The Impact of the Digital Economy on Urban Ecosystem Resilience in the Yellow River Basin
Abstract
:1. Introduction
2. Materials and Research Methods
2.1. Literature Review and Research Hypotheses
2.1.1. Direct Effects of the Digital Economy on Urban Ecosystems
2.1.2. Indirect Effects of the Digital Economy on Urban Ecosystems
2.2. Data Sources
2.3. Research Methodology
2.3.1. Double Fixed-Effects Model
2.3.2. Models of Mediating Effects
2.3.3. Instrumental Variables Approach
2.4. Variable Selection and Descriptive Statistics
2.4.1. Explained Variables
2.4.2. Explanatory Variables
2.4.3. Control Variables
2.4.4. Mediating Variables
3. Empirical Results and Analysis
3.1. The Overall Impact of the Digital Economy on Urban Ecological Resilience
3.1.1. Baseline Regression
3.1.2. Robustness Test
3.1.3. Instrumental Variable Tests
3.1.4. Heterogeneity Analysis
3.2. Mechanistic Analysis of the Digital Economy on the Resilience of Urban Ecosystems
3.2.1. Industrial Structure Optimization Effect
3.2.2. Resource Allocation Improvement Effect
3.2.3. Further Analysis: Decomposition
4. Discussion
5. Conclusions
6. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, D.; Sun, D. Integrated management and sustainable development of the Yellow River Basin. J. Geogr. 2019, 74, 2431–2436. [Google Scholar]
- Wang, S.; Niu, J. Spatio-temporal evolution of urban ecological resilience in the Yellow River Basin and its influencing factors. J. Ecol. 2023, 43, 8309–8320. [Google Scholar]
- Zhu, Y.; Wang, Z.; Qiao, H.; Gao, Z. Evolutionary law and influence mechanism of “native-ecological” system resilience in tourist areas in the old revolutionary areas of Dabie Mountains. J. Nat. Resour. 2022, 37, 1748–1765. [Google Scholar]
- Jin, L.; Kim, M.; Chon, J. Modeling the resilient supply of ecosystem function for climate change adaptive management in Wetland City. J. Environ. Manag. 2022, 322, 115788. [Google Scholar] [CrossRef] [PubMed]
- Pickett, S.T.A.; McGrath, B.; Cadenasso, M.L.; Felson, A.J. Ecological resilience and resilient cities. Build. Res. Inf. 2014, 42, 143–157. [Google Scholar] [CrossRef]
- Song, L. Are smartness and resilience compatible?—The resilience evaluation and development path of smart city construction. Soc. Sci. 2020, 475, 21–32. [Google Scholar]
- Delettre, O. Identity of ecological systems and the meaning of resilience. J. Ecol. 2021, 109, 3147–3156. [Google Scholar] [CrossRef]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Botequilha-Leitão, A.; Díaz-Varela, E.R. Performance Based Planning of complex urban social-ecological systems: The quest for sustainability through the promotion of resilience. Sustain. Cities Soc. 2020, 56, 102089. [Google Scholar] [CrossRef]
- Ireni-Saban, L. Challenging disaster administration. Adm. Soc. 2013, 45, 651–673. [Google Scholar] [CrossRef]
- Wang, S.; Cui, Z.; Lin, J.; Xie, J.; Su, K. A coupled and coordinated study of urbanization and ecological resilience in the Pearl River Delta region. J. Geogr. 2021, 76, 973–991. [Google Scholar]
- Li, Y.; Chen, T.; Zang, X. Surrounding water to set policy—Evaluation of water ecological resilience and optimization strategy thinking in 31 provinces of China. China Soft Sci. 2022, 37, 96–110. [Google Scholar]
