Spatial-Temporal Evolution and Influencing Factors of Animal Husbandry Carbon Emissions: A Case Study of Shandong Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculation of Animal Husbandry Carbon Emissions
2.1.1. Feed Grain Input System
2.1.2. Energy Consumption System
2.1.3. Gastrointestinal Fermentation and Feces Management System
2.1.4. Total Animal Husbandry Carbon Emissions
2.2. Kernel Density Estimation
2.3. Kaya’s Constant Equation LMDI Decomposition Model
2.4. Indicators and Data Sources
3. Results
3.1. Total Carbon Emissions and Spatial Distribution of Animal Husbandry in Shandong Province
3.2. Carbon Emission Intensity and Spatial Distribution of Animal Husbandry in Shandong Province
3.3. Kernel Density Estimation of Animal Husbandry Carbon Emissions
3.4. Decomposition of Influencing Factors of Animal Husbandry Carbon Emissions
4. Conclusions and Policy Recommendations
4.1. Conclusions
- (1)
- The carbon emission of animal husbandry in Shandong Province (city) shows a fluctuating downward trend, decreasing by 10.10%, but there are large differences in the increase and decrease of carbon emission by prefecture-level city, showing a distribution pattern of “periphery-agglomeration”. From 2001 to 2022, the carbon emissions of animal husbandry in Shandong Province are mainly concentrated in the peninsula and the west of Luzhong region. From 2001 to 2022, the carbon emissions from animal husbandry in Shandong Province are mainly concentrated in the western region represented by Liaocheng, Dezhou, and Heze, the peninsula region represented by Yantai and the central region of Shandong Province.
- (2)
- The carbon emission intensity of the livestock industry in Shandong Province shows a decreasing trend, from CNY 6.69 t/million in 2001 to CNY 1.31 t/million in 2022, a decrease of 7.47%. During the study period, there is a big difference among the cities in Shandong Province, and the carbon emission intensity shows a different degree of decrease, among which the carbon emission intensity in the western and central regions is significantly higher than that in the peninsular region, and the carbon emission intensity of the livestock industry in 16 cities and towns in Shandong Province shows a more obvious ladder-like distribution of “high in the west and low in the east”. From the dynamic evolution of the kernel density curve, the difference between high- and low-emission cities in the animal husbandry industry in Shandong Province is obvious, and they have experienced the process of expansion and contraction. The difference in livestock carbon emissions between cities in Shandong Province first increases and then decreases, with the distribution of growth basically in a “bimodal” pattern, and the differentiation between cities mainly in a polarized pattern.
- (3)
- The carbon emissions of animal husbandry in Shandong Province are affected by a variety of factors, of which the intensity effect, the agricultural structure effect, and the industrial structure effect all have an inhibiting effect on carbon emissions from animal husbandry, and the three have achieved a cumulative total of 6740.97 10kt/CO2-eq, 342.47 10kt/CO2-eq, and 2826.13 10kt/CO2-eq of carbon emission reduction, which reduces carbon emissions to a certain extent. The economic level effect and the population scale effect are the main influences on the increase in carbon emissions from the livestock sector in Shandong Province, and they show positive driving effects in all years except for a slight decrease in the population size effect in 2022, which cumulatively leads to an increase in emissions of 9467.19 10kt/CO2-eq. The intensity effect and the industry structure effect are the main factors inhibiting the increase in carbon emissions from the livestock sector in all regions and municipalities. Due to the improvement in production efficiency, all regions have achieved carbon emission reduction from animal husbandry to a certain extent. However, the contribution of agricultural industry structure to carbon emission reduction in different municipalities was not consistent, while the economic effect and population scale effect contributed to a large extent to the increase of carbon emissions from animal husbandry in all municipalities in Shandong Province.
4.2. Policy Proposal
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Z.; Qi, X.; Zeng, L.; Wu, F. Accounting of greenhouse gas emissions in the Chinese agricultural system from 1980 to 2020. Acta Eeologica Sin. 2022, 42, 9470–9482. [Google Scholar] [CrossRef]
- Cheng, M.; Yao, W. Trend prediction of carbon peak in China’s animal husbandry based on the empirical analysis of 31 provinces in China. Environ. Dev. Sustain. 2022, 26, 2017–2034. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K.; Paustian, K.; Amstel, A.; Management, M.; Dong, H.; Hatfield, J.; et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- EDGAR—Emissions Database for Global Atmospheric Research. 2023. Available online: https://edgar.jrc.ec.europa.eu/report_2023 (accessed on 23 April 2024).
