar, W.; Ben Ticha, M.; Mhenni, M.F. Eco-Friendly Dyeing of Modified Cotton Fabrics with Grape Pomace Colorant: Optimization Using Full Factorial Design Approach. J. Nat. Fibers 2019, 16, 652–661. [Google Scholar] [CrossRef]
- Walbridge-Jones, S. Microspectrophotometry for Textile Fiber Color Measurement. Identif. Text. Fibers 2009, 165–180. [Google Scholar] [CrossRef]
- Defining and Communicating Color: The CIELAB System 2013. Sappi Fine Paper North America. Available online: https://www.sappi.com (accessed on 15 February 2024).
- Mokrzycki, W.; Tatol, M. Color Difference Delta E-A Survey Colour Difference ∆E-A Survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Vesoul, J.; Cock, I. An Examination of the Medicinal Potential of Pittosporum Phylliraeoides: Toxicity, Antibacterial and Antifungal Activities. Pharmacogn. Commun. 2011, 1, 8–17. [Google Scholar] [CrossRef]
- Oyedapo, O.O.; Sab, F.C.; Olagunju, J.A. Bioactivity of Fresh Leaves of Lantana Camara. Biomed. Lett 1999, 59, 175–183. [Google Scholar]
- Duraipandiyan, V.; Ayyanar, M.; Ignacimuthu, S. Antimicrobial Activity of Some Ethnomedicinal Plants Used by Paliyar Tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Djipa, C.D.; Delmée, M.; Quetin-Leclercq, J. Antimicrobial Activity of Bark Extracts of Syzygium jambos (L.) Alston (Myrtaceae). J. Ethnopharmacol. 2000, 71, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Nortjie, E.; Basitere, M.; Moyo, D.; Nyamukamba, P. Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants 2022, 11, 2011. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Drosou, C.; Kyriakopoulou, K.; Bimpilas, A.; Tsimogiannis, D.; Krokida, M. A Comparative Study on Different Extraction Techniques to Recover Red Grape Pomace Polyphenols from Vinification Byproducts. Ind. Crops Prod. 2015, 75, 141–149. [Google Scholar] [CrossRef]
- Tournour, H.H.; Segundo, M.A.; Magalhães, L.M.; Barreiros, L.; Queiroz, J.; Cunha, L.M. Valorization of Grape Pomace: Extraction of Bioactive Phenolics with Antioxidant Properties. Ind. Crops Prod. 2015, 74, 397–406. [Google Scholar] [CrossRef]
- Lombard, K.A.; Geoffriau, E.; Peffley, E. Flavonoid Quantification in Onion by Spectrophotometric and High Performance Liquid Chromatography Analysis. HortScience 2002, 37, 682–685. [Google Scholar] [CrossRef]
- Byadgi, S.; Kulloli, S.; Venugopal, C. Phytochemical Screening and Antimicrobial Activity of Plant Extracts for Textile Applications. Int. J. Biochem. Res. Rev. 2018, 20, 1–10. [Google Scholar] [CrossRef]
- Alapati, P.; Shaik, S.K. Phytochemical Screening of 20 Plant Sources for Textiles Finishing. Int. J. Adv. Res. 2015, 3, 1391–1398. [Google Scholar]
- Afonso, T.B.; Bonifácio-Lopes, T.; Costa, E.M.; Pintado, M.E. Phenolic Compounds from By-Products for Functional Textiles. Materials 2023, 16, 7248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shahid-ul-Islam; Rather, L.J.; Li, Q. Recent Advances in the Surface Modification Strategies to Improve Functional Finishing of Cotton with Natural Colourants-A Review. J. Clean. Prod. 2022, 335, 130313. [Google Scholar] [CrossRef]
0 < ΔE* < 1 | A color difference cannot be detected by the observer. |
1 < ΔE* < 2 | Only an experienced observer can detect a color difference. |
2 < ΔE* < 3.5 | The regular observer can perceive the color difference. |
ΔE* > 5 | The color difference in the textiles is noticeable. |
Phytochemicals | Tests/Reagents | Positive Results |
---|---|---|
