Combining Zinc Biofortification and Native Trichoderma Inoculation Strategies for Subterranean Clover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Details
2.2. Soil Characterization
2.3. Fungal and Plant Material
2.4. Experimental Design and Treatments
2.5. Microorganism Re-Isolation
2.6. Measurements
Plant Growth Parameters
2.7. Nutrient Concentration
2.8. Statistical Analysis
3. Results
3.1. Influence on Growth and Quality Parameters of Trifolium subterraneum
3.2. Influence on Plant Nutrient Accumulation in Trifolium subterraneum Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MAPA. Encuesta Sobre Superficies y Rendimientos de Cultivos de 2023; MAPA: Madrid, Spain, 2023. [Google Scholar]
- Ferrer, C.; Miguel, A.S.; Olea, L. Nomenclátor Básico De Pastos En España. Pastos 2001, 31, 7–44. [Google Scholar]
- Ruiz-Mirazo, J.; Robles, A.B.; González-Rebollar, J.L. Two-Year Evaluation of Fuelbreaks Grazed by Livestock in the Wildfire Prevention Program in Andalusia (Spain). Agric. Ecosyst. Environ. 2011, 141, 13–22. [Google Scholar] [CrossRef]
- González, F.; Maya, V. Los Pastos y Su Importancia En La Comunidad de Extremadura. Métodos de Mejora. In Los Pastos: Nuevos Retos, Nuevas Oportunidades, Proceedings of the LII Reunión Científica de la Sociedad Española para el Estudio de los Pastos, Badajoz, Spain, 8–12 April 2013; Olea, L., Poblaciones, M.J., Morales, S., Santamaria, O., Eds.; Sociedad Española Para el Estudio de los Pastos: Madrid, Spain, 2013; pp. 83–105. [Google Scholar]
- López-Carrasco, C.; López-Sánchez, A.; San Miguel, A.; Roig, S. The Effect of Tree Cover on the Biomass and Diversity of the Herbaceous Layer in a Mediterranean Dehesa. Grass Forage Sci. 2015, 70, 639–650. [Google Scholar] [CrossRef]
- Andreu, A.; Kustas, W.P.; Polo, M.J.; Carrara, A.; González-Dugo, M.P. Modeling Surface Energy Fluxes over a Dehesa (Oak Savanna) Ecosystem Using a Thermal Based Two-Source Energy Balance Model (TSEB) I. Remote Sens. 2018, 10, 567. [Google Scholar] [CrossRef]
- Hidalgo-Galvez, M.D.; Matías, L.; Cambrollé, J.; Gutiérrez, E.; Pérez-Ramos, I.M. Impact of Climate Change on Pasture Quality in Mediterranean Dehesas Subjected to Different Grazing Histories. Plant Soil 2023, 488, 465–483. [Google Scholar] [CrossRef]
- Hidalgo-Galvez, M.D.; Barkaoui, K.; Volaire, F.; Matías, L.; Cambrollé, J.; Fernández-Rebollo, P.; Carbonero, M.D.; Pérez-Ramos, I.M. Can Trees Buffer the Impact of Climate Change on Pasture Production and Digestibility of Mediterranean Dehesas? Sci. Total Environ. 2022, 835, 155535. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Jäger, D.; Currie, W.S.; Lexer, M.J. Assessing Trade-Offs between Carbon Sequestration and Timber Production within a Framework of Multi-Purpose Forestry in Austria. For. Ecol. Manag. 2007, 248, 64–79. [Google Scholar] [CrossRef]
- Lüscher, A.; Mueller-Harvey, I.; Soussana, J.F.; Rees, R.M.; Peyraud, J.L. Potential of Legume-Based Grassland–Livestock Systems in Europe: A Review. Grass Forage Sci. 2014, 69, 206–228. [Google Scholar] [CrossRef]
- Serrano, J.M.; Peça, J.O.; da Silva, J.R.M.; Shahidian, S.; Carvalho, M. Phosphorus Dynamics in Permanent Pastures: Differential Fertilizing and the Animal Effect. Nutr. Cycl. Agroecosystems 2011, 90, 63–74. [Google Scholar] [CrossRef]
