A Biodiversity Monitoring Case Study in Viticulture: Manual and Digitalized Collaborative Methodology to Pursue the European Commission’s Sustainable Challenges
Abstract
:1. Introduction
1.1. The Agriculture Role towards the Digital Transformation and the Green Transition
1.2. Integrating Digital Technologies for Biodiversity Monitoring in Agriculture
2. Materials and Methods
2.1. Study Area
2.2. Selected Farms
2.3. Biodiversity Framework
2.4. Biodiversity Assessments in Study Farms
2.5. Plant Species Monitoring Survey
2.6. Invertebrates Monitoring Survey
2.6.1. Annelids
- -
- Spligs: small-sized and very colorful; they live on the surface of the soil, in the leaf litter or any heap of decaying organic waste (a manure heap or compost, for example) that they decompose;
- -
- Anectics: large, living in the soil in +/− vertical galleries and feeding on the surface of decaying organic matter. There are two groups in the anecious: the epi-anecious and the strict anecious;
- -
- Endogenous: ranging from pink to very pale; they live within the soil and do not rise to the surface.
2.6.2. Arthropods
2.7. Statistical Analysis
3. Results
3.1. Herbaceous Families Biodiversity
3.2. Entomofauna Biodiversity Indicators
3.3. Digital Platform
- -
- Thematic territorial maps;
- -
- Site-specific layers created based on field activities;
- -
- Company-specific agro-pedological data, digitized and made available on a GIS system;
- -
- Weather forecast data;
- -
- Graphical crop plan;
- -
- Satellite data from the Sentinel constellation, expressed as vegetation indices, particularly:
- -
- NDVI—Normalized Difference Vegetation Index;
- -
- NDWI—Normalized Difference Water Index;
- -
- NDRE—Normalized Difference Red Edge;
- -
- Shannon index values.
4. Discussion
4.1. Biodiversity Indicators
4.2. Entomofauna Indicators
4.3. Digital Platform and Mobile Application Potential
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanianska, R. Agriculture and Its Impact on Land-Use, Environment, and Ecosystem Services. In Landscape Ecology—The Influences of Land Use and Anthropogenic Impacts of Landscape Creation; InTech: London, UK, 2016. [Google Scholar] [CrossRef]
- Adamowicz, M. Green Deal, Green Growth and Green Economy as a Means of Support for Attaining the Sustainable Development Goals. Sustainability 2022, 14, 5901. [Google Scholar] [CrossRef]
- Bernués, A.; Tenza-Peral, A.; Gómez-Baggethun, E.; Clemetsen, M.; Eik, L.O.; Martín-Collado, D. Targeting best agricultural practices to enhance ecosystem services in European mountains. J. Environ. Manag. 2022, 316, 115255. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.fao.org/3/I8429EN/i8429en.pdf (accessed on 4 April 2024).
- Gargano, G.; Licciardo, F.; Verrascina, M.; Zanetti, B. The agroecological approach as a model for multifunctional agriculture and farming towards the European green deal 2030—Some evidence from the Italian experience. Sustainability 2021, 13, 2215. [Google Scholar] [CrossRef]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.A.; Justes, E.; Journet, E.P.; Aubertot, J.N.; Savary, S.; Bergez, J.E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Cappelli, S.L.; Domeignoz-Horta, L.A.; Loaiza, V.; Laine, A.L. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends Plant Sci. 2022, 27, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, C.; Ruggeri, G.; Corsi, S. Consumers’ preferences for biodiversity in vineyards: A choice experiment on wine. Wine Econ. Policy 2019, 8, 155–164. [Google Scholar] [CrossRef]
