Evaluation of Acacia karroo’s Potential Aspect in the Phytoremediation of Soil Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sample Collection and Preparation
2.3. Leaves Sample Digestion
2.4. Enzyme Activity Assay
2.5. Statistical Analysis
3. Results
3.1. Trace Elements in Acacia Karroo
Sample Sites | Scandium (Sc) | Vanadium (V) | Chromium (Cr) | Cobalt (Co) | Nickel (Ni) | Copper (Cu) | Zinc (Zn) | Rubidium (Rb) | Strontium (Sr) | Yttrium (Y) |
---|---|---|---|---|---|---|---|---|---|---|
1 A | 11.25 ± 0.19 | 66.23 ± 0.65 | 64.45 ± 0.66 | 13.10 ± 0.30 | 17.58 ± 0.13 | 49.04 ± 3.95 | 101.93 ± 1.38 | 64.56 ± 0.28 | 145.83 ± 0.03 | 23.64 ± 0.01 |
1 B | 12.21 ± 0.37 | 64.82 ± 0.27 | 62.95 ± 1.25 | 13.27 ± 0.49 | 25.87 ± 1.02 | 59.80 ± 1.92 | 203.86 ± 4.48 | 66.77 ± 0.53 | 154.82 ± 0.64 | 23.05 ± 0.54 |
1 C | 11.75 ± 0.46 | 57.83 ± 2.01 | 72.67 ± 3.28 | 8.99 ± 0.54 | 17.84 ± 0.49 | 48.99 ± 0.15 | 106.28 ± 0.11 | 65.25 ± 0.59 | 138.11 ± 1.40 | 25.57 ± 0.35 |
1 D | 13.46 ± 0.28 | 88.39 ± 1.19 | 96.42 ± 0.53 | 15.08 ± 0.11 | 40.62 ± 3.93 | 113.78 ± 4.36 | 45.29 ± 0.48 | 48.72 ± 0.03 | 106.75 ± 0.15 | 17.94 ± 0.04 |
2 A | 11.25 ± 0.08 | 64.33 ± 1.81 | 59.18 ± 1.12 | 12.57 ± 0.40 | 28.74 ± 2.15 | 61.73 ± 2.98 | 103.70 ± 1.26 | 66.04 ± 0.61 | 142.40 ± 2.32 | 23.79 ± 0.09 |
2 B | 11.93 ± 0.07 | 64.74 ± 0.12 | 57.57 ± 1.63 | 9.72 ± 0.31 | 22.56 ± 0.26 | 126.97 ± 0.50 | 145.58 ± 4.13 | 72.96 ± 0.22 | 147.36 ± 0.94 | 23.57 ± 0.46 |
2 C | 10.21 ± 0.56 | 57.87 ± 2.81 | 60.53 ± 1.53 | 7.86 ± 0.37 | 12.68 ± 0.50 | 25.55 ± 0.57 | 103.33 ± 3.54 | 65.94 ± 1.50 | 140.09 ± 2.57 | 23.20 ± 0.47 |
2 D | 13.43 ± 0.17 | 103.24 ± 0.21 | 103.71 ± 1.36 | 15.03 ± 0.46 | 31.97 ± 0.39 | 43.34 ± 1.10 | 45.20 ± 0.42 | 48.28 ± 0.29 | 113.59 ± 0.10 | 18.14 ± 0.25 |
3 A | 10.20 ± 0.27 | 62.89 ± 0.04 | 57.19 ± 0.34 | 11.68 ± 0.50 | 14.87 ± 0.04 | 27.85 ± 0.77 | 99.18 ± 2.46 | 64.95 ± 0.31 | 143.77 ± 1.18 | 23.93 ± 0.47 |
3 B | 11.12 ± 0.12 | 61.79 ± 1.28 | 54.56 ± 2.37 | 8.70 ± 0.23 | 19.55 ± 0.92 | 67.43 ± 0.27 | 139.64 ± 3.20 | 73.60 ± 2.14 | 147.08 ± 1.03 | 23.64 ± 0.12 |
3 C | 10.12 ± 0.09 | 58.27 ± 1.10 | 57.78 ± 4.29 | 8.23 ± 0.22 | 18.01 ± 0.83 | 39.88 ± 2.54 | 126.67 ± 0.03 | 63.13 ± 0.34 | 138.80 ± 1.82 | 22.66 ± 0.39 |
3 D | 11.33 ± 0.00 | 88.38 ± 1.01 | 92.93 ± 1.31 | 11.34 ± 0.01 | 22.47 ± 0.09 | 30.85 ± 0.32 | 35.79 ± 0.76 | 47.55 ± 1.81 | 92.32 ± 0.92 | 17.32 ± 0.16 |
FAO/WHO limits (mg/kg) | 0.02 | n/a | 1–2.3 | 50 | 10 | 10–40 | 50 | 0.5 | 100 | n/a [24,25,26,27] |
3.2. Enzyme Activity Findings
3.3. Pearson Correlations and PCA Analysis
3.4. Correlation Matrix
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; Zhang, L.; Xia, T.; Jia, X.; Wang, S. Heavy metal pollution and human health risk assessment at mercury smelting sites in Wanshan district of Guizhou Province, China. RSC Adv. 2020, 10, 23066–23079. [Google Scholar] [CrossRef] [PubMed]
- Maphuhla, N.G.; Oyedeji, A.O.; Lewu, F.B.; Oyedeji, O.O.; Lewu, M.N. Physicochemical Properties and Heavy Metals Accumulation in the Plant, Soil and Water from Municipal Landfill in Alice, South Africa. In Chemistry for a Clean and Healthy Planet; Springer International Publishing: Cham, Switzerland, 2019; pp. 247–267. [Google Scholar]
