Matchmaking in Off-Grid Energy System Planning: A Novel Approach for Integrating Residential Electricity Demands and Productive Use of Electricity
Abstract
:1. Introduction
1.1. Background and Theoretical Foundations
1.2. Motivation and Ambition
2. Materials and Methods
2.1. Case Study
2.2. Methods
2.2.1. Consumption Data Analysis
- Electricity consumption data: In order to reconstruct the historic hourly electricity consumption patterns, the sample’s electricity current measurements (10 min resolution) between January 2018 and December 2021 (earliest data point: 10 February 2018; latest data point: 1 December 2021) were multiplied by the measured voltage (hourly resolution) and interpolated. The data were cleaned to cover for eventual reboot events of the electricity consumption logging system or other missing values and passed to a Python-capable environment for further processing.
- Socio-economic and demographic data: We used socio-economic data from irregularly conducted household surveys undertaken by Nanoé in 2018–2021 for the purpose of assessing potential nanogrid clients. As the surveys at that time were not intended to be used for a thorough statistical treatment to identify the socio-economic predictors of energy consumption patterns, only a few useful characteristics were assessed (this represents a major aspect to be improved in future work within this research). However, in order to develop the methodology, we relied on these secondary survey data. The surveys were conducted with any household resident available, with the option to reject the answer to any question. The characteristics assessed (indicating the descriptive statistics of valid answers only within brackets) included
- ○
- Housing occupant status (74.7% owners, 5% tenants);
- ○
- Number of adults (median (Md): 2);
- ○
- Number of children (Md: 2);
- ○
- Monthly income (Md: MGA 150,000~EUR 30);
- ○
- Housing wall type (Ravinala wood (40%), wood–concrete structure (18%), concrete–stone (22%), tin (2%));
- ○
- Housing roof type (tin (73%), leaves (9%), concrete (1%)), floor type (concrete (77%), board (4%));
- ○
- Appliance ownership (LED bulb, LED spot, TV, USB phone charger, 12 V plug);
- ○
- Profession of the client (grouped into trader (22.2%), farmer (31.6%), employee (6.8%), other (6.8%), public lighting (32.5%)). Notably, “public lighting” was included as a “profession” for the stated purpose of electricity use in the client data.
2.2.2. Productive Use of Electricity Analysis
2.2.3. Scenario Formulation
2.2.4. Energy System Modeling
Component | CAPEXfix | CAPEXvariable | OPEX |
---|---|---|---|
PV | EUR 101 | EUR 540/kW | EUR 14/kW/year |
Battery | EUR 26 | EUR 246/kWh | EUR 14/kW/year |
Supplementary components | EUR 306 | - | EUR 9.2/year |
DC freezer * | EUR 1220 | - | |
DC rice huller ** | - | EUR 607/kW | EUR 28/kW/year |
2.2.5. Evaluation
3. Results
3.1. Influences of Electricity Consumption
3.1.1. Time-Dependent Influences of Electricity Consumption
3.1.2. Socio-Economic Predictors of Electricity Consumption
3.2. Techno-Economic Evaluation of PUE
- “Representative demand”: Five residential loads, including three Cluster 1 loads (“low consumption”) as the most common cluster, one Cluster 0 load (“high consumption”) and one Cluster 2 load (“night-time consumption”). This set reflects the overall percentage distribution of all samples. Annual residential demand: 101 kWh.
- “Low demand”: Five residential loads in Cluster 1 (“low consumption”). Annual residential demand: 43 kWh.
- “High demand”: Five residential loads in Cluster 0 (“high consumption”). Annual residential demand: 202 kWh.
- “Low demand with night-time load”: Four residential loads in Cluster 1 (“low consumption”) and one load with a Cluster 2 profile representing a night-time load (public lighting). Annual residential demand: 70 kWh.
- “High demand with night-time load”: Four residential loads in Cluster 0 (“high consumption”) and one load with a Cluster 2 profile representing a night-time load (public lighting). Annual residential demand: 196 kWh.
- (i)
- The difference in within one PUE integration scenario across the different residential load profile sets to understand the suitability of the specific PUE for different communities;
- (ii)
- The difference in across different PUE integration scenarios within one specific residential load profile set to understand the best fitting PUE for the respective socio-economic character of the community;
- (iii)
- The distribution of , and within each combination of PUE integration and residential cluster composition to understand the share of costs associated with supplying electricity to the residential users or the PUE appliance.