- Froidevaux, J.S.P.; Louboutin, B.; Jones, G. Does organic farming enhance biodiversity in Mediterranean vineyards? A case study with bats and arachnids. Agric. Ecosyst. Environ. 2017, 249, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.Y.; vanden Heuvel, J.; Bell, T.H.; Panke-Buisse, K.; Kao-Kniffin, J. Vineyard under-vine floor management alters soil microbial composition, while the fruit microbiome shows no corresponding shifts. Sci. Rep. 2018, 8, 11039. [Google Scholar] [CrossRef]
- Santiago-Freijanes, J.J.; Mosquera-Losada, M.R.; Rois-Díaz, M.; Ferreiro-Domínguez, N.; Pantera, A.; Aldrey, J.A.; Rigueiro-Rodríguez, A. Global and European policies to foster agricultural sustainability: Agroforestry. Agrofor. Syst. 2021, 95, 775–790. [Google Scholar] [CrossRef]
- Agnoletti, M. The degradation of traditional landscape in a mountain area of Tuscany during the 19th and 20th centuries: Implications for biodiversity and sustainable management. For. Ecol. Manag. 2007, 249, 5–17. [Google Scholar] [CrossRef]
- Assandri, G.; Bogliani, G.; Pedrini, P.; Brambilla, M. Beautiful agricultural landscapes promote cultural ecosystem services and biodiversity conservation. Agric. Ecosyst. Environ. 2018, 256, 200–210. [Google Scholar] [CrossRef]
- Steiner, M.; Grace, J.B.; Bacher, S. Biodiversity effects on grape quality depend on variety and management intensity. J. Appl. Ecol. 2021, 58, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, B.P.; Heberling, J.M.; Meineke, E.K.; Turner, K.G.; Grassa, C.J.; Park, D.S.; Kennedy, D.; Clarke, J.D.; Blackburn, J.A.G.; Davis, V.B. Digitization and the future of natural history collections. BioScience 2020, 70, 243–251. [Google Scholar] [CrossRef]
- Balogun, A.L.; Marks, D.; Sharma, R.; Shekhar, H.; Balmes, C.; Maheng, D.; Arshad, A.; Salehi, P. Assessing the Potentials of Digitalization as a Tool for Climate Change Adaptation and Sustainable Development in Urban Centres. Sustain. Cities Soc. 2020, 53, 101888. [Google Scholar] [CrossRef]
- Ceipek, R.; Hautz, J.; Petruzzelli, A.M.; de Massis, A.; Matzler, K. A motivation and ability perspective on engagement in emerging digital technologies: The case of Internet of Things solutions. Long Range Plan. 2021, 54, 101991. [Google Scholar] [CrossRef]
- Vergari, F.; della Seta, M.; del Monte, M.; Barbieri, M. Badlands denudation “hot spots”: The role of parent material properties on geomorphic processes in 20-years monitored sites of Southern Tuscany (Italy). Catena 2013, 106, 31–41. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; le Cadre, E.; d’Errico, G.; et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Available online: https://whc.unesco.org/en/convention/ (accessed on 4 April 2024).
- Venturi, M.; Piras, F.; Corrieri, F.; Fiore, B.; Santoro, A.; Agnoletti, M. Assessment of tuscany landscape structure according to the regional landscape plan partition. Sustainability 2021, 13, 5424. [Google Scholar] [CrossRef]
- Caporali, F. Indicatori di biodiversità per la sostenibilità in agricoltura: Linee guida, strumenti e metodi per la valutazione della qualità degli agroecosistemi. ISPRA: Rome, Italy, 2009. [Google Scholar]
- Kunakh, O.M.; Volkova, A.M.; Tutova, G.F.; Zhukov, O.v. Diversity of diversity indices: Which diversity measure is better? Biosyst. Divers. 2023, 31, 131–146. [Google Scholar] [CrossRef]
- Available online: https://www.observatoire-agricole-biodiversite.fr/ (accessed on 4 April 2024).
- Available online: https://www.observatoire-agricole-biodiversite.fr/les-protocoles/vers-de-terre (accessed on 4 April 2024).
- Available online: https://www.geapp.net (accessed on 4 April 2024).