- Bvenura, C.; Afolayan, A.J. Heavy metal contamination of vegetables cultivated in home gardens in the Eastern Cape. S. Afr. J. Sci. 2012, 108, 1–6. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef] [PubMed]
- Essien, J.P.; Ikpe, D.I.; Inam, E.D.; Okon, A.O.; Ebong, G.A.; Benson, N.U. Occurrence, and spatial distribution of heavy metals in landfill leachates and impacted freshwater ecosystem: An environmental and human health threat. PLoS ONE 2022, 17, e0263279. [Google Scholar] [CrossRef] [PubMed]
- Nyika, J.M.; Onyari, E.K.; Dinka, M.O.; Mishra, S.B. Heavy metal pollution and mobility in soils within a landfill vicinity: A South African case study. Orient. J. Chem. 2019, 35, 1286. [Google Scholar] [CrossRef]
- Solomou, A.D.; Germani, R.; Proutsos, N.; Petropoulou, M.; Koutroumpilas, P.; Galanis, C.; Maroulis, G.; Kolimenakis, A. Utilizing mediterranean plants to remove contaminants from the soil environment: A short review. Agriculture 2022, 12, 238. [Google Scholar] [CrossRef]
- Rao, M.A.; Scelza, R.; Scotti, R.; Gianfreda, L. Role of enzymes in the remediation of polluted environments. J. Soil Sci. Plant Nutr. 2010, 10, 333–353. [Google Scholar] [CrossRef]
- Tabinda, A.B.; Javed, R.; Yasar, A.; Mahmood, A.; Rasheed, R. Remediation of Persistent Organic Pollutants Using Advanced Techniques. In Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies; Springer International Publishing: Cham, Switzerland, 2023; pp. 287–307. [Google Scholar]
- Ali, H.; Naseer, M.; Sajad, M.A. Phytoremediation of heavy metals by Trifolium alexandrinum. Int. J. Environ. Sci. 2012, 2, 1459–1469. [Google Scholar]
- Jamir, E.; Kangabam, R.D.; Borah, K.; Tamuly, A.; Deka Boruah, H.P.; Silla, Y. Role of soil microbiome and enzyme activities in plant growth nutrition and ecological restoration of soil health. In Microbes and Enzymes in Soil Health and Bioremediation; Kumar, A., Sharma, S., Eds.; Microorganisms for Sustainability; Springer: Singapore, 2019; pp. 99–132. [Google Scholar]
- Chen, Y.P.; Tsai, C.F.; Rekha, P.D.; Ghate, S.D.; Hung, H.Y.; Hsu, Y.H.; Liaw, L.L.; Young, C.C. Agricultural management practices influence the soil enzyme activity and bacterial community structure in tea plantations. Bot. Stud. 2021, 62, 8. [Google Scholar] [CrossRef] [PubMed]
- Gomola, C.E.; McKay, J.K.; Wallenstein, M.D.; Wagg, C.; O’Brien, M.J. Within-species trade-offs in plant-stimulated soil enzyme activity and growth, flowering, and seed size. Ecol. Evol. 2018, 8, 11717–11724. [Google Scholar] [CrossRef]
- Maroyi, A. Acacia karroo Hayne: Ethnomedicinal uses, phytochemistry and pharmacology of an important medicinal plant in southern Africa. Asian Pac. J. Trop. Med. 2017, 10, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Ettien, J.B.; Bolou-Bi, B.E. Acacia trees-legumes potential for phytoremediation of urban landfill soil in Bonoua (Côte d’Ivoire). Adv. Environ. Technol. 2023, 9, 59–71. [Google Scholar]