- Rosenzweig, C.; Mbow, C.; Barioni, L.; Benton, T.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.; Sapkota, T.; et al. Climate change responses benefit from a global food system approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, Z.; Guo, L.; Sun, B.; Kong, W.; Tang, S. Carbon footprint of crop production and its spatial distribution characteristics in China. Chin. J. Appl. Ecol. 2017, 28, 2577–2587. [Google Scholar] [CrossRef]
- Jin, S.; Lin, Y.; Niu, K. Green transformation of agriculture driven by low carbon: Characteristics of China’s agricultural carbon emission and its emission reduction path. Reform 2021, 5, 29–37. [Google Scholar]
- Kamyab, H.; Saberikamarposhti, M.; Hashim, H.; Yusuf, M. Carbon dynamics in agricultural greenhouse gas emissions and removals: A comprehensive review. Carbon Lett. 2023, 34, 265–289. [Google Scholar] [CrossRef]
- Hao, D.; Wang, R.; Gao, C.; Song, X.; Liu, W.; Hu, G. Spatial-Temporal Characteristics and Influence Factors of Carbon Emission from Livestock Industry in China. Int. J. Environ. Res. Public Health 2022, 19, 14837. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Yao, Z.; Zhao, L.; Luo, J.; Zhang, P. Current status and system construction of emission reduction and carbon sequestration standards in China’s agriculture and rural areas. Trans. Chin. Soc. Agric. Environ. Sci. 2023, 42, 242–251. [Google Scholar] [CrossRef]
- Wie, Z.; Wie, K.; Liu, J.; Zhou, Y. The relationship between agricultural and animal husbandry economic development and carbon emissions in Henan Province, the analysis of factors affecting carbon emissions, and carbon emissions prediction. Mar. Pollut. Bull. 2023, 193, 115134. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Ozturk, I.; Ahmad, M. Examining the carbon emissions and climate impacts on main agricultural crops production and land use: Updated evidence from Pakistan. Environ. Sci. Pollut. Res. Int. 2022, 29, 868–882. [Google Scholar] [CrossRef]
- Lesschen, J.; Berg, M.; Westhoek, H.; Witzke, H.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 2011, 166, 16–28. [Google Scholar] [CrossRef]
- Rivera, A.; Güereca, L.; Lozano, M. Environmental impact of beef production in Mexico through life cycle assessment. Resour. Conserv. Recycl. 2016, 109, 44–53. [Google Scholar] [CrossRef]
- Zhuang, M.; Gongbuzeren; Li, W. Greenhouse gas emission of pastoralism is lower than combined extensive/intensive livestock husbandry: A case study on the Qinghai-Tibet Plateau of China. J. Clean. Prod. 2017, 147, 514–522. [Google Scholar] [CrossRef]
- Wisser, D.; Özkan, Ş.; Lanzoni, L. Pathways to Lower Emissions: A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Weiss, F.; Leip, A. Greenhouse gas emissions from the EU livestock sector: A life cycle assessment carried out with the CAPRI model. Agric. Ecosyst. Environ. 2012, 149, 124–134. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Wang, T.; Li, C. Impact of industrial agglomeration on carbon emissions from dairy farming—Empirical analysis based on life cycle assessmsent method and spatial durbin model. J. Clean. Prod. 2023, 406, 137081. [Google Scholar] [CrossRef]