- Hernández-Esteban, A.; López-Díaz, M.L.; Cáceres, Y.; Moreno, G. Are Sown Legume-Rich Pastures Effective Allies for the Profitability and Sustainability of Mediterranean Dehesas? Agrofor. Syst. 2019, 93, 2047–2065. [Google Scholar] [CrossRef]
- López-Sánchez, A.; San Miguel, A.; Dirzo, R.; Roig, S. Scattered Trees and Livestock Grazing as Keystones Organisms for Sustainable Use and Conservation of Mediterranean Dehesas. J. Nat. Conserv. 2016, 33, 58–67. [Google Scholar] [CrossRef]
- Pulido, M.; Schnabel, S.; Contador, J.F.L.; Lozano-Parra, J.; Gómez-Gutiérrez, Á. Selecting Indicators for Assessing Soil Quality and Degradation in Rangelands of Extremadura (SW Spain). Ecol. Indic. 2017, 74, 49–61. [Google Scholar] [CrossRef]
- Díaz-Pereira, E.; Romero-Díaz, A.; de Vente, J. Sustainable Grazing Land Management to Protect Ecosystem Services. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1461–1479. [Google Scholar] [CrossRef]
- Nichols, P.G.H.; Foster, K.J.; Piano, E.; Pecetti, L.; Kaur, P.; Ghamkhar, K.; Collins, W.J. Genetic Improvement of Subterranean Clover (Trifolium Subterraneum L.). 1. Germplasm, Traits and Future Prospects. Crop Pasture Sci. 2013, 64, 312–346. [Google Scholar] [CrossRef]
- Llobat, L.; Marín-García, P.J. Application of Protein Nutrition in Natural Ecosystem Management for European Rabbit (Oryctolagus Cuniculus) Conservation. Biodivers. Conserv. 2022, 31, 1435–1444. [Google Scholar] [CrossRef]
- Wei, Y.; Shohag, M.J.I.; Yang, X. Biofortification and Bioavailability of Rice Grain Zinc as Affected by Different Forms of Foliar Zinc Fertilization. PLoS ONE 2012, 7, e45428. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Rehman, A.; Farooq, M.; Ullah, A.; Nadeem, F.; Im, S.Y.; Park, S.K.; Lee, D.J. Agronomic Biofortification of Zinc in Pakistan: Status, Benefits, and Constraints. Front. Sustain. Food Syst. 2020, 4, 591722. [Google Scholar] [CrossRef]
- Cakmak, I.; Kalayci, M.; Kaya, Y.; Torun, A.A.; Aydin, N.; Wang, Y.; Arisoy, Z.; Erdem, H.; Yazici, A.; Gokmen, O.; et al. Biofortification and Localization of Zinc in Wheat Grain. J. Agric. Food Chem. 2010, 58, 9092–9102. [Google Scholar] [CrossRef]
- Melash, A.A.; Mengistu, D.K.; Aberra, D.A. Linking Agriculture with Health through Genetic and Agronomic Biofortification. Agric. Sci. 2016, 7, 295–307. [Google Scholar] [CrossRef]
- Rivera-Martin, A.; Reynolds-Marzal, D.; Martin, A.; Velzazquez, R.; Poblaciónes, M.J. Combined Foliar Zinc and Nitrogen Application in Broccoli (Brassica Oleracea Var. Italica L.): Effects on Growth, Nutrient Bioaccumulation, and Bioactive Compounds. Agronomy 2021, 11, 548. [Google Scholar]
- Santos, S.A.; Takahashi, F.; Cardoso, E.L.; Flores, C.; de Oliveira, L.O.F.; Souza, G.D.S.; Gomes, E.G.; Ortega, E. An Emergy-Based Approach to Assess and Valuate Ecosystem Services of Tropical Wetland Pastures in Brazil. Open J. Ecol. 2020, 10, 303–319. [Google Scholar] [CrossRef]
- Chugh, G.; Siddique, K.H.M.; Solaiman, Z.M. Iron Fortification of Food Crops through Nanofertilisation. Crop Pasture Sci. 2022, 73, 736–748. [Google Scholar] [CrossRef]
- Upadhayay, V.K.; Singh, A.V.; Khan, A. Cross Talk Between Zinc-Solubilizing Bacteria and Plants: A Short Tale of Bacterial-Assisted Zinc Biofortification. Front. Soil Sci. 2021, 1, 788170. [Google Scholar] [CrossRef]
