Identifying the Contributing Sources of Uncertainties in Urban Flood Vulnerability in South Korea Considering Multiple GCMs, SSPs, Weight Determination Methods, and MCDM Techniques
Abstract
:1. Introduction
- (1)
- How does flood vulnerability compare when estimated using different weighting, MCDM, and GCMs with climate change scenarios for different sizes of cities?
- (2)
- To what extent does flood vulnerability vary when considering all plausible inputs?
- (3)
- How does the relative sensibility to the various components of flood vulnerability assessment compare (i.e., weights, decision making process, and climate model)?
2. Methods
2.1. Study Area, GCMs, and SSPs
2.2. DPSIR Framework and Social-Economic-Environmental Factors
2.3. MCDM Techniques
2.4. Weight Determination Methods
2.5. Statistical Test for Flood Vulnerability Results
3. Results
3.1. Development of the Decision Matrix
3.2. Evaluation the Urban Flood Vulnerability from Different Methods
3.2.1. Weighting Values from Different Methods
3.2.2. UFV Assessment Based on Different MCDM Techniques
3.3. Statistical Analysis of Urban Flood Vulnerability Rankings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. 2014: Ch. 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2014; pp. 19–67. [Google Scholar]
- Chang, H.; Pallathadka, A.; Sauer, J.; Grimm, N.B.; Zimmerman, R.; Cheng, C.; Iwaniec, D.M.; Kim, Y.; Lloyd, R.; McPhearson, T.; et al. Assessment of Urban Flood Vulnerability Using the Social-Ecological-Technological Systems Framework in Six US Cities. Sustain. Cities Soc. 2021, 68, 102786. [Google Scholar] [CrossRef]
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of Extreme Precipitation Increases Extensively with Event Rareness under Global Warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in Temperature and Precipitation Extremes in the CMIP5 Ensemble. Clim. Change 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Wing, O.E.J.; Bates, P.D.; Smith, A.M.; Sampson, C.C.; Johnson, K.A.; Fargione, J.; Morefield, P. Estimates of Present and Future Flood Risk in the Conterminous United States. Environ. Res. Lett. 2018, 13, 034023. [Google Scholar] [CrossRef]
- Hong, C.Y.; Chang, H. Residents’ Perception of Flood Risk and Urban Stream Restoration Using Multi-Criteria Decision Analysis. River Res. Appl. 2020, 36, 2078–2088. [Google Scholar] [CrossRef]
- Luino, F.; Turconi, L.; Petrea, C.; Nigrelli, G. Uncorrected Land-Use Planning Highlighted by Flooding: The Alba Case Study (Piedmont, Italy). Nat. Hazards Earth Syst. Sci. 2012, 12, 2329–2346. [Google Scholar] [CrossRef]
- Bae, S.; Chang, H. Urbanization and Floods in the Seoul Metropolitan Area of South Korea: What Old Maps Tell Us. Int. J. Disaster Risk Reduct. 2019, 37, 101186. [Google Scholar] [CrossRef]
- Reisinger, A.; Howden, M.; Vera, C.; Garschagen, M.; Hurlbert, M.; Kreibiehl, S.; Mach, K.J.; Mintenbeck, K.; O’neill, B.; Pathak, M.; et al. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions; Guidance for IPCC Authors; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2020; p. 15. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Riahi, K.; Moss, R.; Edmonds, J.; Thomson, A.; Nakicenovic, N.; Kram, T.; Berkhout, F.; Swart, R.; Janetos, A.; et al. A Proposal for a New Scenario Framework to Support Research and Assessment in Different Climate Research Communities. Glob. Environ. Change 2012, 22, 21–35. [Google Scholar] [CrossRef]
- Kriegler, E.; O’Neill, B.C.; Hallegatte, S.; Kram, T.; Lempert, R.J.; Moss, R.H.; Wilbanks, T. The Need for and Use of Socio-Economic Scenarios for Climate Change Analysis: A New Approach Based on Shared Socio-Economic Pathways. Glob. Environ. Change 2012, 22, 807–822. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A New Scenario Framework for Climate Change Research: The Concept of Shared Socioeconomic Pathways. Clim. Change 2014, 122, 387–400. [Google Scholar] [CrossRef]