- Rathna Kumari, B.M.; Nagaraja, N. Studies on phytoremediation of chromated copper arsenate (CCA) using Acacia plant species (Fabaceae). Int. J. Phytoremediat. 2023, 25, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.H.; Elhussein, A.A.; Ibrahim, D.A. Phytoremediation of crude oil contaminated soil using Sudanese plant species Acacia sieberiana Tausch. Int. J. Phytoremediat. 2023, 25, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, J.; Kumar, A.; Kumar, N. Phytoremediation potential of industrially important and biofuel plants: Azadirachta indica and Acacia nilotica. In Phytoremediation Potential Bioenergy Plants; Springer: Berlin/Heidelberg, Germany, 2017; pp. 211–254. [Google Scholar]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef] [PubMed]
- Oladeji, O.M.; Kopaopa, B.G.; Mugivhisa, L.L.; Olowoyo, J.O. Investigation of heavy metal analysis on medicinal plants used for the treatment of skin cancer by traditional practitioners in Pretoria. Biol. Trace Elem. Res. 2023, 202, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Song, Y.; Dong, X.; Wang, X.; Ma, X.; Zhao, G.; Zang, S. Soil enzyme activities and their relationships with soil C, N, and P in peatlands from different types of permafrost regions, Northeast China. Front. Environ. Sci. 2021, 9, 143. [Google Scholar] [CrossRef]
- Dulama, I.; Popescu, I.V.; Stihi, C.; Radulescu, C.; Cimpoca, G.V.; Toma, L.G.; Stirbescu, R.; Nitescu, O. Studies on accumulation of heavy metals in Acacia leaf by EDXRF. Rom. Rep. Phys. 2012, 64, 1063–1071. [Google Scholar]
- Aidoo, E.N.; Appiah, S.K.; Awashie, G.E.; Boateng, A.; Darko, G. Geographically weighted principal component analysis for characterising the spatial heterogeneity and connectivity of soil heavy metals in Kumasi, Ghana. Heliyon 2021, 7, e08039. [Google Scholar] [CrossRef]
- Rikhvanov, L.; Baranovskaya, N.; Soktoev, B.; Mongolina, T. Evaluation of drinking water according to geochemical composition of its salt deposition. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering, ICEE, Vilnius, Lithuania, 19–20 May 2011; Department of Construction Economics & Property, Vilnius Gediminas Technical University: Vilnius, Lithuania, 2011; Volume 8, p. 337. [Google Scholar]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef]
- Ashraf, I.; Ahmad, F.; Sharif, A.; Altaf, A.R.; Teng, H. Heavy metals assessment in water, soil, vegetables, and their associated health risks via consumption of vegetables, District Kasur, Pakistan. SN Appl. Sci. 2021, 3, 552. [Google Scholar] [CrossRef]
- Akbar, W.A.; Rahim, H.U.; Irfan, M.; Sehrish, A.K.; Mudassir, M. Assessment of heavy metal distribution and bioaccumulation in soil and plants near coal mining areas: Implications for environmental pollution and health risks. Environ. Monit. Assess. 2024, 196, 97. [Google Scholar] [CrossRef] [PubMed]
- Nurzhan, A.; Tian, H.; Nuralykyzy, B.; He, W. Soil enzyme activities and enzyme activity indices in long-term arsenic-contaminated soils. Eurasian Soil Sci. 2022, 55, 1425–1435. [Google Scholar] [CrossRef]