- Bamdad, H.; Papari, S.; Lazarovits, G.; Berruti, F. Soil Amendments for Sustainable Agriculture: Microbial Organic Fertilizers. Soil Use Manag. 2022, 38, 94–120. [Google Scholar] [CrossRef]
- Jalal, A.; Mortinho, E.S.; da Silva Oliveira, C.E.; Fernandes, G.C.; Junior, E.F.; de Lima, B.H.; Moreira, A.; Nogueira, T.A.R.; Galindo, F.S.; Filho, M.C.M.T. Nano-Zinc and Plant Growth-Promoting Bacteria Is a Sustainable Alternative for Improving Productivity and Agronomic Biofortification of Common Bean. Chem. Biol. Technol. Agric. 2023, 10, 77. [Google Scholar] [CrossRef]
- Hall, J.A.; Bobe, G.; Filley, S.J.; Bohle, M.G.; Pirelli, G.J.; Wang, G.; Davis, T.Z.; Bañuelos, G.S. Impact of Selenium Biofortification on Production Characteristics of Forages Grown Following Standard Management Practices in Oregon. Front. Plant Sci. 2023, 14, 1121605. [Google Scholar] [CrossRef]
- Hall, J.A.; Bobe, G.; Filley, S.J.; Pirelli, G.J.; Bohle, M.G.; Wang, G.; Davis, T.Z.; Bañuelos, G.S. Effects of Amount and Chemical Form of Selenium Amendments on Forage Selenium Concentrations and Species Profiles. Biol. Trace Elem. Res. 2023, 201, 4951–4960. [Google Scholar] [CrossRef]
- Lledó, S.; Rodrigo, S.; Poblaciones, M.J.; Santamaria, O. Biomass Yield, Nutritive Value and Accumulation of Minerals in Trifolium Subterraneum L. as Affected by Fungal Endophytes. Plant Soil 2016, 405, 197–210. [Google Scholar] [CrossRef]
- Porteous-Álvarez, A.J.; Fernández-Marcos, A.; Ramírez-Lozano, D.; Mayo-Prieto, S.; Cardoza, R.E.; Gutiérrez, S.; Casquero, P.A. Native Trichoderma Isolates from Soil and Rootstock to Fusarium Spp. Control and Growth Promotion of Humulus Lupulus L. Plantlets. Agriculture 2023, 13, 720. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, I.A. Estimation of Soil Organic Carbon by the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Colwell, J.D. An Automatic Procedure for the Determination of Phosphorus in Sodium Hydrogen Carbonate Extract of Soil. Chem. Ind. 1965, 21, 893–895. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Zabalgogeazcoa, Í.; Ciudad, A.G.; Vázquez de Aldana, B.R.; Criado, B.G. Effects of the Infection by the Fungal Endophyte Epichloë Festucae in the Growth and Nutrient Content of Festuca rubra. Eur. J. Agron. 2006, 24, 374–384. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysiss. Association of Official Analytical Chemists; AOAC: Rockville, MD, USA, 2006. [Google Scholar]
- Kuehn, C.S.; Jung, H.G.; Linn, J.G.; Martin, N.P. Characteristics of Alfalfa Hay Quality Grades Based on the Relative Feed Value Index. J. Prod. Agric. 1999, 12, 681–684. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Parra-López, C.; Sayadi, S.; Garcia-Garcia, G.; Ben Abdallah, S.; Carmona-Torres, C. Prioritising Conservation Actions towards the Sustainability of the Dehesa by Integrating the Demands of Society. Agric. Syst. 2023, 206, 103613. [Google Scholar] [CrossRef]
- Ali, I.; Khan, A.; Ali, A.; Ullah, Z.; Dai, D.Q.; Khan, N.; Khan, A.; Al-Tawaha, A.R.; Sher, H. Iron and Zinc Micronutrients and Soil Inoculation of Trichoderma harzianum Enhance Wheat Grain Quality and Yield. Front. Plant Sci. 2022, 13, 960948. [Google Scholar] [CrossRef]