4. Discussion
4.1. Critical Reflection on the Study
4.2. Implications of the Key Findings
4.3. Considerations of PUE Impact on Value Streams of the Community and Its Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tariff Name | Maximum Power (W) | Maximum Energy Consumption per Day (Wh) |
---|---|---|
Eco | 10 | 50 |
Eclairage | 18 | 90 |
Eclairage Plus | 30 | 150 |
Multimedia | 42 | 210 |
Multimedia Plus | 66 | 330 |
Congel | 125 | 1250 |
Variables | Cluster 0 | Cluster 1 | Cluster 2 | χ2 | df | Fisher’s Exact Test | p | Cramer’s V | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | EC | C | EC | C | EC | |||||||
Tariff Group | ||||||||||||
Eco | Yes | 0 | 5.7 | 33 | 22.6 | 1 | 5.7 | 21.172 | 2 | <0.001 | 0.445 | |
No | 18 | 12.3 | 38 | 48.4 | 17 | 12.3 | ||||||
Eclairage | Yes | 6 | 5.7 | 23 | 22.6 | 5 | 5.7 | 0.165 | 2 | 0.954 | 0.047 | |
No | 12 | 12.3 | 48 | 48.4 | 13 | 12.3 | ||||||
Eclairage Plus | Yes | 9 | 4.7 | 17 | 18.6 | 2 | 4.7 | 7.585 | 2 | 6.98 | 0.025 | 0.275 |
No | 9 | 13.3 | 54 | 52.4 | 16 | 13.3 | ||||||
Multimedia | Yes | 7 | 2 | 4 | 8 | 1 | 2.2 | 16.654 | 2 | 12.37 | 0.001 | 0.395 |
No | 11 | 16 | 67 | 63 | 17 | 16 | ||||||
Multimedia Plus | Yes | 2 | 1 | 4 | 4 | 0 | 1 | 2.099 | 2 | 1.827 | 0.392 | 0.144 |
No | 16 | 17 | 67 | 67 | 18 | 17 | ||||||
Public Lighting | Yes | 0 | 2 | 1 | 8 | 11 | 2 | 54.137 | 2 | 37.199 | <0.001 | 0.711 |
No | 18 | 16 | 70 | 63 | 7 | 16 | ||||||
Tariff Switch | Yes | 11 | 5 | 17 | 19.9 | 2 | 5 | 12.9 | 2 | 0.002 | 0.347 | |
No | 7 | 13 | 52 | 51.1 | 16 | 13 | ||||||
Appliance Ownership | ||||||||||||
LED Bulb | Yes | 16 | 14.1 | 61 | 55.7 | 7 | 14.1 | 20.201 | 2 | 16.635 | <0.001 | 0.435 |
No | 2 | 3.9 | 10 | 15.3 | 11 | 3.9 | ||||||
LED Spot | Yes | 0 | 2 | 1 | 8 | 11 | 2 | 54.137 | 2 | 37.199 | <0.001 | 0.711 |
No | 18 | 16 | 70 | 63 | 7 | 16 | ||||||
TV | Yes | 3 | 2 | 8 | 8 | 1 | 2 | 1.116 | 2 | 1.095 | 0.6 | 0.102 |
No | 15 | 16 | 63 | 63 | 17 | 16 | ||||||
USB Phone Charger | Yes | 15 | 8.9 | 31 | 35.2 | 7 | 8.9 | 10.021 | 2 | 10.199 | 0.006 | 0.306 |
No | 3 | 9.1 | 40 | 35.8 | 11 | 9.1 | ||||||
12 V Plug (Simple and Double) | Yes | 10 | 5.7 | 21 | 22.6 | 3 | 5.7 | 6.749 | 2 | 0.034 | 0.251 | |
No | 8 | 12.3 | 50 | 48.4 | 15 | 12.3 | ||||||
LED Bulb Quantity | 0 | 2 | 3.9 | 10 | 15.3 | 11 | 3.9 | 40.883 | 12 | 35.687 | <0.001 | 0.437 |
1 | 6 | 7.9 | 40 | 31.2 | 1 | 7.9 | ||||||
2 | 4 | 4 | 14 | 15.9 | 6 | 4 | ||||||
3 | 3 | 1.2 | 4 | 4.6 | 0 | 1.2 | ||||||
4 | 1 | 0.7 | 3 | 2.7 | 0 | 0.7 | ||||||
5 | 1 | 0.2 | 0 | 0.7 | 0 | 0.2 | ||||||
8 | 1 | 0.2 | 0 | 0.7 | 0 | 0.2 | ||||||