- Attademo, A.M.; Sanchez-Hernandez, J.C.; Lajmanovich, R.C.; Repetti, M.R.; Peltzer, P.M. Enzyme activities as indicators of soil quality: Response to intensive soybean and rice crops. Water Air Soil Pollut. 2021, 232, 295. [Google Scholar] [CrossRef]
- Nikolova, R.; Boteva, S.; Kenarova, A.; Dinev, N.; Radeva, G. Enzyme activities in soils under heavy metal pollution: A case study from the surroundings of a non-ferrous metal plant in Bulgaria. Biotechnol. Biotechnol. Equip. 2023, 37, 49–57. [Google Scholar] [CrossRef]
- Jaworska, H.; Lemanowicz, J. Heavy metal contents and enzymatic activity in soils exposed to the impact of road traffic. Sci. Rep. 2019, 9, 19981. [Google Scholar] [CrossRef]
- Unyumbe, B.Y.; Musibono, D.E.; Thierry, T.T.; Gizanga, R.V.; Athanase, N.K. Use of Principal Component Analysis (PCA) for the Physico-chemical Characterization of waters of the Panda River/City of Likasi (Haut-Katanga/DRC) contaminated by mining effluents. Int. J. Latest Res. Humanit. Soc. Sci. 2019, 2, 25–33. [Google Scholar]
- Kahangwa, C.A. Application of principal component analysis, cluster analysis, pollution index and geoaccumulation index in pollution assessment with heavy metals from gold mining operations, Tanzania. J. Geosci. Environ. Prot. 2022, 10, 303–317. [Google Scholar] [CrossRef]
- Shtangeeva, I. Accumulation of scandium, cerium, europium, hafnium, and tantalum in oats and barley grown in soils that differ in their characteristics and level of contamination. Environ. Sci. Pollut. Res. 2022, 29, 40839–40853. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Dingaan, M.; du Preez, P.J. Vachellia (Acacia) karroo communities in South Africa: An overview. In Pure and Applied Biogeography; Intech Open: Rijeka, Croatia, 2018; pp. 109–141. [Google Scholar]
- Adeoyo, O.R. A review on mycorrhizae and related endophytic fungi as potential sources of enzymes for the bioeconomy. J. Adv. Microbiol. 2021, 21, 35–49. [Google Scholar] [CrossRef]
- Ataikiru, T.L.; Okpokwasili, G.S.C.; Okerentugba, P.O. Impact of pesticides on microbial diversity and enzymes in soil. S. Asian J. Res. Microbiol. 2019, 4, 1–16. [Google Scholar] [CrossRef]
- Lagerwall, D. Germination and PREDATION of Acacia karroo Seeds on Acid Mine Drainage Polluted Soils. Ph.D. Dissertation, University of Witwatersrand, Johannesburg, South Africa, 2016. Available online: http://wiredspace.wits.ac.za/handle/10539/21011 (accessed on 11 November 2023).
- Lu, H.; Xu, D.; Kong, T.; Wang, D. Characteristics of Enzyme Activities during Phytoremediation of Cd-Contaminated Soil. Sustainability 2022, 14, 9350. [Google Scholar] [CrossRef]
- Haroun, M.; Xie, S.; Awadelkareem, W.; Wang, J.; Qian, X. Influence of biofertilizer on heavy metal bioremediation and enzyme activities in the soil to revealing the potential for sustainable soil restoration. Sci. Rep. 2023, 13, 20684. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Z.; Sun, C.; Zeng, X. Soil Heavy Metal Content and Enzyme Activity in Uncaria rhynchophylla-Producing Areas under Different Land Use Patterns. Int. J. Environ. Res. Public Health 2022, 19, 12220. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