- Zhang, X.-J.; Tang, Q.-F.; Zhang, Z. Characteristics of spatial differentiation of urban resilience in the Yellow River Basin and identification of its influencing factors. Reg. Res. Dev. 2022, 41, 48–54. [Google Scholar]
- Liu, H.; Liu, S. Spatial and temporal evolution of ecological resilience of the Yellow River Basin urban agglomeration and its enhancement path. Res. Environ. Sci. 2024, 37, 1534–1545. [Google Scholar]
- Tao, J.; Dong, P.; Lu, Y. Spatial and temporal changes of ecological resilience in the Yangtze River Delta region and analysis of influencing factors. Yangtze River Basin Resour. Environ. 2022, 31, 1975–1987. [Google Scholar]
- Zhang, M.; Ren, Y.; Zhou, L. Characteristics of spatial and temporal evolution of urban ecological resilience in the Yellow River Basin and analysis of influencing factors. Arid. Zone Geogr. 2024, 47, 445–454. [Google Scholar]
- Yu, J.; Meng, Q.; Zhang, Y.; Jin, J. Digital entrepreneurship: New trends in entrepreneurship theory and practice in the digital era. Res. Sci. 2018, 36, 1801–1808. [Google Scholar]
- Gong, Q.; Zhao, S. Research on the impact of digital economy development on carbon emissions in the Yellow River Basin. J. Xi’an Pet. Univ. (Soc. Sci. Ed.) 2024, 33, 1–10. [Google Scholar]
- Wen, F. Digital economy development, factor allocation efficiency and urban green productivity. Ind. Econ. Res. 2023, 22, 57–71+86. [Google Scholar]
- Kowal, J.; Duda, E.; Dunaj, K.; Klebaniuk, J.; Mäkiö, J.; Pańka, E.; Soja, P. Digital Innovations for Sustainable Development in the Time of Crisis. Int. J. Pedagog. Innov. New Technol. 2023, 9, 2–20. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y. Evolution of regional economic disparities in the Yellow River Basin at different spatial scales. Econ. Geogr. 2020, 40, 1–11. [Google Scholar]
- Zhao, Z.; Ru, S.; Xue, F. Spatio-temporal pattern and distributional dynamic evolution of ecological resilience in the Yellow River Basin-an analysis based on the energy-value ecological footprint model. China Popul.-Resour. Environ. 2024, 34, 136–147. [Google Scholar]
- Chu, E.; Sun, H.; Li, Y. Research on the impact of smart city construction on ecological resilience. J. Manag. 2023, 36, 21–37. [Google Scholar]
- Guo, H.; Liu, X. Research on the coupling and coordination mechanism of new urbanization and ecological resilience in central cities along the Yellow River. East China Econ. Manag. 2023, 37, 101–109. [Google Scholar]
- Zhang, J.-P.; Peng, J.-Q. Performance assessment of environmental governance and its impact on local economy-an empirical analysis based on air pollution governance and inspections in the “2+26” cities in 2017. J. Anhui Norm. Univ. (Humanit. Soc. Sci. Ed.) 2022, 50, 148–157. [Google Scholar]
- Zhou, Q.; Zhu, M.; Qiao, Y.; Zhang, X.; Chen, J. Achieving resilience through smart cities? Evidence from China. Habitat Int. 2021, 111, 102348. [Google Scholar] [CrossRef]
- Jun, W.; Jie, Z.; Xi, L. Development level and evolution measurement of China’s digital economy. Res. Quant. Tech. Econ. 2021, 38, 26–42. [Google Scholar]
- Liu, J.; Yang, Y.; Zhang, S. Research on the measurement and driving factors of China’s digital economy. Shanghai Econ. Res. 2020, 40, 81–96. [Google Scholar]