- Xue, Y.; Luan, W.; Wang, H.; Yang, Y. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: Case study of pig farming in Liaoning, China. J. Clean. Prod 2019, 238, 117968.1–117968.8. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Yan, Z. Effects of land-use change on carbon emission and its driving factors in Shaanxi Province from 2000 to 2020. Environ. Sci. Pollut. Res. Int. 2023, 30, 68313–68326. [Google Scholar] [CrossRef]
- Lamb, W.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Cai, T.; Xia, F.; Yang, D.; Huo, J.; Zhang, Y. Decomposition of factors affecting changes in non-CO2 greenhouse gas emission intensity of China’s livestock sector based on the concept of “environment–food–economy”. Sci. Total Environ. 2019, 691, 611–620. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, C.; Zhou, M. Decomposition analysis for assessing the progress in decoupling relationship between coal consumption and economic growth in China. Resour. Conserv. Recycl. 2018, 129, 454–462. [Google Scholar] [CrossRef]
- Chai, J.; Du, M.; Liang, T.; Sun, X.; Yu, J.; Zhang, Z. Coal consumption in China: How to bend down the curve? Energy Econ. 2019, 80, 38–47. [Google Scholar] [CrossRef]
- Dai, X.; Wu, X.; Chen, Y.; He, Y.; Wang, F.; Liu, Y. Real Drivers and Spatial Characteristics of CO2 Emissions from Animal Husbandry: A Regional Empirical Study of China. Agriculture 2022, 12, 510. [Google Scholar] [CrossRef]
- Kumari, S.; Fagodiya, R.; Hiloidhari, M.; Dahiya, R.; Kumar, A. Methane production and estimation from livestock husbandry: A mechanistic understanding and emerging mitigation options. Sci. Total Environ. 2020, 709, 136135. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.; Conant, R.; Smith, P.; Wirsenius, S.; Hristov, A.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef]
- Liu, R. Spatial-Temporal Characteristics and Prediction of Livestock Manure Pollution Load in Shandong Province. Master’s Thesis, Shandong Normal University, Jinan, China, 2018. [Google Scholar]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Hu, Y.; Cui, S.; Kang, J.; Xu, L. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 2015, 90, 97–103. [Google Scholar] [CrossRef]
- Hawkins, J.; Ma, C.; Schilizzi, S.; Zhang, F. China’s changing diet and its impacts on greenhouse gas emissions: An index decomposition analysis. Aust. J. Agric. Resour. Econ. 2017, 62, 45–64. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.; Dietrich, J.; Doelmann, J.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Chang. 2015, 42, 331–345. [Google Scholar] [CrossRef]
- Zhang, L.; Reaihan, E.; Ali, M.; Lin, H.; Zhang, S.; Jin, S.; Zhu, Z.; Hu, J.; Yao, Y.; Sun, Y.; et al. Livestock and poultry manure management from the perspective of carbon neutrality in China. Front. Agric. Sci. Eng. 2023, 10, 341–362. [Google Scholar] [CrossRef]
- Huong, L.; Madsen, H.; Anh, L.; Ngoc, P.; Dalsgaard, A. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam. Sci. Total Environ. 2014, 470–471, 53–57. [Google Scholar] [CrossRef]
- Bertrand, S.; Barnett, J. Standard method for determining the carbon footprint of dairy products reduces confusion. Anim. Front. 2011, 1, 14–18. [Google Scholar] [CrossRef]
- Shi, R.; Irfan, M.; Liu, G.; Yang, X.; Su, X. Analysis of the Impact of Livestock Structure on Carbon Emissions of Animal Husbandry: A Sustainable Way to Improving Public Health and Green Environment. Front. Public Health 2022, 10, 835210. [Google Scholar] [CrossRef]