- Anwar, S.; Ali, A.; Ullah, Z.; Binjawhar, D.N.; Sher, H.; Ali, R.; Iqbal, R.; Ali, B.; Ali, I. The Impact of Trichoderma harzianum Together with Copper and Boron on Wheat Yield. ACS Agric. Sci. Technol. 2023, 3, 517–527. [Google Scholar] [CrossRef]
- Ku, Y.S.; Rehman, H.M.; Lam, H.M. Possible Roles of Rhizospheric and Endophytic Microbes to Provide a Safe and Affordable Means of Crop Biofortification. Agronomy 2019, 9, 764. [Google Scholar] [CrossRef]
- Aishwarya, S.; Viswanath, H.S.; Singh, A.; Singh, R. Biosolubilization of Different Nutrients by Trichoderma spp. and Their Mechanisms Involved: A Review. Int. J. Adv. Agric. Sci. Technol. 2020, 7, 34–39. [Google Scholar]
- Cao, Q.; Liang, Y.; Tian, Y.; Lian, H.; Jiang, X.; Li, M. Survival Dynamics of Trichoderma longibrachiatum Tr58 in Conidia- and Chlamydospore-Amended Soils with Different Moisture Levels. Agric. 2023, 13, 238. [Google Scholar] [CrossRef]
- Longa, C.M.O.; Savazzini, F.; Tosi, S.; Elad, Y.; Pertot, I. Evaluating the Survival and Environmental Fate of the Biocontrol Agent Trichoderma atroviride SC1 in Vineyards in Northern Italy. J. Appl. Microbiol. 2009, 106, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Nandini, B.; Puttaswamy, H.; Saini, R.K.; Prakash, H.S.; Geetha, N. Trichovariability in Rhizosphere Soil Samples and Their Biocontrol Potential against Downy Mildew Pathogen in Pearl Millet. Sci. Rep. 2021, 11, 9517. [Google Scholar] [CrossRef] [PubMed]
- Szerement, J.; Szatanik, A.; Jakub, K.; Monika, M.; Hersztek, M. Agronomic Biofortification with Se, Zn, and Fe: An Effective Strategy to Enhance Crop Nutritional Quality and Stress Defense—A Review; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 0123456789. [Google Scholar]
- Lata-Tenesaca, L.F.; de Mello Prado, R.; Ajila-Celi, G.E.; da Silva, D.L.; Junior, J.S.P.; Mattiuz, B.H. Iron Biofortification in Quinoa: Effect of Iron Application Methods on Nutritional Quality, Anti-Nutrient Composition, and Grain Productivity. Food Chem. 2023, 404, 134573. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Li, Y.; Deng, D.; Pan, H.; Zeng, Y.; Tan, X.; Zhuang, W.; Li, Z. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea Mays L.) Grains: An Overview. Commun. Soil Sci. Plant Anal. 2020, 51, 2001–2021. [Google Scholar] [CrossRef]
- Umair Hassan, M.; Aamer, M.; Umer Chattha, M.; Haiying, T.; Shahzad, B.; Barbanti, L.; Nawaz, M.; Rasheed, A.; Afzal, A.; Liu, Y.; et al. The Critical Role of Zinc in Plants Facing the Drought Stress. Agriculture 2020, 10, 396. [Google Scholar] [CrossRef]
- Marra, R.; Lombardi, N.; Piccolo, A.; Bazghaleh, N.; Prashar, P.; Vandenberg, A.; Woo, S. Mineral Biofortification and Growth Stimulation of Lentil Plants Inoculated with Trichoderma Strains and Metabolites. Microorganisms 2022, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Taghavi Ghasemkheili, F.; Jenabiyan, M.; Ghadirnezhad Shiade, S.R.; Pirdashti, H.; Ghanbari, M.A.T.; Emadi, M.; Yaghoubian, Y. Screening of Some Endophytic Fungi Strains for Zinc Biofortification in Wheat (Triticum aestivum L.). J. Soil Sci. Plant Nutr. 2023, 23, 5196–5206. [Google Scholar] [CrossRef]