Saponins | 1 mL dyeing solution + 1 mL deionized water shaking vigorously for 30 s | Foam after 15 min of rest |
Phenolic compounds | 200 µL dyeing solution + 2 mL 3% aqueous sodium carbonate solution + 200 μL Folin–Ciocalteu reagent | Blue/gray color after 30 min |
Water-soluble: 500 μL dyeing solution + 2 drops 1% ferric chloride solution | Presence of the color red | |
Water-insoluble: 500 μL dyeing solution + 500 μL dichloromethane + 3 drops 1% ferric chloride solution + 1 drop pyridine | A color change is detected | |
Flavonoids | 1 mL dyeing solution + 100 μL NaOH solution | Formation of an intense yellow color |
100 μL of concentrated HCl was added to the solution to confirm the presence of flavonoids | A reversal of the original color is observed | |
Polyterpenes | 500 μL dyeing solution + 3 drops acetic anhydride | Blue/green coloration observed after 5 min at room temperature |
Triterpenoids | 400 μL chloroform + 1 mL dyeing solution + 400 μL concentrated sulfuric acid | Red/brown/purple color is observed at the interface |
Cardiac glycosides | 500 μL glacial acetic acid + 500 μL dyeing solution | A red/brown ring at the interface or the formation of a green/blue color after adding a few drops of aqueous iron chloride (1%) and concentrated sulfuric acid |
Anthraquinones | Free: 500 μL dyeing solution + a few drops of concentrated sulfuric + 500 μL ammonia | Presence of the color pink |
Combined: 450 μL dyeing solution + 50 μL concentrated HCl (left at room temperature for several minutes) + 500 μL chloroform | Presence of the color pink | |
Tannins | 500 μL dyeing solution + 2 drops 1% aqueous ferric chloride | Presence of blue, blue-black, green, or green-black color |
Alkaloids | 200 μL dyeing solution + a few drops HCl aqueous solution + 500 μL Mayer’s reagent | Formation of a precipitate |
Phytochemicals | Solvent Used in the Grape Pomace Extraction | ||||
---|---|---|---|---|---|
Water (pH = 2.4) | Wate r (pH = 8.0) | Wate r (pH = 12.2) | Water/Ethanol 50% (v/v) | ||
Saponins | +++ | ++ | ++ | +++ | |
Phenolic compounds | Water soluble | + | + | + | + |
Water insoluble | +++ | +++ | +++ | +++ | |
Flavonoids | +++ | +++ | +++ | +++ | |
Polyterpenes | − | − | − | − | |
Triterpenoids | + | + | + | + | |
Cardiac glycosides | + | + | + | + | |
Anthraquinones | Free | − | − | − | − |
Combined | + | + | + | + | |
Tannins | − | − | − | − | |
Alkaloids | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, F.D.; Symochko, L.; Pinheiro, M.N.C. Grape Pomace (Vitis vinifera L.) Waste Valorization: Assessing Its Potential as a Sustainable Natural Dye for Textiles Applications. Sustainability 2024, 16, 3167. https://doi.org/10.3390/su16083167
Fonseca FD, Symochko L, Pinheiro MNC. Grape Pomace (Vitis vinifera L.) Waste Valorization: Assessing Its Potential as a Sustainable Natural Dye for Textiles Applications. Sustainability. 2024; 16(8):3167. https://doi.org/10.3390/su16083167
Chicago/Turabian StyleFonseca, Filipa D., Lyudmyla Symochko, and M. Nazaré Coelho Pinheiro. 2024. "Grape Pomace (Vitis vinifera L.) Waste Valorization: Assessing Its Potential as a Sustainable Natural Dye for Textiles Applications" Sustainability 16, no. 8: 3167. https://doi.org/10.3390/su16083167
APA StyleFonseca, F. D., Symochko, L., & Pinheiro, M. N. C. (2024). Grape Pomace (Vitis vinifera L.) Waste Valorization: Assessing Its Potential as a Sustainable Natural Dye for Textiles Applications. Sustainability, 16(8), 3167. https://doi.org/10.3390/su16083167