Survey Variables | ||||||||||||
Occupant Status | Free | 1 | 0.2 | 0 | 0.7 | 0 | 0.1 | 5.182 | 4 | 5.946 | 0.195 | 0.181 |
Owner | 14 | 14.8 | 54 | 52.7 | 5 | 5.5 | ||||||
Tenant | 1 | 1 | 3 | 3.6 | 1 | 0.4 | ||||||
House Size | Large | 8 | 4 | 11 | 15.2 | 2 | 1.8 | 8.515 | 4 | 7.027 | 0.089 | 0.226 |
Medium | 8 | 10.6 | 42 | 39.8 | 5 | 4.6 | ||||||
Small | 0 | 1.3 | 7 | 5.1 | 0 | 0.6 | ||||||
Household Monthly Income | 0 | 0 | 0.2 | 1 | 0.7 | 0 | 0.1 | 6.689 | 10 | 8.661 | 0.568 | 0.207 |
100,000 | 0 | 2.5 | 10 | 8.6 | 2 | 0.9 | ||||||
150,000 | 7 | 7 | 25 | 24.4 | 2 | 2.6 | ||||||
200,000 | 6 | 4.5 | 14 | 15.8 | 2 | 1.7 | ||||||
300,000 | 2 | 1.2 | 4 | 4.3 | 0 | 0.5 | ||||||
500,000 | 1 | 0.6 | 2 | 2.2 | 0 | 0.2 | ||||||
Number of Household Members | 0 | 0 | 1 | 5 | 3.6 | 0 | 0.4 | 16.766 | 12 | 14.922 | 0.149 | 0.312 |
1 | 1 | 0.4 | 1 | 1.4 | 0 | 0.2 | ||||||
2 | 1 | 3.4 | 15 | 12.3 | 1 | 1.4 | ||||||
3 | 8 | 4.2 | 13 | 15.1 | 0 | 1.7 | ||||||
4 | 3 | 4 | 15 | 14.4 | 2 | 1.6 | ||||||
5 | 3 | 3.6 | 11 | 13 | 4 | 1.5 | ||||||
6 | 1 | 0.6 | 2 | 2.2 | 0 | 0.2 | ||||||
Number of Adults | 0 | 0 | 0.8 | 4 | 2.9 | 0 | 0.3 | 4.865 | 6 | 4.818 | 0.608 | 0.169 |
1 | 1 | 3 | 13 | 10.8 | 1 | 1.2 | ||||||
2 | 16 | 13 | 43 | 46.6 | 6 | 5.4 | ||||||
3 | 0 | 0.2 | 1 | 0.7 | 0 | 0.1 | ||||||
Number of Children | 0 | 1 | 2.9 | 13 | 10.9 | 1 | 1.3 | 16.175 | 8 | 13.283 | 0.065 | 0.31 |
1 | 8 | 4.6 | 16 | 17.4 | 0 | 2 | ||||||
2 | 3 | 4.4 | 19 | 16.7 | 1 | 1.9 | ||||||
3 | 3 | 3.6 | 11 | 13.8 | 5 | 1.6 | ||||||
4 | 1 | 0.6 | 2 | 2.2 | 0 | 0.3 | ||||||
Job Group | ||||||||||||
Trader | Yes | 9 | 5.4 | 17 | 14.8 | 0 | 5.8 | 13.263 | 2 | 0.001 | 0.429 | |
No | 6 | 9.6 | 24 | 26.2 | 16 | 10.2 | ||||||
Farmer | Yes | 8 | 7.9 | 25 | 21.6 | 5 | 8.4 | 4.083 | 2 | 0.13 | 0.238 | |
No | 7 | 7.1 | 16 | 19.4 | 11 | 7.6 | ||||||
Employee | Yes | 4 | 1.7 | 4 | 4.6 | 0 | 1.8 | 5.751 | 2 | 4.959 | 0.056 | 0.283 |
No | 11 | 13.3 | 37 | 36.4 | 16 | 14.2 | ||||||
Public Lighting | Yes | 0 | 2.5 | 1 | 6.8 | 11 | 2.7 | 40.226 | 2 | 31.89 | <0.001 | 0.747 |
No | 15 | 12.5 | 40 | 34.2 | 5 | 13.3 | ||||||
Other | Yes | 1 | 1.7 | 6 | 4.6 | 1 | 1.8 | 1.198 | 2 | 0.849 | 0.676 | 0.129 |
No | 14 | 13.3 | 35 | 36.4 | 15 | 14.2 |
Representative Demand | Low Demand | High Demand | Low Demand with Night-Time Load | High Demand with Night-Time Load | |||
---|---|---|---|---|---|---|---|
PUE Integration Scenario | Base case | Residential Demand [kWh] | 101.24 | 43.08 | 201.76 | 69.51 | 196.45 |
PUE Demand [kWh] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | ||
Excess Electricity Share [%] | 51.97 | 46.02 | 53.64 | 36.39 | 55.18 | ||