- Baligah, H.U.; Mir, S.A.; Sofi, P.; Mir, A.H. Grain Zinc Phytic Acid and Nutrient Uptake in Common Bean Is Influenced by Sources and Concentrations of Zinc Fertilization. Int. Res. J. Pure Appl. Chem. 2020, 21, 9–17. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Steele, K.W. Biological Nitrogen Fixation in Mixed Legume/Grass Pastures. Plant Soil 1992, 141, 137–153. [Google Scholar] [CrossRef]
- Liu, D.Y.; Liu, Y.M.; Zhang, W.; Chen, X.P.; Zou, C.Q. Zinc Uptake, Translocation, and Remobilization in Winter Wheat as Affected by Soil Application of Zn Fertilizer. Front. Plant Sci. 2019, 10, 443999. [Google Scholar] [CrossRef] [PubMed]
- Moradtalab, N.; Ahmed, A.; Geistlinger, J.; Walker, F.; Höglinger, B.; Ludewig, U.; Neumann, G. Synergisms of Microbial Consortia, N Forms, and Micronutrients Alleviate Oxidative Damage and Stimulate Hormonal Cold Stress Adaptations in Maize. Front. Plant Sci. 2020, 11, 396. [Google Scholar] [CrossRef] [PubMed]
- Burr, A.A.; Woods, K.D.; Cassidy, S.T.; Wood, C.W. Priority Effects Alter the Colonization Success of a Host-Associated Parasite and Mutualist. Ecology 2022, 103, e3720. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Najeeb, S.; Chen, J.; Wang, R.; Zhang, J.; Hou, J.; Liu, T. Insights into the Molecular Mechanism of Trichoderma Stimulating Plant Growth and Immunity against Phytopathogens. Physiol. Plant. 2023, 175, e14133. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 400810. [Google Scholar] [CrossRef] [PubMed]
- Halifu, S.; Deng, X.; Song, X.; Song, R. Effects of Two Trichoderma Strains on Plant Growth, Rhizosphere Soil Nutrients, and Fungal Community of Pinus sylvestris Var. Mongolica Annual Seedlings. Forests 2019, 10, 758. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zhang, X.; Dong, L.; Zhang, J.; Wei, Y.; Feng, Y.; Lu, L. Improved Plant Growth and Zn Accumulation in Grains of Rice (Oryza sativa L.) by Inoculation of Endophytic Microbes Isolated from a Zn Hyperaccumulator, Sedum Alfredii H. J. Agric. Food Chem. 2014, 62, 1783–1791. [Google Scholar] [CrossRef] [PubMed]
- Li, R.X.; Cai, F.; Pang, G.; Shen, Q.R.; Li, R.; Chen, W. Solubilisation of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth. PLoS ONE 2015, 10, e0130081. [Google Scholar] [CrossRef]
- Abdu, A.O.; De Groote, H.; Joy, E.J.M.; Kumssa, D.B.; Broadley, M.R.; Gashu, D. Zinc Agronomic Biofortification of Staple Crops May Be a Cost-Effective Strategy to Alleviate Zinc Deficiency in Ethiopia. Front. Nutr. 2022, 9, 1037161. [Google Scholar] [CrossRef]
- Galletti, S.; Paris, R.; Cianchetta, S. Selected Isolates of Trichoderma gamsii Induce Different Pathways of Systemic Resistance in Maize upon Fusarium verticillioides Challenge. Microbiol. Res. 2020, 233, 126406. [Google Scholar] [CrossRef] [PubMed]
- Ning, P.; Fei, P.; Wu, T.; Li, Y.; Qu, C.; Li, Y.; Shi, J.; Tian, X. Combined Foliar Application of Zinc Sulphate and Selenite Affects the Magnitude of Selenium Biofortification in Wheat (Triticum aestivum L.). Food Energy Secur. 2022, 11, e342. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, J.; Zhang, D.; Cheng, H.; Hao, B.; Cao, A.; Yan, D.; Wang, Q.; Li, Y. Beneficial Effect on the Soil Microenvironment of Trichoderma Applied after Fumigation for Cucumber Production. PLoS ONE 2022, 17, e0266347. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Li, Y.; Deng, D.; Pan, H.; Zeng, Y.; Tan, X.; Zhuang, W.; Li, Z. Rhizosphere Inoculation of Nicotiana benthamiana with Trichoderma harzianum TRA1-16 in Controlled Environment Agriculture: Effects of Varying Light Intensities on the Mutualism-Parasitism Interaction. Front. Plant Sci. 2022, 13, 989155. [Google Scholar] [CrossRef] [PubMed]