- Zhao, T.; Zhang, Z.; Liang, S. Digital economy, entrepreneurial activity and high-quality development—Empirical evidence from Chinese cities. Manag. World 2020, 36, 65–76. [Google Scholar]
- Kong, L.; Li, J. Research on the impact of digital economy development on regional eco-efficiency. Stat. Decis. Mak. 2023, 39, 23–28. [Google Scholar]
- Zhang, D.; Liu, Y.; Wu, H. Research on the impact of digital economy on urban eco-efficiency under the perspective of big data strategy. J. Shaanxi Norm. Univ. (Philos. Soc. Sci. Ed.) 2024, 53, 31–48. [Google Scholar]
- Mert, M.; Caglar, A.E. Testing pollution haven and pollution halo hypotheses for Turkey: A new perspective. Environ. Sci. Pollut. Res. 2020, 27, 32933–32943. [Google Scholar] [CrossRef]
- Liu, W.; Shi, B. Nonlinear environmental effects and spatial spillover effects of digital economy development in Chinese provinces. Stat. Decis. Mak. 2024, 40, 22–27. [Google Scholar]
- Xiang, X.; Zhang, H.; Zou, Z.; Yang, G. Digital economy, virtual agglomeration and green transformation of industry--analysis and validation based on medium and micro perspectives. J. Nanjing Univ. Financ. Econ. 2024, 31, 67–77. [Google Scholar]
- Sun, W.; Zhao, Y. Research on the influence mechanism and effect of digital economy on ecological welfare performance. Stat. Decis. Mak. 2024, 40, 58–63. [Google Scholar]
- Liu, C.; Zhang, S.; Li, X. Research on the impact of green credit on regional green total factor productivity—An empirical test based on Chinese provincial panel data. Nanjing Soc. Sci. 2023, 34, 28–39. [Google Scholar]
- Liang, Q.; Xiao, S.; Li, M. Has the development of digital economy improved urban eco-efficiency?—Based on the perspective of industrial structure upgrading. Explor. Econ. Issues 2021, 42, 82–92. [Google Scholar]
- Bai, J.; Liu, Y. Can outward foreign direct investment improve China’s resource mismatch. China Ind. Econ. 2018, 35, 60–78. [Google Scholar]
- Ji, S.; Zhu, Y.; Zhang, X. Research on the improvement effect of industrial agglomeration on resource mismatch. China Ind. Econ. 2016, 33, 73–90. [Google Scholar]
- Tao, C.; Ding, Y. How the digital economy policy affects the innovation of manufacturing enterprises--Based on the perspective of appropriateness supply. Contemp. Financ. Econ. 2022, 43, 16–27. [Google Scholar]
- Li, J.; Wei, D.; Gu, N. Government guidance, policy empowerment and enterprise digital transformation. Res. Quant. Tech. Econ. 2024, 41, 155–176. [Google Scholar]
- Song, M.; Jin, P. Local protection, resource mismatch and environmental welfare performance. Econ. Res. 2016, 51, 47–61. [Google Scholar]
Region | Provinces | City Name |
---|---|---|
Upper reaches of river | Qinghai | Xining, Haidong, |
Sichuan | also Ngawa county | |
Gansu | Lanzhou, Jiayuguan, Jinchang, Baiyin, Wuwei, Zhangye, Dingxi, Jiuquan, Longnan | |
Ningxia prefecture level city in Zhejiang | Yinchuan, Shizuishan, Wuzhong, Guyuan, Zhongwei | |
Inner Mongolia | Hohhot, Baotou, Ulanchab, Ordos, Bayannur, Wuhai | |
Middle stretches of river | Gansu | Tianshui, Pingliang, Qingyang |