- Dai, X.; Li, J.; He, Y.; Wang, F. Regional equity and efficiency of carbon emissions of China’s livestock industry in 2000–2020. Resour. Sci. 2023, 45, 62–76. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, C.; Wang, M.; Xiong, X.; Long, X. Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective. Sustainability 2022, 14, 15554. [Google Scholar] [CrossRef]
- Xie, H.; Chen, X.; Yang, M.; Zhao, H.; Zhao, M. Ecological footprint analysis of livestock products in China. Acta Ecol. Sin. 2009, 29, 3264–3270. [Google Scholar]
- Tan, Q. Greenhouse gas emission in China’s agriculture: Situation and challenge. China Popul. Resour. Environ. 2011, 21, 69–75. [Google Scholar]
- Meng, X.; Cheng, G.; Zhang, J.; Wang, N.; Zhou, H. Spatial and temporal characterization of greenhouse gas emissions over the whole life cycle of animal husbandry in China. China Environ. Sci. 2014, 34, 2167–2176. [Google Scholar]
- Sun, Y.; Liu, J.; Ma, Z. Evaluation of greenhouse gas emissions from scale dairy farm1. Trans. Chin. Soc. Agric. Eng. 2010, 26, 296–301. [Google Scholar]
- Li, Y.; Wang, J.; Yang, L. Analysis of spatial and temporal characteristics of agricultural carbon emissions in Hunan Province based on county scale. Chin. J. Agric. Resour. Reg. Plan. 2022, 43, 75–84. [Google Scholar]
- Zhu, Z.; Wang, Y.; Yan, T.; Zhang, Z.; Wang, S.; Dong, H. Greenhouse gas emissions from livestock in China and mitigation options within the context of carbon neutrality. Front. Agric. Sci. Eng. 2023, 10, 226–233. [Google Scholar] [CrossRef]
- Mizrahi, I.; Wallace, R.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Liang, H.; Wan, W.; Liu, Z.; Zhu, J.; Wu, Z. Spatial-temporal pattern and influencing factors of agricultural carbon emissions at the county level in Jiangxi Province of China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 70–80. [Google Scholar] [CrossRef]
- Yao, C.; Qian, S.; Mao, Y.; Li, Z. Decomposition of impacting factors of animal husbandry carbon emissions change and its spatial differences in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 10–19. [Google Scholar] [CrossRef]
- Kafle, G.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef]
- Tauseef, S.; Premalatha, M.; Abbasi, T.; Abbasi, S. Methane capture from livestock manure. J. Environ. Manag. 2013, 117, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Misselbrook, T.; Webb, J.; Chadwick, D.; Ellis, S.; Pain, B. Gaseous emissions from outdoor concrete yards used by livestock. Atmos. Environ. 2001, 35, 5331–5338. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Grace, P.; Mosier, A. N2O emissions from agricultural lands: A synthesis of simulation approaches. Plant Soil 2008, 309, 169–189. [Google Scholar] [CrossRef]
- He, Q.; Zhang, J. Research on the Dynamic Evolution and Driving Factors of Agricultural Carbon Emissions in Major Grain-Producing Areas. Ecol. Econ. 2023, 39, 123–128+162. [Google Scholar]
- Hu, W.; Zhang, J.; Wang, H. Study on the characteristics and influencing factors of agricultural carbon emissions in China. Stat. Decis. 2020, 36, 56–62. [Google Scholar] [CrossRef]
- Ang, B. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Cui, K. Research on the Analysis of Rural Regional Economic Differences and Coordinated Development in Shandong Province. Master’s Thesis, Shandong University of Technology, Jinan, China, 2023. [Google Scholar]