Code | Identification | GenBank Accession Number |
---|---|---|
T05 | Trichoderma koningiopsis | MT520626 |
T09 | Trichoderma gamsii | MT557537 |
T14 | Trichoderma koningii | KT715712 |
T18 | Trichoderma gamsii | MT557537 |
T0 | Negative control: Sterilized distilled water | |
Tc | Positive control: Trichoderma consortium (Bactiva®): T. harzianum, T. eesei, T. viride |
Trichoderma (T) | Biofortification (B) | T ∗ B | |
---|---|---|---|
DF | 5 | 3 | 15 |
Herbage dry matter (HDM) (mg) | 0.87 | 1.78 | 4.59 *** |
Root dry matter (RDM) (mg) | 7.68 ** | 6.17 * | 3.63 ** |
Rhizobia nodulation index | 28.04 *** | 7.55 * | 1.48 |
SPAD measurement | 15.00 ** | 0.53 | 8.78 ** |
Neutral detergent fiber (NDF) (%) | 1.76 | 2.52 | 3.23 *** |
Acid detergent fiber (ADF) (%) | 0.92 | 5.44 * | 3.81 *** |
Acid detergent lignin (ADL) (%) | 9.92 *** | 14.22 *** | 15.90 *** |
Ashes (%) | 9.71 *** | 3.53 | 6.77 *** |
Digestibility (DMD) (%) | 0.92 | 5.44 * | 3.81 * |
Fe content (mg kg−1) | 13.48 *** | 4.09 * | 2.11 * |
Mg content (mg kg−1) | 5.45 ** | 2.49 | 3.23 ** |
P content (mg kg−1) | 22.33 *** | 4.29 | 4.28 *** |
Se content (µg kg−1) | 11.91 *** | 10.34 ** | 0.74 |
Zn content (mg kg−1) | 9.55 *** | 67.05 *** | 2.20 * |
Biofortification | No Zn | Soil (S) | Foliar (F) | SF | ||||
---|---|---|---|---|---|---|---|---|
Trichoderma | DTPA-Zn (mg kg−1) | Var. (%) | DTPA-Zn (mg kg−1) | Var. (%) | DTPA-Zn (mg kg−1) | Var. (%) | DTPA-Zn (mg kg−1) | Var. (%) |
T05 | 168.5 | −7.6 | 430.4 | −30.9 | 169.8 | −21.6 | 583.0 | −2.0 |
T09 | 105.9 | −41.9 | 717.2 | 15.1 | 115.3 | −46.8 | 741.9 | 24.8 |
T14 | 140.8 | −22.8 | 723.3 | 16.1 | 178.1 | −17.8 | 707.9 | 19.1 |
T18 | 127.3 | −30.2 | 593.6 | −4.7 | 229.8 | 6.1 | 608.2 | 2.3 |
Tc | 92.4 | −49.3 | 816.3 | 31.1 | 182.6 | −15.7 | 794.8 | 33.7 |
T0 | 182.3 | - | 622.9 | - | 216.6 | - | 594.6 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Latorre, C.; Velázquez, R.; Hernández, A.; Tejero, P.; Poblaciones, M.J. Combining Zinc Biofortification and Native Trichoderma Inoculation Strategies for Subterranean Clover. Sustainability 2024, 16, 3730. https://doi.org/10.3390/su16093730
García-Latorre C, Velázquez R, Hernández A, Tejero P, Poblaciones MJ. Combining Zinc Biofortification and Native Trichoderma Inoculation Strategies for Subterranean Clover. Sustainability. 2024; 16(9):3730. https://doi.org/10.3390/su16093730
Chicago/Turabian StyleGarcía-Latorre, Carlos, Rocío Velázquez, Alejandro Hernández, Paula Tejero, and Maria J. Poblaciones. 2024. "Combining Zinc Biofortification and Native Trichoderma Inoculation Strategies for Subterranean Clover" Sustainability 16, no. 9: 3730. https://doi.org/10.3390/su16093730
APA StyleGarcía-Latorre, C., Velázquez, R., Hernández, A., Tejero, P., & Poblaciones, M. J. (2024). Combining Zinc Biofortification and Native Trichoderma Inoculation Strategies for Subterranean Clover. Sustainability, 16(9), 3730. https://doi.org/10.3390/su16093730