Shaanxi | Xi’an, Tongchuan, Baoji, Xianyang, Weinan, Yan’an, Hanzhong, Yulin, Ankang, Shangluo | |
Shanxi | Taiyuan, Datong, Yangquan, Changzhi, Jincheng, Shuozhou, Jinzhong, Yuncheng, Xinzhou, Linfen, Luliang | |
He’nan Mengguzu autonomous county in Qinghai | Luoyang, Jiaozuo, Sanmenxia | |
Lower reaches of river | He’nan Mengguzu autonomous county in Qinghai | Zhengzhou, Kaifeng, Pingdingshan, Anyang, Hebi, Xinxiang, Puyang, Xuchang, Luohe, Nanyang, Shangqiu, Xinyang, Zhoukou, Zhumadian |
Shandong | Jinan, Qingdao, Zibo, Zaozhuang, Dongying, Yantai, Weifang, Jining, Tai’an, Weihai, Rizhao, Linyi, Dezhou, Liaocheng, Binzhou and Heze. |
Level 1 Indicators | Secondary Indicators | Tertiary Indicators | Unit (of Measure) | Orientations |
---|---|---|---|---|
Ecological resilience exponents (UERI) | resistance | Industrial wastewater discharge per unit of GDP | Tons/million | negative direction |
Industrial sulphur dioxide emissions per unit of GDP | Tons/million | negative direction | ||
Industrial solid waste emissions per unit of GDP | Tons/million | negative direction | ||
Carbon emissions per capita | Tons/person | negative direction | ||
unresponsiveness | Centralized treatment rate of sewage treatment plants | % | forward | |
Industrial sulfur dioxide removal rate | % | forward | ||
Comprehensive utilization rate of industrial solid waste | % | forward | ||
Industrial fume removal rate | % | forward | ||
Non-hazardous treatment rate of domestic waste | % | forward | ||
restorative | Greening coverage in built-up areas | % | forward | |
Water resources per capita | Cubic meters/person | forward | ||
Green space per capita in parks | Hectares/million people | forward | ||
Built-up area per capita | Square kilometers/ten thousand people | forward |
Level 1 Indicators | Secondary Indicators | Tertiary Indicators | Unit (of Measure) | Orientations |
---|---|---|---|---|
Development of the digital economy exponents (DIG) | digital carriers | Number of IPv4 addresses | ten thousand | forward |
Number of domain names | ten thousand | forward | ||
Internet penetration | Households/person | forward | ||
Cell phone penetration rate | Department/person | forward | ||
digital industry | Total telecommunication services per capita | Million dollars per person | forward | |
E-commerce turnover of agricultural products | ten thousand dollars | forward | ||
E-commerce turnover of industrial enterprises | ten thousand dollars | forward | ||
Peking University Digital Inclusive Finance Index | forward | |||
digital environment | Expenditures on research and development in science and technology | ten thousand dollars | forward | |
Percentage of employment of digitally literate people | % | forward | ||
Number of contracts concluded for digital intellectual property | classifier for individual things or people, general, catch-all classifier | forward | ||
Government Administration Application Index | forward |
Variable Type | Variable Name | Acronyms | Sample Size | Average Value | (Statistics) Standard Deviation | Minimum Value | Maximum Values |
---|---|---|---|---|---|---|---|
explanatory variable | Ecological resilience | UERI | 800 | 10.223 | 5.712 | 1.953 | 45.484 |