Excess Hours | 3433 | 2804 | 3474 | 2670 | 3575 | ||
Rice huller | Residential Demand [kWh] | 101.24 | 43.08 | 201.76 | 69.51 | 196.45 | |
PUE Demand [kWh] | 1309.15 | 1309.15 | 1309.15 | 1309.15 | 1309.15 | ||
Excess Electricity Share [%] | 70.67 | 70.51 | 69.28 | 70.71 | 69.43 | ||
Excess Hours | 3142.00 | 3289.00 | 3303.00 | 3236.00 | 3297.00 | ||
Flexible rice huller | Residential Demand [kWh] | 101.24 | 43.08 | 201.76 | 69.51 | 196.45 | |
PUE Demand [kWh] | 1309.14 | 1309.14 | 1309.14 | 1309.14 | 1309.14 | ||
Excess Electricity Share [%] | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | ||
Excess Hours | 137 | 136 | 132 | 132 | 136 | ||
Freezer | Residential Demand [kWh] | 101.2 | 43.1 | 201.8 | 69.5 | 196.4 | |
PUE Demand [kWh] | 485.0 | 485.0 | 485.0 | 485.0 | 485.0 | ||
Excess Electricity Share [%] | 63.3 | 63.3 | 62.8 | 63.2 | 63.1 | ||
Excess Hours | 3841 | 3892 | 3856 | 3859 | 3901 |
References
- Frigo, G.; Baumann, M.; Hillerbrand, R. Energy and the Good Life: Capabilities as the Foundation of the Right to Access Energy Services. J. Hum. Dev. Capab. 2021, 22, 218–248. [Google Scholar] [CrossRef]
- González-Eguino, M. Energy Poverty: An Overview. Renew. Sust. Energ. Rev. 2015, 47, 377–385. [Google Scholar] [CrossRef]
- Arto, I.; Capellan-Perez, I.; Lago, R.; Bueno, G.; Bermejo, R. The Energy Requirements of a Developed World. Energy Sustain. Dev. 2016, 33, 1–13. [Google Scholar] [CrossRef]
- McCollum, D.L.; Echeverri, L.G.; Busch, S.; Pachauri, S.; Parkinson, S.; Rogelj, J.; Krey, V.; Minx, J.C.; Nilsson, M.; Stevance, A.-S.; et al. Connecting the Sustainable Development Goals by Their Energy Inter-Linkages. Environ. Res. Lett. 2018, 13, 033006. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Tomei, J.; To, L.S.; Bisaga, I.; Borrion, A.; Spataru, C.; Castán Broto, V.; Mulugetta, Y. Mapping Synergies and Trade-Offs between Energy and the Sustainable Development Goals. Nat. Energy 2017, 3, 10–15. [Google Scholar] [CrossRef]
- Schöne, N.; Timofeeva, E.; Heinz, B. Sustainable Development Goal Indicators as the Foundation for a Holistic Impact Assessment of Access-to-Energy Projects. J. Sustain. Dev. Energy Water Environ. Syst. 2022, 10, 1090400. [Google Scholar] [CrossRef]
- Dall-Orsoletta, A.; Cunha, J.; Araújo, M.; Ferreira, P. A Systematic Review of Social Innovation and Community Energy Transitions. Energy Res. Soc. Sci. 2022, 88, 102625. [Google Scholar] [CrossRef]
- United Nations Sustainable Development Goals Knowledge Platform. Available online: https://sustainabledevelopment.un.org (accessed on 11 July 2022).