- Pelling, M. The Vulnerability of Cities: Natural Disasters and Social Resilience; EARTHSCAN Publications Ltd.: London, UK, 2003. [Google Scholar]
- Romero Lankao, P.; Qin, H. Conceptualizing Urban Vulnerability to Global Climate and Environmental Change. Curr. Opin. Environ. Sustain. 2011, 3, 142–149. [Google Scholar] [CrossRef]
- Cardona, O.D.; Van Aalst, M.K.; Birkmann, J.; Fordham, M.; Mc Gregor, G.; Rosa, P.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T.; Décamps, H.; et al. Determinants of Risk: Exposure and Vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; ISBN 9781139177245. [Google Scholar]
- Adger, W.N.; Agrawala, S.; Mirza, M.M.Q.; Conde, C.; O’Brien, K.; Pulhin, J.; Pulwarty, R.; Smit, B.; Takahashi, K. Assessment of Adaptation Practices, Options, Constraints and Capacity. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 717–743. [Google Scholar]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood Exposure and Poverty in 188 Countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- Parvin, F.; Ali, S.A.; Calka, B.; Bielecka, E.; Linh, N.T.T.; Pham, Q.B. Urban Flood Vulnerability Assessment in a Densely Urbanized City Using Multi-Factor Analysis and Machine Learning Algorithms. Theor. Appl. Climatol. 2022, 149, 639–659. [Google Scholar] [CrossRef]
- Tanim, A.H.; Goharian, E.; Moradkhani, H. Integrated Socio-Environmental Vulnerability Assessment of Coastal Hazards Using Data-Driven and Multi-Criteria Analysis Approaches. Sci. Rep. 2022, 12, 11625. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Blessing, R.; Juan, A.; Brody, S.; Bedient, P. Characterizing Urbanization Impacts on Floodplain through Integrated Land Use, Hydrologic, and Hydraulic Modeling. J. Hydrol. 2019, 568, 82–95. [Google Scholar] [CrossRef]
- Anees, M.T.; Abdullah, K.; Nawawi, M.N.; Ab Rahman, N.N.; Piah, A.R.; Zakaria, N.A.; Syakir, M.I.; Omar, A.M. Numerical Modeling Techniques for Flood Analysis. J. Afr. Earth Sci. 2016, 124, 478–486. [Google Scholar] [CrossRef]
- De Brito, M.M.; Evers, M. Multi-Criteria Decision-Making for Flood Risk Management: A Survey of the Current State of the Art. Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [Google Scholar] [CrossRef]
- Wu, L.; Tong, J.; Wang, Z.; Li, J.; Li, M.; Li, H.; Feng, Y. Post-Flood Disaster Damaged Houses Classification Based on Dual-View Image Fusion and Concentration-Based Attention Module. Sustain. Cities Soc. 2024, 103, 105234. [Google Scholar] [CrossRef]
- Zou, Q.; Zhou, J.; Zhou, C.; Song, L.; Guo, J. Comprehensive Flood Risk Assessment Based on Set Pair Analysis-Variable Fuzzy Sets Model and Fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2013, 27, 525–546. [Google Scholar] [CrossRef]
- Kang, H.-Y.; Chae, S.T.; Chung, E.-S. Quantifying Medium-Sized City Flood Vulnerability Due to Climate Change Using Multi-Criteria Decision-Making Techniques: Case of Republic of Korea. Sustainability 2023, 15, 16061. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A.; Hazra, S.; Ghosh, T.; Safra de Campos, R.; Samanta, S. Linking IPCC AR4 & AR5 Frameworks for Assessing Vulnerability and Risk to Climate Change in the Indian Bengal Delta. Prog. Disaster Sci. 2020, 7, 100110. [Google Scholar] [CrossRef]
- Song, J.Y.; Chung, E.S. Robustness, Uncertainty and Sensitivity Analyses of the TOPSIS Method for Quantitative Climate Change Vulnerability: A Case Study of Flood Damage. Water Resour. Manag. 2016, 30, 4751–4771. [Google Scholar] [CrossRef]
