Application of Fuzzy Control and Neural Network Control in the Commercial Development of Sustainable Energy System
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology
3.1. Establishment of Photovoltaic System Model
3.2. Selection of Fuzzy Control and Neural Network Control Algorithm
3.3. Experimental Verification
4. Result and Discussion
4.1. Experimental Results of Fuzzy Control Algorithm
4.2. Experimental Results of Neural Network Control Algorithm
4.3. Experimental Results of Fuzzy Control Combined with Neural Network Control
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guzović, Z.; Duic, N.; Piacentino, A.; Markovska, N.; Mathiesen, B.V.; Lund, H. Recent advances in methods, policies and technologies at sustainable energy systems development. Energy 2022, 245, 123276. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Ali Shah Syed, J.; Al-Sehemi, A.G.; Mohammed, M.H.; Al-Ghamdi, A.A.; Taha, T.A.; Salem AlSalem, H.; Alenad, A.M.; Amin, M.A.; et al. Recent Advancement of the Current Aspects of g-C3N4 for its Photocatalytic Applications in Sustainable Energy System. Chem. Rec. 2022, 22, e202100310. [Google Scholar] [CrossRef] [PubMed]
- Khare, V.; Bhuiyan, M.A. Tidal energy-path towards sustainable energy: A technical review. Clean. Energy Syst. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Dincer, I.; Aydin, M.I. New paradigms in sustainable energy systems with hydrogen. Energy Convers. Manag. 2023, 283, 116950. [Google Scholar] [CrossRef]
- Naderipour, A.; Kamyab, H.; Klemeš, J.J.; Ebrahimi, R.; Chelliapan, S.; Nowdeh, S.A.; Abdullah, A.; Hedayati Marzbali, M. Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission. Energy 2022, 257, 124679. [Google Scholar] [CrossRef]
- Kumar, D.; Tewary, T. Techno-economic assessment and optimization of a standalone residential hybrid energy system for sustainable energy utilization. Int. J. Energy Res. 2022, 46, 10020–10039. [Google Scholar] [CrossRef]
- Mustafa, J.; Almehmadi, F.A.; Alqaed, S.; Sharifpur, M. Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities. Sustainability 2022, 14, 13792. [Google Scholar] [CrossRef]
- Pereira, G.I.; Niesten, E.; Pinkse, J. Sustainable energy systems in the making: A study on business model adaptation in incumbent utilities. Technol. Forecast. Soc. Chang. 2022, 174, 121207. [Google Scholar] [CrossRef]
- Yakub, A.O.; Same, N.N.; Owolabi, A.B.; Nsafon, B.E.K.; Suh, D.; Huh, J.-S. Optimizing the performance of hybrid renewable energy systems to accelerate a sustainable energy transition in Nigeria: A case study of a rural healthcare centre in Kano. Energy Strategy Rev. 2022, 43, 100906. [Google Scholar] [CrossRef]
- Cholewa, M.; Mammadov, F.; Nowaczek, A. The obstacles and challenges of transition towards a renewable and sustainable energy system in Azerbaijan and Poland. Miner. Econ. 2022, 35, 155–169. [Google Scholar] [CrossRef]
- Nazir, M.S.; Abdalla, A.N.; Metwally, A.S.M.; Imran, M.; Bocchetta, P.; Javed, M.S. Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System. Sustainability 2022, 14, 5301. [Google Scholar] [CrossRef]
- Hossain, M.A.; Islam, M.R.; Hossain, M.A.; Hossain, M.J. Control strategy review for hydrogen-renewable energy power system. J. Energy Storage 2023, 72, 108170. [Google Scholar] [CrossRef]
- Li, C.; Liang, F.; Liang, Y.; Wang, Z. Low-carbon strategy, entrepreneurial activity, and industrial structure change: Evidence from a quasi-natural experiment. J. Clean. Prod. 2023, 427, 139183. [Google Scholar] [CrossRef]
- Roslan, M.F.; Hannan, M.A.; Ker, P.J.; Mannan, M.; Muttaqi, K.M.; Mahlia, T.M.I. Microgrid control methods toward achieving sustainable energy management: A bibliometric analysis for future directions. J. Clean. Prod. 2022, 348, 131340. [Google Scholar] [CrossRef]
- Simon, J.; Sánta, R. Energy efficient smart home heating system using renewable energy source with fuzzy control design. Decis. Mak. Appl. Manag. Eng. 2023, 6, 948–974. [Google Scholar] [CrossRef]