- Rotchés-Ribalta, R.; Marull, J.; Pino, J. Organic farming increases functional diversity and ecosystem service provision of spontaneous vegetation in Mediterranean vineyards. Ecol. Indic. 2023, 147, 110023. [Google Scholar] [CrossRef]
- Maclaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 2020, 40, 1–29. [Google Scholar] [CrossRef]
- Granata, E.; Pedrini, P.; Marchesi, L.; Fedrigotti, C.; Biella, P.; Ronchi, S.; Brambilla, M. Environmental and management factors drive biological communities and ecosystem services in agroecosystems along an urban-natural gradient. Agric. Ecosyst. Environ. 2023, 357, 108693. [Google Scholar] [CrossRef]
- Rybicki, J.; Hanski, I. Species-area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 2013, 16 (Suppl. S1), 27–38. [Google Scholar] [CrossRef] [PubMed]
- Bosco, L.; Moser, V.; Jones, M.M.; Opedal, Ø.; Ovaskainen, O.; Sonja, G.; van Klink, R.; Cushman, S.A.; Arlettaz, R.; Jacot, A. Habitat area and local habitat conditions outweigh fragmentation effects on insect communities in vineyards. Ecol. Solut. Evid. 2023, 4, e12193. [Google Scholar] [CrossRef]
- Thompson, C.M.; Mcgarigal, K. The Influence of Research Scale on Bald Eagle Habitat Selection along the Lower Hudson River, New York (USA). Landscape Ecol. 2002, 17, 569–586. [Google Scholar]
- Bosco, L.; Siegenthaler, D.; Ruzzante, L.; Jacot, A.; Arlettaz, R. Varying Responses of Invertebrates to Biodynamic, Organic and Conventional Viticulture. Front. Conserv. Sci. 2022, 3, 837551. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Haddad, N.M.; Gonzalez, A.; Brudvig, L.A.; Burt, M.A.; Levey, D.J.; Damschen, E.I. Experimental evidence does not support the Habitat Amount Hypothesis. Ecography 2017, 40, 48–55. [Google Scholar] [CrossRef]
- Zanettin, G.; Bullo, A.; Pozzebon, A.; Burgio, G.; Duso, C. Influence of vineyard inter-row groundcover vegetation management on arthropod assemblages in the vineyards of north-eastern Italy. Insects 2021, 12, 349. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Latake, P.T.; Pawar, P.; Ranveer, A.C. The Greenhouse Effect and Its Impacts on Environment. Int. J. Innov. Res. Creat. Technol. 2015, 1, 333–337. [Google Scholar]
- Sportelli, M.; Apolo-Apolo, O.E.; Fontanelli, M.; Frasconi, C.; Raffaelli, M.; Peruzzi, A.; Perez-Ruiz, M. Evaluation of YOLO Object Detectors for Weed Detection in Different Turfgrass Scenarios. Appl. Sci. 2023, 13, 8502. [Google Scholar] [CrossRef]
- Mancuso, T.; Arfo, S.; di Mauro, M.; Matarazzo, A.; Froio, A.P.; Scuderi, A. Application of SOSTAIN to Wine Sector in Sicily as Sustainability Management Tool. J. Biomed. Res. Environ. Sci. 2022, 3, 302–306. [Google Scholar] [CrossRef]
Characteristics | Farm A | Farm B |
---|---|---|
Total area (ha) | 336 | 70 |
Cultivated area (ha) | 23 | 61 |
Crop rotation | No | No |
Fertilization | Organic | Organic |
Management | Organic | Organic |
Macro-Area | Layers | Source |
---|---|---|
Protected areas | Regional nature reserves Protected natural areas of local interest Habitat—HaSCITu | https://www.regione.toscana.it/-/geoscopio (accessed on 1 April 2024) |
Cultural heritage and landscape | Architectural property protected under part II of Legislative Decree no. 42/2004 | |
Pedology and soil use capacity | Available soil water capacity Landscaper Unity Potential erosion (t/ha) Superficial horizon salinity Surface horizon chemical fertility Roots useful depth (cm) Surface stoniness (%) Rocks percentage (%) Internal drainage Capacity of use and fertility of soils | |