- IEA. Tracking SDG7: The Energy Progress Report; IEA: Paris, France, 2023. [Google Scholar]
- Liu, Y.; Bah, Z. Enabling Development Impact of Solar Mini-Grids through the Community Engagement: Evidence from Rural Sierra Leone. Energy Policy 2021, 154, 112294. [Google Scholar] [CrossRef]
- Morrissey, J. The Energy Challenge in Sub-Saharan Africa: A Guide for Advocates and Policy Makers: Part 2: Addressing Energy Poverty; Oxfam Research Backgrounder; Oxfam: Boston, MA, USA; Washington, DC, USA, 2017; pp. 23–44. [Google Scholar]
- ESMAP. Mini Grids for Half a Billion People: Market Outlook and Handbook for Decision Makers; ESMAP: Washington, DC, USA, 2019. [Google Scholar]
- Azimoh, C.L.; Klintenberg, P.; Mbohwa, C.; Wallin, F. Replicability and Scalability of Mini-Grid Solution to Rural Electrification Programs in Sub-Saharan Africa. Renew. Energy 2017, 106, 222–231. [Google Scholar] [CrossRef]
- Agenbroad, J.; Carlin, K.; Ernst, K.; Doig, S. Minigrids in the Money: Six Ways to Reduce Minigrid Costs by 60% for Rural Electrification; Rocky Mountain Institute: Basalt, CO, USA, 2018. [Google Scholar]
- Terrapon-Pfaff, J.; Gröne, M.-C.; Dienst, C.; Ortiz, W. Impact Pathways of Small Energy Projects in the Global South—Findings from a Systematic Evaluation. Renew. Sust. Energ. Rev. 2018, 95, 84–94. [Google Scholar] [CrossRef]
- Kooijman-van Dijk, A.L. The Role of Energy in Creating Opportunities for Income Generation in the Indian Himalayas. Energy Policy 2012, 41, 529–536. [Google Scholar] [CrossRef]
- Riva, F.; Ahlborg, H.; Hartvigsson, E.; Pachauri, S.; Colombo, E. Electricity Access and Rural Development: Review of Complex Socio-Economic Dynamics and Causal Diagrams for More Appropriate Energy Modelling. Energy Sustain. Dev. 2018, 43, 203–223. [Google Scholar] [CrossRef]
- Madon, R. Energy, Poverty, and Gender: Impacts of Rural Electrification on Poverty and Gender in Indonesia Volume 1: Facts, Analysis, and Recommendations; ENPOGEN, MARGE France for The World Bank, ASTAE: Washington, DC, USA, 2003. [Google Scholar]
- ESMAP. Productive Use of Energy—PRODUSE Measuring Impacts of Electrification on Small and Micro-Enterprises in Sub-Saharan Africa; ESMAP: Washington, DC, USA, 2013. [Google Scholar]
- Domegni, K.M.S.; Azouma, Y.O. Productive Uses of Energy: A Solution for Promoting Energy Justice in Rural Areas in West Africa. Renew. Sustain. Energy Rev. 2022, 160, 112298. [Google Scholar] [CrossRef]
- van Hove, E.; Johnson, N.G.; Blechinger, P. Evaluating the Impact of Productive Uses of Electricity on Mini-Grid Bankability. Energy Sustain. Dev. 2022, 71, 238–250. [Google Scholar] [CrossRef]
- Little, M.; Blanchard, R. Pre-Feasibility Methodology to Compare Productive Uses of Energy Supplied by Stand-Alone Solar Photovoltaic Systems: A Tanzanian Case Study. Energy Sustain. Dev. 2022, 70, 497–510. [Google Scholar] [CrossRef]
- Beath, H.; Hauser, M.; Sandwell, P.; Gambhir, A.; Few, S.; Chambon, C.L.; Nelson, J. The Cost and Emissions Advantages of Incorporating Anchor Loads into Solar Mini-Grids in India. Renew. Sustain. Energy Transit. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Booth, S.; Li, X.; Baring-Gould, I.; Kollanyi, D.; Bharadwaj, G.; Weston, P. Productive Use of Energy in African Micro-Grids: Technical and Business Considerations; NREL, Energy 4 Impact; NREL: Golden, CO, USA, 2018. [Google Scholar]