- Balakishan, P.; Chidambaram, I.A.; Manikandan, M. Smart Fuzzy Control Based Hybrid PV-Wind Energy Generation System. Mater. Today Proc. 2023, 80, 2929–2936. [Google Scholar] [CrossRef]
- Ibrahim, O.; Bakare, M.S.; Amosa, T.I.; Otuoze, A.O.; Owonikoko, W.O.; Ali, E.M.; Adesina, L.M.; Ogunbiyi, O. Development of fuzzy logic-based demand-side energy management system for hybrid energy sources. Energy Convers. Manag. X 2023, 18, 100354. [Google Scholar] [CrossRef]
- Afolabi, T.; Farzaneh, H. Optimal Design and Operation of an Off-Grid Hybrid Renewable Energy System in Nigeria’s Rural Residential Area, Using Fuzzy Logic and Optimization Techniques. Sustainability 2023, 15, 3862. [Google Scholar] [CrossRef]
- Reddy, K.H. Assessment of integrated renewable energy system state through VFMF—A novel approach. Electr. Power Syst. Res. 2023, 216, 109056. [Google Scholar] [CrossRef]
- Aghaloo, K.; Ali, T.; Chiu, Y.-R.; Sharifi, A. Optimal site selection for the solar-wind hybrid renewable energy systems in Bangladesh using an integrated GIS-based BWM-fuzzy logic method. Energy Convers. Manag. 2023, 283, 116899. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Hachem-Vermette, C.; Olivieri, R. Sustainability, emission trading system and carbon leakage: An approach based on neural networks and multicriteria analysis. Sustain. Oper. Comput. 2023, 4, 147–157. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Y.; Zhou, S.; Wu, Z. Achieving sustainable development goal 9: A study of enterprise resource optimization based on artificial intelligence algorithms. Resour. Policy 2023, 80, 103212. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Zhao, Y.; Chen, C.; Dong, X. Risk prediction and credibility detection of network public opinion using blockchain technology. Technol. Forecast. Soc. Chang. 2023, 187, 122177. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.Y.; Wang, Z.Y. Economic resilience assessment and policy interaction of coal resource oriented cities for the low carbon economy based on AI. Resour. Policy 2023, 82, 103522. [Google Scholar] [CrossRef]
- Li, D.D.; Guan, X.; Tang, T.T.; Zhao, L.Y.; Tong, W.R.; Wang, Z.Y. The clean energy development path and sustainable development of the ecological environment driven by big data for mining projects. J. Environ. Manag. 2023, 348, 119426. [Google Scholar] [CrossRef]
- Li, C.M.; Wang, Y.L.; Zhou, Z.H.; Wang, Z.Y.; Mardani, A. Digital finance and enterprise financing constraints: Structural characteristics and mechanism identification. J. Bus. Res. 2023, 165, 114074. [Google Scholar] [CrossRef]
- Li, C.; Tang, W.; Liang, F.; Wang, Z. The impact of climate change on corporate ESG performance: The role of resource misallocation in enterprises. J. Clean. Prod. 2024, 445, 141263. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Salmasi, F.R. Power management of an isolated hybrid AC/DC micro-grid with fuzzy control of battery banks. IET Renew. Power Gener. 2015, 9, 484–493. [Google Scholar] [CrossRef]
- Derbeli, M.; Napole, C.; Barambones, O. A Fuzzy Logic Control for Maximum Power Point Tracking Algorithm Validated in a Commercial PV System. Energies 2023, 16, 748. [Google Scholar] [CrossRef]
- Al Sumarmad, K.A.; Sulaiman, N.; Wahab, N.I.; Hizam, H. Energy Management and Voltage Control in Microgrids Using Artificial Neural Networks, PID, and Fuzzy Logic Controllers. Energies 2022, 15, 303. [Google Scholar] [CrossRef]
- Oprea, S.-V.; Bâra, A.; Preda, Ș.; Tor, O.B. A Smart Adaptive Switching Module Architecture Using Fuzzy Logic for an Efficient Integration of Renewable Energy Sources. A Case Study of a RES System Located in Hulubești, Romania. Sustainability 2020, 12, 6084. [Google Scholar] [CrossRef]
- Kalaiselvi, P.; Pandian, S.C.; Anand, M. Enhanced Proportional Resonant—Second-Order General Integrators (EPR-SOGI) With Fuzzy Logic Control in Hybrid Renewable Energy Source-Based STATCOM. Electr. Power Compon. Syst. 2024, 14. [Google Scholar] [CrossRef]