- Hajkowicz, S.; Collins, K. A Review of Multiple Criteria Analysis for Water Resource Planning and Management. Water Resour. Manag. 2007, 21, 1553–1566. [Google Scholar] [CrossRef]
- Chae, S.T.; Chung, E.S.; Jiang, J. Robust Siting of Permeable Pavement in Highly Urbanized Watersheds Considering Climate Change Using a Combination of Fuzzy-TOPSIS and the VIKOR Method. Water Resour. Manag. 2022, 36, 951–969. [Google Scholar] [CrossRef]
- Mateusz, P.; Danuta, M.; Małgorzata, L.; Mariusz, B.; Kesra, N. TOPSIS and VIKOR Methods in Study of Sustainable Development in the EU Countries. Procedia Comput. Sci. 2018, 126, 1683–1692. [Google Scholar] [CrossRef]
- Sadeghi, M.; Razavi, S.H.; Saberi, N. Application of Grey TOPSIS in Preference Ordering of Action Plans in Balanced Scorecard and Strategy Map. Informatica 2013, 24, 619–635. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Salabun, W. A Comparative Case Study of the VIKOR and TOPSIS Rankings Similarity. Procedia Comput. Sci. 2020, 176, 3730–3740. [Google Scholar] [CrossRef]
- Her, Y.; Yoo, S.H.; Cho, J.; Hwang, S.; Jeong, J.; Seong, C. Uncertainty in Hydrological Analysis of Climate Change: Multi-Parameter vs. Multi-GCM Ensemble Predictions. Sci. Rep. 2019, 9, 4974. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Environmental Indicators: Typology and Overview; EEA: Copenhagen, Denmark, 1999. [Google Scholar]
- Rehman, J.; Sohaib, O.; Asif, M.; Pradhan, B. Applying Systems Thinking to Flood Disaster Management for a Sustainable Development. Int. J. Disaster Risk Reduct. 2019, 36, 101101. [Google Scholar] [CrossRef]
- Malmir, M.; Javadi, S.; Moridi, A.; Neshat, A.; Razdar, B. A New Combined Framework for Sustainable Development Using the DPSIR Approach and Numerical Modeling. Geosci. Front. 2021, 12, 101169. [Google Scholar] [CrossRef]
- Bruno, M.F.; Saponieri, A.; Molfetta, M.G.; Damiani, L. The DPSIR Approach for Coastal Risk Assessment under Climate Change at Regional Scale: The Case of Apulian Coast (Italy). J. Mar. Sci. Eng. 2020, 8, 531. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The Weighted Sum Method for Multi-Objective Optimization: New Insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Zadeh, L.A. Optimality and Non-Scalar-Valued Performance Criteria. IEEE Trans. Autom. Control 1963, 8, 59–60. [Google Scholar] [CrossRef]
- Goicoechea, A.; Hansen, D.R.; Duckstein, L. Multiobjective Analysis with Engneering and Business Applications; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998. [Google Scholar]
- Opricovic, S.; Tzeng, G.H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Chen, S.-J.; Hwang, C.-L. Fuzzy Multiple Attribution Decision Making Methods. In Fuzzy Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decesion Making; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbanan, IL, USA, 1947. [Google Scholar]
- Dalkey, N.; Helmer, O. An Experimental Application of the Delphi Method to the Use of Experts. Manag. Sci. 1963, 9, 458–467. [Google Scholar] [CrossRef]
- Chen, C.-T. Extensions Ofthe TOPSIS for Group Decision-Making under Fuzzy Environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Deng, J.-L. Introduction to Grey System. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Deng, J.-L. Control Problems of Grey Systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar] [CrossRef]
- Oztaysi, B. A Decision Model for Information Technology Selection Using AHP Integrated TOPSIS-Grey: The Case of Content Management Systems. Knowl.-Based Syst. 2014, 70, 44–54. [Google Scholar] [CrossRef]
- Yip, S.; Ferro, C.A.T.; Stephenson, D.B.; Hawkins, E. A Simple, Coherent Framework for Partitioning Uncertainty in Climate Predictions. J. Clim. 2011, 24, 4634–4643. [Google Scholar] [CrossRef]