Sampling Sites | Invertase (μg glucose⋅g−1 soil⋅h−1) | Catalase (mL KMnO4⋅g−1 soil⋅h−1) | Phosphatase (μg phenol⋅g−1 soil⋅h−1) |
---|---|---|---|
1 A | 3.66 ± 2.11 d | 0.65 ± 0.37 b | 1.59 ± 0.92 d |
1 B | 3.65 ± 2.10 d | 0.80 ± 0.46 cd | 3.49 ± 2.01 ab |
1 C | 3.66 ± 2.11 d | 1.36 ± 0.78 a | 3.66 ± 2.11 e |
1 D | 3.60 ± 2.08 d | 0.87 ± 0.50 cd | 1.42 ± 0.82 d |
2 A | 3.35 ± 1.93 d | 0.97 ± 0.56 cd | 2.37 ± 1.37 c |
2 B | 3.48 ± 2.01 d | 0.46 ± 0.27 ab | 3.49 ± 2.01 ab |
2 C | 3.18 ± 1.83 d | 1.14 ± 0.66 a | 2.79 ± 1.61 a |
2 D | 3.47 ± 2.01 d | 0.65 ± 0.37 b | 2.33 ± 1.34 c |
3 A | 2.88 ± 1.66 c | 2.27 ± 1.31 e | 3.97 ± 2.29 e |
3 B | 3.26 ± 1.88 d | 2.58 ± 1.49 d | 3.67 ± 2.12 e |
3 C | 2.43 ± 1.52 c | 2.63 ± 1.52 d | 3.98 ± 2.30 e |
3 D | 3.36 ± 1.94 d | 1.57 ± 0.91 a | 3.65 ± 2.10 e |
Variables | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 |
---|---|---|---|---|---|---|---|---|---|---|
Eigenvalue | 6.670 | 1.958 | 0.631 | 0.273 | 0.238 | 0.133 | 0.068 | 0.020 | 0.008 | 0.000 |
Variability (%) | 66.698 | 19.585 | 6.315 | 2.732 | 2.380 | 1.327 | 0.681 | 0.201 | 0.081 | 0.000 |
Cumulative % | 66.698 | 86.283 | 92.597 | 95.329 | 97.709 | 99.037 | 99.717 | 99.919 | 100.000 | 100.000 |
Variable | Sc | V | Cr | Co | Ni | Cu | Zn | Rb | Sr | Y | INV | CAT | PHO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | 1 | ||||||||||||
V | 0.733 | 1 | |||||||||||
Cr | 0.736 | 0.929 | 1 | ||||||||||
Co | 0.728 | 0.719 | 0.622 | 1 | |||||||||
Ni | 0.860 | 0.707 | 0.661 | 0.765 | 1 | ||||||||
Cu | 0.549 | 0.101 | 0.039 | 0.209 | 0.566 | 1 | |||||||
Zn | −0.280 | −0.712 | −0.769 | −0.358 | −0.346 | 0.153 | 1 | ||||||
Rb | −0.515 | −0.873 | −0.934 | −0.597 | −0.575 | 0.141 | 0.822 | 1 | |||||
Sr | −0.427 | −0.819 | −0.884 | −0.376 | −0.496 | 0.044 | 0.870 | 0.925 | 1 | ||||
Y | −0.553 | −0.915 | −0.870 | −0.552 | −0.642 | −0.068 | 0.706 | 0.906 | 0.905 | 1 | |||
INV | 0.691 | 0.309 | 0.376 | 0.490 | 0.418 | 0.396 | −0.044 | −0.124 | −0.102 | −0.109 | 1 | ||
CAT | −0.629 | −0.357 | −0.356 | −0.546 | −0.452 | −0.413 | 0.081 | 0.192 | 0.082 | 0.184 | −0.768 | 1 | |
PHO | −0.524 | −0.438 | −0.432 | −0.653 | −0.569 | −0.283 | 0.426 | 0.389 | 0.254 | 0.344 | −0.510 | 0.640 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maphuhla, N.G.; Oyedeji, O.O. Evaluation of Acacia karroo’s Potential Aspect in the Phytoremediation of Soil Pollution. Sustainability 2024, 16, 3315. https://doi.org/10.3390/su16083315
Maphuhla NG, Oyedeji OO. Evaluation of Acacia karroo’s Potential Aspect in the Phytoremediation of Soil Pollution. Sustainability. 2024; 16(8):3315. https://doi.org/10.3390/su16083315
Chicago/Turabian StyleMaphuhla, Nontobeko Gloria, and Opeoluwa Oyehan Oyedeji. 2024. "Evaluation of Acacia karroo’s Potential Aspect in the Phytoremediation of Soil Pollution" Sustainability 16, no. 8: 3315. https://doi.org/10.3390/su16083315
APA StyleMaphuhla, N. G., & Oyedeji, O. O. (2024). Evaluation of Acacia karroo’s Potential Aspect in the Phytoremediation of Soil Pollution. Sustainability, 16(8), 3315. https://doi.org/10.3390/su16083315