- Kyriakarakos, G.; Balafoutis, A.T.; Bochtis, D. Proposing a Paradigm Shift in Rural Electrification Investments in Sub-Saharan Africa through Agriculture. Sustainability 2020, 12, 3096. [Google Scholar] [CrossRef]
- Farthing, A.; Rosenlieb, E.; Steward, D.; Reber, T.; Njobvu, C.; Moyo, C. Quantifying Agricultural Productive Use of Energy Load in Sub-Saharan Africa and Its Impact on Microgrid Configurations and Costs. Appl. Energy 2023, 343, 121131. [Google Scholar] [CrossRef]
- Louie, H.; Dauenhauer, P. Effects of Load Estimation Error on Small-Scale off-Grid Photovoltaic System Design, Cost and Reliability. Energy Sustain. Dev. 2016, 34, 30–43. [Google Scholar] [CrossRef]
- Hunink, Y.T.A.; Kamp, L.M.; Blom, E.M. Co-Creating Responsible Energy Systems. In ISGW 2018 Compendium of Technical Papers; Pillai, R.K., Ghatikar, G., Seethapathy, R., Sonavane, V.L., Khaparde, S.A., Yemula, P.K., Chaudhuri, S., Eds.; Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; Volume 580, pp. 329–342. ISBN 978-981-329-118-8. [Google Scholar]
- McGookin, C.; Ó Gallachóir, B.; Byrne, E. Participatory Methods in Energy System Modelling and Planning—A Review. Renew. Sustain. Energy Rev. 2021, 151, 111504. [Google Scholar] [CrossRef]
- The World Bank Access to Electricity (% of Population)—Madagascar, Arab World. Available online: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=MG-1A (accessed on 12 January 2024).
- Mwasaru, J.; Schöne, N.; Britton, T.R. D2.4 Energy Flow Patterns for Productive Uses of Energy; ENERGICA Consortium: Modena, Italy, 2023. [Google Scholar]
- Siegel, S. Nonparametric Statistics. Am. Stat. 1957, 11, 13–19. [Google Scholar] [CrossRef]
- Sterling, T.; Anderson, M.; Brodowicz, M. High Performance Computing: Modern Systems and Practices; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-420158-3. [Google Scholar]
- Schöne, N.; Greilmeier, K.; Heinz, B. Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte. Energies 2022, 15, 1338. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications Ltd.: Sussex, UK, 2017; ISBN 978-1-5264-4578-0. [Google Scholar]
- McHugh, M.L. The Chi-Square Test of Independence. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Haschek, W.; Rousseaux, C.; Wallig, M. Handbook of Toxicologic Pathology; Elsevier: Amsterdam, The Netherlands, 2002; ISBN 978-0-12-330215-1. [Google Scholar]
- Witzel, A. The Problem-Centered Interview. In Qualitative Forschung in der Psychologie: Grundfragen, Verfahrensweisen, Anwendungsfelder; Beltz: Weinheim, Germany, 2000; ISBN 3-407-54680-7. [Google Scholar]
- Steca PF166-H. Available online: https://www.steca.com/Steca-PF-166-H-PF-240-H (accessed on 17 November 2022).
- Hilpert, S.; Kaldemeyera, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy Modelling Framework (Oemof)—A New Approach to Facilitate Open Science in Energy System Modelling. Energy Strategy Rev. 2018, 22, 16–25. [Google Scholar] [CrossRef]
- Kinally, C.; Antonanzas-Torres, F.; Podd, F.; Gallego-Schmid, A. Off-Grid Solar Waste in Sub-Saharan Africa: Market Dynamics, Barriers to Sustainability, and Circular Economy Solutions. Energy Sustain. Dev. 2022, 70, 415–429. [Google Scholar] [CrossRef]
- Renewables. Ninja Simulations of the Hourly Power Output from Wind and Solar Power Plants. Available online: https://www.renewables.ninja (accessed on 11 July 2022).