Soil use and coverage | woodlands/woody areas/wood lands 2019–1954 | |
DOP/IGP and wine production areas | Wine production areas—Orcia |
Type of Detection | Detection Mode | Frequency | Period |
---|---|---|---|
Farmland structure: plots, hydraulic–agricultural structures, and infrastructure | Direct data collection at the beginning of the crop year—Interview with the owner | Una tantum-Annual check | January |
Crop sorting: business production processes | Direct data collection at the beginning of the crop year—Interview with the owner | Una tantum-Annual check | January |
Components of biodiversity: flora and fauna (entomofauna) | On-field monitoring of vegetation On-field monitoring of entomofauna | Annual check Once every 15 days | April–June March–July |
Agri-Environmental Indicators | Unit of Measure | EI * |
---|---|---|
Density of herbaceous crop | Individuals × ha−1 | X |
Density of arboreal crops | Individuals × ha−1 | X |
Density of leguminous crops; | Individuals × ha−1 | X |
Density of poly-annual leguminous crops; | Individuals × ha−1 | X |
Number of farm animal species | Individuals × ha−1 | X |
Plot area | ha | X |
Source | NP Mean Square | F | Sign. | SH Mean Square | F | Sign. | |
---|---|---|---|---|---|---|---|
Farm | Asteraceae | 9.389 | 1.629 | 0.238 | 0.024 | 6.635 | 0.033 |
Apiaceae | 2.000 | 4.000 | 0.081 | 0.001 | 1.321 | 0.284 | |
Euphorbiaceae | 4.500 | 12.000 | 0.009 | 0.005 | 13.229 | 0.007 | |
Lamiaceae | 2.000 | 8.000 | 0.022 | 0.002 | 6.905 | 0.030 | |
Plantaginaceae | 14.222 | 19.692 | 0.002 | 0.012 | 22.112 | 0.002 | |
Poaceae | 2.000 | 0.889 | 0.373 | 3.799 × 10−5 | 0.024 | 0.882 | |
Leguminosae | 0.056 | 0.053 | 0.824 | 0.002 | 1.304 | 0.287 | |
Caryophyllaceae | 2.000 | 4.000 | 0.081 | 0.001 | 2.094 | 0.186 | |
Brassicaceae | 3.556 | 8.258 | 0.021 | 0.004 | 8.802 | 0.018 | |
Rosaceae | 2.000 | 5.333 | 0.050 | 0.002 | 5.686 | 0.044 | |
Geraniaceae | 2.000 | 2.667 | 0.141 | 0.005 | 4.842 | 0.059 | |
Asparagaceae | 2.000 | 5.333 | 0.050 | 0.002 | 4.243 | 0.073 | |
Sample | Asteraceae | 5.847 | 1.014 | 0.492 | 0.003 | 0.958 | 0.523 |
Apiaceae | 0.722 | 1.444 | 0.308 | 0.001 | 1.570 | 0.269 | |
Euphorbiaceae | 0.375 | 1.000 | 0.500 | 0.000 | 1.000 | 0.500 | |
Lamiaceae | 0.556 | 2.222 | 0.140 | 0.001 | 2.753 | 0.087 | |
Plantaginaceae | 0.722 | 1.000 | 0.500 | 0.001 | 1.000 | 0.500 | |
Poaceae | 3.250 | 1.444 | 0.308 | 0.003 | 1.941 | 0.184 | |
Leguminosae | 2.472 | 2.342 | 0.125 | 0.003 | 2.310 | 0.129 | |
Caryophyllaceae | 0.556 | 1.111 | 0.443 | 0.001 | 1.092 | 0.452 | |
Brassicaceae | 0.431 | 1.000 | 0.500 | 0.000 | 1.000 | 0.500 | |
Rosaceae | 0.375 | 1.000 | 0.500 | 0.000 | 1.000 | 0.500 | |
Geraniaceae | 0.500 | 0.667 | 0.710 | 0.001 | 0.696 | 0.690 | |
Asparagaceae | 0.431 | 1.148 | 0.425 | 0.001 | 1.306 | 0.357 |
Mean NP | Standard Error | Confidence Interval 95% | Mean SH | Std Error | Confidence Interval 95% | Evenness Value | ||||
---|---|---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | Lower Limit | Upper Limit | |||||||
Asteraceae | a1 | 3.889 | 0.800 | 2.043 | 5.734 | 0.098 | 0.020 | 0.053 | 0.144 | 0.573 |
a2 | 5.333 | 0.800 | 3.488 | 7.179 | 0.172 | 0.020 | 0.125 | 0.218 | 0. | |
Apiaceae | a1 | 1.222 | 0.236 | 0.679 | 1.766 | 0.040 | 0.008 | 0.021 | 0.059 | 0.042 |
a2 | 0.556 | 0.236 | 0.012 | 1.099 | 0.027 | 0.008 | 0.007 | 0.046 | 0.032 | |
Euphorbiaceae | a1 | 1.000 | 0.204 | 0.529 | 1.471 | 0.033 | 0.006 | 0.018 | 0.047 | 0.068 |