Core explanatory variables | Digital economy | DIG | 800 | 3.658 | 2.746 | 0.764 | 32.370 |
control variable | Intensity of environmental regulation | env | 800 | 0.122 | 0.478 | 0.521 | 3.606 |
Level of economic development | agdp | 800 | 10.829 | 0.640 | 6.410 | 13.028 | |
Energy restructuring | energy | 800 | 0.294 | 0.409 | 0.649 | 3.849 | |
Investment in science and technology research and development | invest | 800 | 0.059 | 0.09 | 0.449 | 0.832 | |
Technological innovation | innov | 800 | 7.269 | 1.511 | 1.609 | 11.380 | |
Size of population | pop | 800 | 14.902 | 0.782 | 12.369 | 16.377 | |
intermediary variable | Advanced industrial structure | iss | 800 | 1.213 | 0.673 | 0.160 | 5.369 |
Rationalization of industrial structure | isr | 800 | 0.358 | 0.543 | 0.101 | 11.327 | |
Capital mismatch index | cmis | 800 | 0.512 | 0.589 | 0.003 | 9.351 | |
Labor mismatch index | lmis | 800 | 0.719 | 0.663 | 0.007 | 5.521 |
Variant | (1) | (2) |
---|---|---|
DIG | 0.178 *** (0.857) | 0.163 *** (0.038) |
env | 0.109 *** (0.137) | |
agdp | 0.045 ** (0.487) | |
energy | 0.286 (0.186) | |
invest | −12.44 *** (5.991) | |
innov | 0.519 (0.172) | |
pop | −5.772 * (0.897) | |
cons | 1.288 (9.267) | 0.434 (0.312) |
Fixed cities | Yes | Yes |
fixed year | Yes | Yes |
N | 800 | 800 |
R2 | 0.104 | 0.260 |
Variant | (1) 2013–2015 | (2) 2016–2022 | (3) Exclusion of Central Cities | (4) Replacement of Independent Variables |
---|---|---|---|---|
DIG | 0.108 *** (0.266) | 0.333 *** (0.161) | 0.246 *** (0.132) | 0.112 * (0.188) |
env | 14.787 ** (6.621) | 1.893 ** (0.878) | 0.794 (0.772) | 0.142 * (0.078) |
agdp | 5.81 *** (0.794) | 6.842 *** (0.745) | 5.72 *** (0.543) | 1.436 *** (0.508) |
energy | 2.449 * (1.379) | 0.491 (0.834) | 0.663 (0.645) | 0.314 * (0.188) |
invest | −7.054 *** (5.153) | −7.496 *** (5.847) | 3.382 *** (4.036) | −6.935 (5.580) |
innov | 2.726 (0.354) | 2.768 *** (0.385) | −3.313 *** (0.266) | 4.603 (0.790) |
pop | −1.749 ** (0.72) | −2.187 *** (0.633) | −2.144 *** (0.445) | −0.138 *** (0.192) |
cons | 11.172 (14.967) | 12.376 (13.356) | 1.188 (9.618) | 7.577 (14.403) |
fixed cities | Yes | Yes | Yes | Yes |
fixed year | Yes | Yes | Yes | Yes |
N | 240 | 560 | 720 | 800 |
R2 | 0.592 | 0.429 | 0.531 | 0.288 |
Variant | First-Stage Regression Dig | Second-Stage Regression UERI |
---|---|---|
Dig | 0.157 *** (0.859) | |
IV | 0.402 *** (0.859) | |
Control | Yes | Yes |
Fixed cities | Yes | Yes |
Fixed year | Yes | Yes |
Kleibergen–Paap Wald F-statistic | 254.731 *** | |
Cragg–Donald Wald F-statistic | 493.215 *** | |
Anderson–Rubin Wald statistic | 4.220 * | |
N | 800 | 800 |
R2 | 0.405 | 0.980 |
Variant | (1) Upper Yellow River Cities | (2) Middle Yellow River Cities | (3) Lower Yellow River Cities |
---|---|---|---|
DIG | 0.114 *** (2.130) | 0.162 *** (3.675) | 0.058 (1.040) |
env | 0.696 ** (12.936) | 1.546 (4.279) | −0.215 (0.209) |
agdp | 12.072 *** (1.322) | 2.454 *** (0.381) | 2.436 *** (0.274) |
energy | 1.894 (3.227) | 1.141 *** (0.225) | 7.342 *** (0.965) |
invest | −10.097 *** (1.202) | 4.984 (14.617) | −0.011 (1.961) |
innov | 4.352 *** (0.690) | 0.298 (0.175) | 0.689 *** (0.152) |
pop | −1.906 (1.254) | −1.487 * (0.402) | −2.98 *** (0.321) |