- Agsol. Micromill; Agsol: Kikuyu, Kenya, 2023. [Google Scholar]
- Jacobson, M.Z.; Jadhav, V. World Estimates of PV Optimal Tilt Angles and Ratios of Sunlight Incident upon Tilted and Tracked PV Panels Relative to Horizontal Panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- Pfenninger, S.; Staffell, I. Long-Term Patterns of European PV Output Using 30 Years of Validated Hourly Reanalysis and Satellite Data. Energy 2016, 114, 1251–1265. [Google Scholar] [CrossRef]
- Yilmaz, S.; Xu, X.; Cabrera, D.; Chanez, C.; Cuony, P.; Patel, M.K. Analysis of Demand-Side Response Preferences Regarding Electricity Tariffs and Direct Load Control: Key Findings from a Swiss Survey. Energy 2020, 212, 118217. [Google Scholar] [CrossRef]
- Vaughn, L.M.; Jacquez, F. Participatory Research Methods—Choice Points in the Research Process. J. Particip. Res. Methods 2020, 1. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.; Gröne, M.-C.; Dienst, C.; Ortiz, W. Productive Use of Energy—Pathway to Development? Reviewing the Outcomes and Impacts of Small-Scale Energy Projects in the Global South. Renew. Sustain. Energy Rev. 2018, 96, 198–209. [Google Scholar] [CrossRef]
- Khandker, S.R.; Barnes, D.F.; Samad, H.A. Welfare Impacts of Rural Electrification: A Case Study from Bangladesh; World Bank Policy Research Working Paper 4859; World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Rao, N.D.; Agarwal, A.; Wood, D. Impacts of Small-Scale Electricity Systems: A Study of Rural Communities in India and Nepal; World Resources Institute: Washington, DC, USA, 2016. [Google Scholar]
- Poor People’s Energy Outlook 2012; Practical Action Publishing: Rugby, UK, 2012.
Year | Average Daily Household Electricity Consumption [Wh] | Annual Change in Average Daily Electricity Consumption [%] | Average Daily Maximum Household Power Demand [W] | Annual Change in Maximum Average Power Consumption [%] |
---|---|---|---|---|
2018 | 8.16 | - | 2.26 | - |
2019 | 21.88 | 168.27 | 2.25 | −0.75 |
2020 | 35.47 | 62.11 | 2.27 | 0.92 |
2021 | 50.62 | 42.72 | 2.99 | 32.11 |
Variables | Cluster 0 | Cluster 1 | Cluster 2 | χ2 | df | Fisher’s Exact Test | p-Value | Cramer’s V | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | EC | C | EC | C | EC | |||||||
Tariff Group | ||||||||||||
Eco | Yes | 0 | 5.7 | 33 | 22.6 | 1 | 5.7 | 21.172 | 2 | <0.001 | 0.445 | |
No | 18 | 12.3 | 38 | 48.4 | 17 | 12.3 | ||||||
Eclairage Plus | Yes | 9 | 4.7 | 17 | 18.6 | 2 | 4.7 | 7.585 | 2 | 6.98 | 0.025 | 0.275 |
No | 9 | 13.3 | 54 | 52.4 | 16 | 13.3 | ||||||
Multimedia | Yes | 7 | 2 | 4 | 8 | 1 | 2.2 | 16.654 | 2 | 12.37 | 0.001 | 0.395 |
No | 11 | 16 | 67 | 63 | 17 | 16 | ||||||
Public Lighting | Yes | 0 | 2 | 1 | 8 | 11 | 2 | 54.137 | 2 | 37.199 | <0.001 | 0.711 |
No | 18 | 16 | 70 | 63 | 7 | 16 | ||||||
Tariff Switch | Yes | 11 | 5 | 17 | 19.9 | 2 | 5 | 12.9 | 2 | 0.002 | 0.347 | |