- Mbey, C.F.; Kakeu, V.J.F.; Boum, A.T.; Souhe, F.G.Y. Solar photovoltaic generation and electrical demand forecasting using multi-objective deep learning model for smart grid systems. Cogent Eng. 2024, 11, 17. [Google Scholar] [CrossRef]
- Olayiwola, O.I.; Barendse, P.S. Photovoltaic Cell/Module Equivalent Electric Circuit Modeling Using Impedance Spectroscopy. IEEE Trans. Ind. Appl. 2020, 56, 1690–1701. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Giurgi, G.-I.; Szolga, L.A.; Giurgi, D.-V. Benefits of Fuzzy Logic on MPPT and PI Controllers in the Chain of Photovoltaic Control Systems. Appl. Sci. 2022, 12, 2318. [Google Scholar] [CrossRef]
- Miraftabzadeh, S.M.; Colombo, C.G.; Longo, M.; Foiadelli, F. A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks. Forecasting 2023, 5, 213–228. [Google Scholar] [CrossRef]
Device Name | Model | Specifications |
---|---|---|
Photovoltaic panel | PV-X100 | Maximum power 100 W, size 1230 mm × 530 mm. |
Data acquisition module | DAQ-200 | Support a variety of sensor inputs, sampling frequency up to 1 kHz. |
Temperature sensor | TS-10 | The measuring range is −20~80 °C, and the accuracy is ±0.5 °C. |
Illumination sensor | LS-100 | The measuring range is 0~1200 Lux, and the accuracy is ±15 Lux. |
Control system unit | CSU-1 | Integrated fuzzy controller and RNN controller, programmable, supporting real-time parameter adjustment. |
Experimental Environment | Setting |
---|---|
Illumination condition | Cloudy days: 100 Lux; sunny days: 1000 Lux; and the range of change: 100–1000 Lux |
Temperature condition | Summer: 30 °C; winter: 10 °C; range: 10–30 °C |
Data acquisition frequency | Data are collected once every minute |
Experimental duration | Four weeks, ensuring different seasons and weather coverage |
Fuzzy control parameters | Number of fuzzy rules: 20 Number of membership functions: 3 Fuzzy control period: 1 min |
Neural network structure | RNN |
RNN layer number | 2 layers |
Number of neurons per layer of RNN | The first layer: 50, the second layer: 30 |
Learning rate | 0.001 |
Number of training rounds | 100 rounds |
Proportion of training set and test set | Training set: 80%, test set: 20% |
Time Stamp | Illumination Intensity (Lux) | Temperature (°C) | Actual Power Output (W) | Predicted Power Output (W) |
---|---|---|---|---|
01-04-2023 08:00 | 200 | 15 | 150 | 145 |
01-04-2023 09:00 | 400 | 16 | 300 | 295 |
01-04-2023 10:00 | 600 | 17 | 450 | 445 |
01-04-2023 11:00 | 800 | 18 | 600 | 595 |
01-04-2023 12:00 | 1000 | 19 | 750 | 745 |
01-04-2023 13:00 | 900 | 20 | 700 | 695 |
01-04-2023 14:00 | 700 | 21 | 550 | 545 |
01-04-2023 15:00 | 500 | 22 | 400 | 395 |
01-04-2023 16:00 | 300 | 23 | 250 | 245 |
01-04-2023 17:00 | 100 | 24 | 100 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; Guan, X.; Peng, X.; Zeng, Y.; Wang, Z.; Qin, T. Application of Fuzzy Control and Neural Network Control in the Commercial Development of Sustainable Energy System. Sustainability 2024, 16, 3823. https://doi.org/10.3390/su16093823
Xie F, Guan X, Peng X, Zeng Y, Wang Z, Qin T. Application of Fuzzy Control and Neural Network Control in the Commercial Development of Sustainable Energy System. Sustainability. 2024; 16(9):3823. https://doi.org/10.3390/su16093823
Chicago/Turabian StyleXie, Fanbao, Xin Guan, Xiaoyan Peng, Yanzhao Zeng, Zeyu Wang, and Tianqiao Qin. 2024. "Application of Fuzzy Control and Neural Network Control in the Commercial Development of Sustainable Energy System" Sustainability 16, no. 9: 3823. https://doi.org/10.3390/su16093823
APA StyleXie, F., Guan, X., Peng, X., Zeng, Y., Wang, Z., & Qin, T. (2024). Application of Fuzzy Control and Neural Network Control in the Commercial Development of Sustainable Energy System. Sustainability, 16(9), 3823. https://doi.org/10.3390/su16093823