- Morim, J.; Hemer, M.; Wang, X.L.; Cartwright, N.; Trenham, C.; Semedo, A.; Young, I.; Bricheno, L.; Camus, P.; Casas-Prat, M.; et al. Robustness and Uncertainties in Global Multivariate Wind-Wave Climate Projections. Nat. Clim. Chang. 2019, 9, 711–718. [Google Scholar] [CrossRef]
Factor | DPSIR | Label | Indicators | Benefit vs. Cost | Period and Source of Data Collection |
---|---|---|---|---|---|
Social | Driver | I01 | Population growth | (−) | 2007–2022 Statistic Year Book of Natural Disaster (https://kosis.kr/index/index.do (accessed on 5 July 2023)) |
I02 | Class of population vulnerable to disaster | (−) | |||
I03 | Administrative district area | (−) | |||
I04 | Population | (−) | |||
I05 | Distance to shore | (+) | |||
Pressure | I06 | Developed area | (−) | ||
State | I07 | Number of Flood events | (−) | ||
Impact | I08 | Number of casualties | (−) | ||
I09 | Number of injured people | (−) | |||
Response | I10 | Number of inhabitants per resident | (−) | ||
I11 | Number of hospital beds per thousand people | (+) | |||
I12 | Number of doctors per thousand people | (+) | |||
Economic | Driver | I13 | Unemployment ratio | (−) | |
Pressure | I14 | Financial independence rate | (+) | ||
I15 | GRDP | (+) | |||
State | I16 | Developing plan area | (−) | ||
Impact | I17 | Cost of damage | (−) | ||
Response | I18 | Cost for recovery | (−) | ||
I19 | Disaster prevention budget | (+) | |||
Environmental | Driver | I20 | Future monthly precipitation (GCMs) | (−) | 2070–2099 GCMs + SSP scenarios |
Pressure | I21 | Daily maximum precipitation | (−) | 2007–2022 Statistic Year Book of Natural Disaster (https://kosis.kr/index/index.do (accessed on 5 July 2023)) | |
State | I22 | Damage area | (−) | ||
Impact | I23 | Number of restored households | (−) | ||
Response | I24 | Length of levee | (+) | ||
I25 | Number of reservoirs | (+) |
Sources | All Cities | Considering Only the Cities Based on the Most Contributed Sources | ||
---|---|---|---|---|
Min | Max | Min | Max | |
GCM + SSP | 0.01 | 16.70 | - | - |
MCDM | 0.51 | 71.37 | 40.66 | 71.37 |
Weight | 11.44 | 92.93 | 35.06 | 92.93 |
GCM + SSP + MCDM | 0.02 | 13.60 | - | - |
GCM + SSP + Weight | 0.06 | 17.25 | - | - |
MCDM + Weight | 0.46 | 58.55 | 28.42 | 58.55 |
GCM + SSP + MCDM + Weight | 0.07 | 15.93 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziarh, G.F.; Kim, J.H.; Chae, S.T.; Kang, H.-Y.; Hong, C.; Song, J.Y.; Chung, E.-S. Identifying the Contributing Sources of Uncertainties in Urban Flood Vulnerability in South Korea Considering Multiple GCMs, SSPs, Weight Determination Methods, and MCDM Techniques. Sustainability 2024, 16, 3450. https://doi.org/10.3390/su16083450
Ziarh GF, Kim JH, Chae ST, Kang H-Y, Hong C, Song JY, Chung E-S. Identifying the Contributing Sources of Uncertainties in Urban Flood Vulnerability in South Korea Considering Multiple GCMs, SSPs, Weight Determination Methods, and MCDM Techniques. Sustainability. 2024; 16(8):3450. https://doi.org/10.3390/su16083450
Chicago/Turabian StyleZiarh, Ghaith Falah, Jin Hyuck Kim, Seung Taek Chae, Hae-Yeol Kang, Changyu Hong, Jae Yeol Song, and Eun-Sung Chung. 2024. "Identifying the Contributing Sources of Uncertainties in Urban Flood Vulnerability in South Korea Considering Multiple GCMs, SSPs, Weight Determination Methods, and MCDM Techniques" Sustainability 16, no. 8: 3450. https://doi.org/10.3390/su16083450
APA StyleZiarh, G. F., Kim, J. H., Chae, S. T., Kang, H. -Y., Hong, C., Song, J. Y., & Chung, E. -S. (2024). Identifying the Contributing Sources of Uncertainties in Urban Flood Vulnerability in South Korea Considering Multiple GCMs, SSPs, Weight Determination Methods, and MCDM Techniques. Sustainability, 16(8), 3450. https://doi.org/10.3390/su16083450