cons | 13.37 *** (23.318) | 0.092 *** (7.887) | 19.958 *** (6.806) |
fixed cities | Yes | Yes | Yes |
fixed year | Yes | Yes | Yes |
N | 230 | 270 | 300 |
R2 | 0.014 | 0.270 | 0.565 |
Panel A | Advanced Industrial Structure | ||
---|---|---|---|
(1) UERI | (2) iss | (3) UERI | |
DIG | 0.178 *** (0.857) | 0.012 *** (0.008) | 0.029 *** (0.047) |
iss | 0.107 ** (0.227) | ||
control variable | Yes | Yes | Yes |
fixed cities | Yes | Yes | Yes |
fixed year | Yes | Yes | Yes |
N | 800 | 800 | 800 |
R2 | 0.104 | 0.184 | 0.292 |
Proportion of mediated effects to total effects | 0.837 | ||
Panel B | Rationalization of industrial structure | ||
(1) UERI | (2) isr | (3) UERI | |
DIG | 0.178 *** (0.857) | 0.003 *** (0.008) | 0.037 *** (0.030) |
isr | 0.209 (0.097) | ||
control variable | Yes | Yes | Yes |
fixed cities | Yes | Yes | Yes |
fixed year | Yes | Yes | Yes |
N | 800 | 800 | 800 |
R2 | 0.104 | 0.038 | 0.289 |
Proportion of mediated effects to total effects | 0.792 |
Panel A | Capital Mismatch | ||
---|---|---|---|
(1) UERI | (2) cmis | (3) UERI | |
DIG | 0.178 *** (0.857) | −0.004 *** (0.010) | 0.058 *** (0.036) |
cmis | −0.503 (0.326) | ||
control variable | Yes | Yes | Yes |
fixed cities | Yes | Yes | Yes |
fixed year | Yes | Yes | Yes |
N | 800 | 800 | 800 |
R2 | 0.104 | 0.535 | 0.265 |
Proportion of mediated effects to total effects | 0.674 | ||
Panel B | Labor mismatch | ||
(1) UERI | (2) lmis | (3) UERI | |
DIG | 0.178 *** (0.857) | −0.055 *** (0.010) | 0.050 *** (0.033) |
lmis | −0.280 * (0.150) | ||
control variable | Yes | Yes | Yes |
fixed cities | Yes | Yes | Yes |
fixed year | Yes | Yes | Yes |
N | 800 | 800 | 800 |
R2 | 0.104 | 0.136 | 0.185 |
Proportion of mediated effects to total effects | 0.719 |
Variant | (1) Ecological Resistance | (2) Ecological Responsiveness | (3) Ecological Resilience |
---|---|---|---|
DIG | 0.011 *** (0.001) | 0.042 *** (0.032) | 0.002 (0.003) |
env | 0.011 *** (0.004) | 0.001 *** (0.015) | 0.007 ** (0.013) |
agdp | 0.023 *** (0.003) | 0.179 ** (0.154) | 0.169 * (0.021) |
energy | 0.014 *** (0.003) | 0.002 (0.006) | 0.048 (0.017) |
invest | −0.249 * (0.019) | 0.008 (0.002) | −0.310 (0.175) |
innov | 0.006 (0.001) | 0.035 * (0.213) | 0.036 * (0.008) |
pop | −0.021 * (0.002) | −0.002 * (0.031) | −0.064 (0.029) |
cons | 0.124 (0.048) | 0.010 (0.004) | 2.083 (0.597) |
fixed cities | Yes | Yes | Yes |
fixed year | Yes | Yes | Yes |
N | 800 | 800 | 800 |
R2 | 0.555 | 0.112 | 0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y. The Impact of the Digital Economy on Urban Ecosystem Resilience in the Yellow River Basin. Sustainability 2025, 17, 790. https://doi.org/10.3390/su17020790
Wang Y, Li Y. The Impact of the Digital Economy on Urban Ecosystem Resilience in the Yellow River Basin. Sustainability. 2025; 17(2):790. https://doi.org/10.3390/su17020790
Chicago/Turabian StyleWang, Yu, and Yupu Li. 2025. "The Impact of the Digital Economy on Urban Ecosystem Resilience in the Yellow River Basin" Sustainability 17, no. 2: 790. https://doi.org/10.3390/su17020790
APA StyleWang, Y., & Li, Y. (2025). The Impact of the Digital Economy on Urban Ecosystem Resilience in the Yellow River Basin. Sustainability, 17(2), 790. https://doi.org/10.3390/su17020790