a2 | 3.469 × 10−17 | 0.204 | −0.471 | 0.471 | 8.674 × 10−18 | 0.006 | −0.015 | 0.015 | 0 | |
Lamiaceae | a1 | 0.778 | 0.167 | 0.393 | 1.162 | 0.026 | 0.005 | 0.013 | 0.038 | 0.045 |
a2 | 0.111 | 0.167 | −0.273 | 0.495 | 0.006 | 0.005 | −0.007 | 0.018 | 0 | |
Plantaginaceae | a1 | 1.778 | 0.283 | 1.125 | 2.431 | 0.052 | 0.008 | 0.034 | 0.071 | 0.127 |
a2 | −4.163 × 10−17 | 0.283 | −0.653 | 0.653 | 0.000 | 0.008 | −0.018 | 0.018 | 0 | |
Poaceae | a1 | 1.667 | 0.500 | 0.514 | 2.820 | 0.045 | 0.013 | 0.014 | 0.076 | 0.080 |
a2 | 1.000 | 0.500 | −0.153 | 2.153 | 0.042 | 0.013 | 0.011 | 0.073 | 0.058 | |
Leguminosae | a1 | 1.333 | 0.342 | 0.544 | 2.123 | 0.040 | 0.011 | 0.014 | 0.067 | 0.084 |
a2 | 1.444 | 0.342 | 0.655 | 2.234 | 0.059 | 0.011 | 0.032 | 0.085 | 0.116 | |
Caryophyllaceae | a1 | 0.889 | 0.236 | 0.345 | 1.432 | 0.029 | 0.008 | 0.009 | 0.048 | 0.068 |
a2 | 0.222 | 0.236 | −0.321 | 0.766 | 0.011 | 0.008 | −0.008 | 0.031 | 0 | |
Brassicaceae | a1 | 0.889 | 0.219 | 0.385 | 1.393 | 0.029 | 0.007 | 0.013 | 0.044 | 0.068 |
a2 | −6.939 × 10−18 | 0.219 | −0.504 | 0.504 | −4.337 × 10−19 | 0.007 | −0.016 | 0.016 | 0 | |
Rosaceae | a1 | 0.667 | 0.204 | 0.196 | 1.137 | 0.022 | 0.006 | 0.007 | 0.037 | 0.045 |
a2 | 5.551 × 10−17 | 0.204 | −0.471 | 0.471 | 1.735 × 10−18 | 0.006 | −0.015 | 0.015 | 0 | |
Geraniaceae | a1 | 0.333 | 0.289 | −0.332 | 0.999 | 0.011 | 0.011 | −0.015 | 0.037 | 0.023 |
a2 | 1.000 | 0.289 | 0.334 | 1.666 | 0.046 | 0.011 | 0.020 | 0.071 | 0.095 | |
Asparagaceae | a1 | 0.778 | 0.204 | 0.307 | 1.248 | 0.026 | 0.007 | 0.010 | 0.042 | 0.045 |
a2 | 0.111 | 0.204 | −0.360 | 0.582 | 0.006 | 0.007 | −0.010 | 0.022 | 0 |
Family/Class/Order | χ² |
---|---|
Pieridae | 9.6173 × 10−9 |
Lycaenidae | 0.124927123 |
Nymphalidae | 1.94079 × 10−6 |
Formicidae | 1.21185 × 10−8 |
Coleoptera | 1.18989 × 10−11 |
Gryllidae | 0.54874631 |
Cercopidae | 0.786834047 |
Arachnida | 5.77336 × 10−8 |
Pentatomidae | 0.018352005 |
Armadillidiidae | 2.13518 × 10−14 |
χ2 tot | 1.4814 × 10−44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luglio, S.M.; Bucalossi, G.; Lisci, R.; Frasconi, C.; Lombardo, S.; Vieri, M.; Pagliai, A.; Sarri, D. A Biodiversity Monitoring Case Study in Viticulture: Manual and Digitalized Collaborative Methodology to Pursue the European Commission’s Sustainable Challenges. Sustainability 2024, 16, 3469. https://doi.org/10.3390/su16083469
Luglio SM, Bucalossi G, Lisci R, Frasconi C, Lombardo S, Vieri M, Pagliai A, Sarri D. A Biodiversity Monitoring Case Study in Viticulture: Manual and Digitalized Collaborative Methodology to Pursue the European Commission’s Sustainable Challenges. Sustainability. 2024; 16(8):3469. https://doi.org/10.3390/su16083469
Chicago/Turabian StyleLuglio, Sofia Matilde, Ginevra Bucalossi, Riccardo Lisci, Christian Frasconi, Stefania Lombardo, Marco Vieri, Andrea Pagliai, and Daniele Sarri. 2024. "A Biodiversity Monitoring Case Study in Viticulture: Manual and Digitalized Collaborative Methodology to Pursue the European Commission’s Sustainable Challenges" Sustainability 16, no. 8: 3469. https://doi.org/10.3390/su16083469
APA StyleLuglio, S. M., Bucalossi, G., Lisci, R., Frasconi, C., Lombardo, S., Vieri, M., Pagliai, A., & Sarri, D. (2024). A Biodiversity Monitoring Case Study in Viticulture: Manual and Digitalized Collaborative Methodology to Pursue the European Commission’s Sustainable Challenges. Sustainability, 16(8), 3469. https://doi.org/10.3390/su16083469