No | 7 | 13 | 52 | 51.1 | 16 | 13 | ||||||
Appliance Ownership | ||||||||||||
LED Bulb | Yes | 16 | 14.1 | 61 | 55.7 | 7 | 14.1 | 20.201 | 2 | 16.635 | <0.001 | 0.435 |
No | 2 | 3.9 | 10 | 15.3 | 11 | 3.9 | ||||||
LED Spot | Yes | 0 | 2 | 1 | 8 | 11 | 2 | 54.137 | 2 | 37.199 | <0.001 | 0.711 |
No | 18 | 16 | 70 | 63 | 7 | 16 | ||||||
USB Phone Charger | Yes | 15 | 8.9 | 31 | 35.2 | 7 | 8.9 | 10.021 | 2 | 10.199 | 0.006 | 0.306 |
No | 3 | 9.1 | 40 | 35.8 | 11 | 9.1 | ||||||
12 V Plug | Yes | 10 | 5.7 | 21 | 22.6 | 3 | 5.7 | 6.749 | 2 | 0.034 | 0.251 | |
No | 8 | 12.3 | 50 | 48.4 | 15 | 12.3 | ||||||
LED Bulb Quantity | 0 | 2 | 3.9 | 10 | 15.3 | 11 | 3.9 | 40.883 | 12 | 35.687 | <0.001 | 0.437 |
1 | 6 | 7.9 | 40 | 31.2 | 1 | 7.9 | ||||||
2 | 4 | 4 | 14 | 15.9 | 6 | 4 | ||||||
3 | 3 | 1.2 | 4 | 4.6 | 0 | 1.2 | ||||||
4 | 1 | 0.7 | 3 | 2.7 | 0 | 0.7 | ||||||
5 | 1 | 0.2 | 0 | 0.7 | 0 | 0.2 | ||||||
8 | 1 | 0.2 | 0 | 0.7 | 0 | 0.2 | ||||||
Demographic Variable | ||||||||||||
Number of Children * | 0 | 1 | 2.9 | 13 | 10.9 | 1 | 1.3 | 16.175 | 8 | 13.283 | 0.065 | 0.31 |
1 | 8 | 4.6 | 16 | 17.4 | 0 | 2 | ||||||
2 | 3 | 4.4 | 19 | 16.7 | 1 | 1.9 | ||||||
3 | 3 | 3.6 | 11 | 13.8 | 5 | 1.6 | ||||||
4 | 1 | 0.6 | 2 | 2.2 | 0 | 0.3 | ||||||
Job Group | ||||||||||||
Trader | Yes | 9 | 5.4 | 17 | 14.8 | 0 | 5.8 | 13.263 | 2 | 0.001 | 0.429 | |
No | 6 | 9.6 | 24 | 26.2 | 16 | 10.2 | ||||||
Employee * | Yes | 4 | 1.7 | 4 | 4.6 | 0 | 1.8 | 5.751 | 2 | 4.959 | 0.056 | 0.283 |
No | 11 | 13.3 | 37 | 36.4 | 16 | 14.2 | ||||||
Public Lighting | Yes | 0 | 2.5 | 1 | 6.8 | 11 | 2.7 | 40.226 | 2 | 31.89 | <0.001 | 0.747 |
No | 15 | 12.5 | 40 | 34.2 | 5 | 13.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schöne, N.; Britton, T.R.; Delatte, E.; Saincy, N.; Heinz, B. Matchmaking in Off-Grid Energy System Planning: A Novel Approach for Integrating Residential Electricity Demands and Productive Use of Electricity. Sustainability 2024, 16, 3442. https://doi.org/10.3390/su16083442
Schöne N, Britton TR, Delatte E, Saincy N, Heinz B. Matchmaking in Off-Grid Energy System Planning: A Novel Approach for Integrating Residential Electricity Demands and Productive Use of Electricity. Sustainability. 2024; 16(8):3442. https://doi.org/10.3390/su16083442
Chicago/Turabian StyleSchöne, Nikolas, Tim Ronan Britton, Edouard Delatte, Nicolas Saincy, and Boris Heinz. 2024. "Matchmaking in Off-Grid Energy System Planning: A Novel Approach for Integrating Residential Electricity Demands and Productive Use of Electricity" Sustainability 16, no. 8: 3442. https://doi.org/10.3390/su16083442
APA StyleSchöne, N., Britton, T. R., Delatte, E., Saincy, N., & Heinz, B. (2024). Matchmaking in Off-Grid Energy System Planning: A Novel Approach for Integrating Residential Electricity Demands and Productive Use of Electricity. Sustainability, 16(8), 3442. https://doi.org/10.3390/su16083442