- Tian, S.; Zheng, W.; Zhou, L. Analysis on the characteristics and causes of environmental Kuznets curve of low-carbon aquaculture in China. Resour. Sci. 2012, 34, 481–493. [Google Scholar]
- Su, B.; Ang, B. Demand contributors and driving factors of Singapore’s aggregate carbon intensities. Energy Policy 2020, 146, 111817. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, K.; Chevallier, J.; Wang, P.; Wei, Y. Can China achieve its carbon intensity target by 2020 while sustaining economic growth? Ecol. Econ. 2015, 119, 209–216. [Google Scholar] [CrossRef]
- Zhao, B. Research on Carbon Emission Measurement and Spatial-Temporal Evolution in Henan Province. Master’s Thesis, Henan University, Kaifeng, China, 2014. [Google Scholar]
- Cao, H. Study on the Calculation and Influencing Factors of Animal Husbandry Carbon Emissions in Shandong Province. Master’s Thesis, Jilin Agricultural University, Changchun, China, 2023. [Google Scholar]
- Chen, Q.; Zhang, Y. The evolution of China’s animal husbandry carbon emission reduction policy-based on the analysis of 452 policy texts. J. Huazhong Agric. Univ. (Soc. Sci. Ed.) 2022, 1, 10–23. [Google Scholar]
System | Link | Symbol | Emission Coefficient | Values | Unit | Reference Source |
---|---|---|---|---|---|---|
Feed grain input | Feed grain cultivation | efj1 | CO2-Equivalent Emission Factor of Corne | 1.50 | t/t | Xie et al., (2009) [39] |
CO2-Equivalent Emission Factor of Wheat | 1.22 | t/t | ||||
Feed grain transport and processing | efj2 | CO2-Equivalent Emission Factor of Corn | 0.0102 | t/t | Tan et al., (2011) [40] | |
CO2-Equivalent Emission Factor of Soybean | 0.1013 | t/t | ||||
CO2-Equivalent Emission Factor of Wheat | 0.0319 | t/t | ||||
Energy consumption | Livestock rearing | efe | CO2 Emission Factor of Electricity Consumption | 0.9734 | t/MW·h | Meng et al., (2014) [41] |
Pricee | Breeding electricity unit price | 0.4275 | CNY/KW·h | |||
efc | Coal combustion CO2 emission factor | 1.98 | t/t | Sun et al., (2010) [42] | ||
Pricec | Unit price of coal | 800 | CNY/t | |||
Livestock products processing | MJu | Energy consumption for processing pork products | 3.76 | MJ/kg | Meng et al., (2014) [41] | |
Energy consumption for processing beef products | 4.37 | MJ/kg | ||||
Energy consumption in the processing of mutton products | 10.4 | MJ/kg | ||||
Energy consumption in the processing of poultry meat products | 2.59 | MJ/kg | ||||
Energy consumption in the processing of milk products | 1.12 | MJ/kg | ||||
Energy consumption in the processing of poultry and egg products | 8.16 | MJ/kg | ||||
e | Electric heating value | 3.60 | MJ/KW·h | - | ||
Other conversion factors | CH4 Global warming potential | 21 | - | Meng et al., (2014) [41] | ||
N2O Global warming potential | 310 |
Species | CH4 [kg/(Head·a)] | N2O [kg/(Head·a)] | Reference Source | |
---|---|---|---|---|
Gastrointestinal Fermentation | Manure Management | |||
Cattle | 52.90 | 3.31 | 0.85 | Zheng et al., (2022) [46] |
Mule | 10.00 | 0.90 | 1.39 | Yao et al., (2017) [47] |
Donkey | 10.00 | 0.90 | 1.39 | |
Horse | 18.00 | 1.64 | 1.39 | |
Pig | 1.00 | 3.50 | 0.53 | |
Sheep | 5.00 | 0.16 | 0.33 | |
Rabbit | 0.254 | 0.08 | 0.02 | |
Poultry | 0.00 | 0.02 | 0.02 |
Region | Total Animal Husbandry Carbon Emissions (Unit: 10kt/CO2-eq) | Rate of Change | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2001 | 2003 | 2006 | 2009 | 2011 | 2013 | 2016 | 2019 | 2022 | ||
Shandong | 4379.33 | 4908.10 | 4738.05 | 3783.27 | 3899.28 | 4085.60 | 4312.77 | 3840.09 | 3936.95 | −10.10 |
Jinan | 372.15 | 435.12 | 437.69 | 323.89 | 329.12 | 340.47 | 318.54 | 241.91 | 191.26 | −0.49 |
Qingdao | 399.50 | 437.44 | 429.86 | 257.95 | 259.05 | 257.11 | 234.45 | 228.05 | 228.81 | −0.43 |
Zibo | 100.05 | 118.60 | 87.43 | 89.05 | 102.05 | 104.77 | 92.17 | 93.60 | 104.75 | 0.05 |
Zaozhuang | 82.23 | 102.47 | 126.48 | 119.85 | 132.89 | 137.65 | 141.70 | 89.88 | 82.38 | 0.00 |
Dongying | 89.77 | 111.55 | 133.80 | 135.64 | 156.85 | 161.34 | 105.79 | 127.68 | 156.70 | 0.75 |
Yantai | 160.26 | 204.80 | 254.00 | 233.67 | 237.71 | 228.98 | 252.32 | 303.99 | 283.18 | 0.77 |
Weifang | 454.12 | 485.58 | 466.93 | 456.45 | 508.91 | 522.66 | 519.89 | 433.79 | 419.36 | −0.08 |
Jining | 371.98 | 446.89 | 407.11 | 414.81 | 448.56 | 460.02 | 337.34 | 304.18 | 282.09 | −0.24 |
Tai’an | 211.12 | 265.40 | 228.72 | 236.14 | 266.15 | 286.25 | 285.55 | 187.38 | 150.20 | −0.29 |
Weihai | 51.03 | 66.64 | 79.16 | 84.02 | 92.86 | 98.84 | 98.80 | 99.26 | 80.75 | 0.58 |
Rizhao | 93.00 | 105.07 | 109.15 | 99.04 | 116.97 | 120.90 | 135.88 | 134.30 | 118.42 | 0.27 |
Laiwu | 27.68 | 34.65 | 34.71 | 32.65 | 35.18 | 35.74 | 36.11 | - | - | - |
Linyi | 319.58 | 352.55 | 327.70 | 348.47 | 378.06 | 382.99 | 402.88 | 418.07 | 461.31 | 0.44 |
Dezhou | 482.28 | 565.03 | 510.72 | 511.05 | 552.79 | 599.16 | 507.62 | 461.83 | 357.10 | −0.26 |
Liaocheng | 412.75 | 452.02 | 282.80 | 256.68 | 281.61 | 283.84 | 297.37 | 286.66 | 318.05 | −0.23 |
Binzhou | 204.94 | 238.03 | 230.62 | 243.24 | 279.81 | 272.12 | 236.68 | 255.66 | 290.82 | 0.42 |
Heze | 379.49 | 477.20 | 492.95 | 451.83 | 473.92 | 500.89 | 493.79 | 541.73 | 411.81 | 0.09 |
Region | Carbon Emission Intensity of Animal Husbandry (Unit: t/104 CNY) | Rate of Change | AAGR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 2003 | 2006 | 2009 | 2011 | 2013 | 2016 | 2019 | 2022 | AVG | |||
Shandong | 6.69 | 5.90 | 4.08 | 2.25 | 1.80 | 1.73 | 1.70 | 1.59 | 1.31 | 2.76 | −80.40 | −7.47 |
Jinan | 7.27 | 7.14 | 5.16 | 3.21 | 2.42 | 2.18 | 1.91 | 1.67 | 1.12 | 3.27 | −84.56 | −8.51 |
Qingdao | 5.27 | 5.09 | 3.99 | 2.22 | 1.66 | 1.57 | 1.34 | 1.36 | 1.29 | 2.44 | −75.44 | −6.47 |
Zibo | 5.36 | 5.22 | 2.97 | 2.56 | 2.00 | 1.86 | 1.49 | 1.54 | 1.36 | 2.52 | −74.65 | −6.33 |
Zaozhuang | 5.11 | 4.82 | 3.64 | 3.45 | 2.06 | 1.94 | 1.67 | 1.42 | 1.13 | 2.57 | −77.90 | −6.94 |
Dongying | 7.86 | 7.13 | 5.06 | 3.36 | 2.71 | 2.50 | 1.57 | 1.65 | 1.33 | 3.44 | −83.09 | −8.11 |
Yantai | 4.53 | 4.62 | 3.74 | 2.60 | 1.98 | 1.79 | 1.60 | 1.59 | 1.22 | 2.50 | −73.04 | −6.05 |
Weifang | 4.60 | 4.42 | 3.25 | 2.22 | 1.96 | 1.79 | 1.58 | 1.51 | 1.24 | 2.36 | −73.02 | −6.05 |
Jining | 5.43 | 4.92 | 3.31 | 2.62 | 1.97 | 1.87 | 1.21 | 1.17 | 0.93 | 2.41 | −82.81 | −8.04 |
Tai’an | 6.03 | 5.85 | 3.67 | 2.58 | 1.98 | 1.76 | 1.50 | 1.25 | 0.86 | 2.61 | −85.69 | −8.84 |
Weihai | 2.94 | 3.12 | 2.34 | 1.67 | 1.48 | 1.31 | 1.16 | 1.45 | 1.23 | 1.80 | −57.97 | −4.04 |
Rizhao | 5.06 | 4.92 | 4.17 | 1.97 | 2.02 | 1.91 | 1.87 | 1.58 | 0.97 | 2.55 | −80.88 | −7.58 |
Laiwu | 5.00 | 4.93 | 3.81 | 1.50 | 1.25 | 1.25 | 1.11 | - | - | - | - | - |
Linyi | 5.57 | 5.21 | 3.61 | 2.65 | 2.65 | 2.49 | 2.17 | 1.94 | 1.52 | 2.92 | −72.65 | −5.99 |
Dezhou | 11.54 | 11.16 | 6.05 | 3.54 | 3.06 | 2.93 | 2.23 | 2.10 | 1.42 | 4.50 | −87.70 | −9.50 |
Liaocheng | 9.47 | 8.76 | 3.98 | 2.83 | 2.45 | 2.34 | 2.00 | 2.00 | 1.63 | 3.65 | −82.78 | −8.04 |
Binzhou | 7.83 | 7.29 | 5.43 | 3.23 | 2.67 | 2.28 | 1.77 | 2.22 | 1.57 | 3.57 | −79.90 | −7.36 |
Heze | 10.05 | 9.35 | 6.14 | 4.41 | 4.01 | 3.75 | 3.47 | 3.29 | 1.87 | 4.85 | −81.38 | −7.69 |
Stages | Year | ΔES | ΔEI | ΔSI | ΔCI | ΔAI | ΔTotal |
---|---|---|---|---|---|---|---|
One | 2001–2002 | 24.75 | 161.97 | −342.94 | 453.77 | 20.53 | 318.07 |
2002–2003 | −625.76 | 169.47 | 288.35 | 355.96 | 22.68 | 210.70 | |
2003–2004 | −1099.39 | 162.14 | −123.31 | 939.88 | 29.22 | −91.45 | |
2004–2005 | −939.01 | 69.18 | −459.92 | 791.32 | 33.65 | −504.78 | |
2005–2006 | 845.62 | −786.93 | −416.74 | 754.50 | 29.73 | 426.18 | |
2001–2006 | −1793.79 | −224.17 | −1054.56 | 3295.43 | 135.81 | 358.72 | |
Two | 2006–2007 | −2172.79 | 383.33 | −93.49 | 722.01 | 25.74 | −1135.21 |
2007–2008 | −860.23 | 376.83 | −56.31 | 626.11 | 19.46 | 105.87 | |
2008–2009 | 109.57 | −274.82 | −82.37 | 301.16 | 21.02 | 74.56 | |
2009–2010 | −89.92 | −167.84 | −150.48 | 487.74 | 44.00 | 123.51 | |
2010–2011 | −808.42 | 386.01 | −135.98 | 516.02 | 34.88 | −7.49 | |
2011–2012 | 13.60 | −51.24 | −112.26 | 363.42 | 17.82 | 231.34 | |
2012–2013 | −186.97 | −238.80 | −18.72 | 383.42 | 16.05 | −45.03 | |
2013–2014 | −126.46 | −77.10 | −94.37 | 259.49 | 25.87 | −12.57 | |
2007–2014 | −4121.62 | 336.37 | −743.98 | 3659.37 | 204.84 | −665.02 | |
Three | 2014–2015 | −137.25 | 66.32 | −216.67 | 325.33 | 24.20 | 61.92 |
2015–2016 | 148.37 | 125.30 | −353.18 | 211.78 | 45.56 | 177.82 | |
2016–2017 | 163.51 | −230.01 | −269.34 | 274.11 | 25.76 | -35.97 | |
2017–2018 | 29.43 | −235.24 | −120.11 | 218.97 | 18.52 | -88.44 | |
2018–2019 | −314.13 | −149.55 | −112.25 | 216.13 | 11.53 | -348.27 | |
2019–2020 | −570.70 | 43.63 | 76.18 | 94.25 | 21.36 | -335.27 | |
2020–2021 | −108.85 | 12.63 | −42.39 | 474.11 | 1.81 | 337.30 | |
2021–2022 | −35.93 | −87.74 | 10.18 | 211.08 | −2.76 | 94.83 | |
Cumulative total | −6740.97 | −342.47 | −2826.13 | 8980.57 | 486.62 | −442.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, C.; Sha, Y.; Hou, Y.; Li, J.; Qu, Y. Spatial-Temporal Evolution and Influencing Factors of Animal Husbandry Carbon Emissions: A Case Study of Shandong Province, China. Sustainability 2024, 16, 3640. https://doi.org/10.3390/su16093640
Wei C, Sha Y, Hou Y, Li J, Qu Y. Spatial-Temporal Evolution and Influencing Factors of Animal Husbandry Carbon Emissions: A Case Study of Shandong Province, China. Sustainability. 2024; 16(9):3640. https://doi.org/10.3390/su16093640
Chicago/Turabian StyleWei, Chunbo, Yanyu Sha, Yongwei Hou, Jiaqi Li, and Yongli Qu. 2024. "Spatial-Temporal Evolution and Influencing Factors of Animal Husbandry Carbon Emissions: A Case Study of Shandong Province, China" Sustainability 16, no. 9: 3640. https://doi.org/10.3390/su16093640
APA StyleWei, C., Sha, Y., Hou, Y., Li, J., & Qu, Y. (2024). Spatial-Temporal Evolution and Influencing Factors of Animal Husbandry Carbon Emissions: A Case Study of Shandong Province, China. Sustainability, 16(9), 3640. https://doi.org/10.3390/su16093640