Green Growth in Agriculture: Long-Term Evidence from European Union Countries
Abstract
:1. Introduction
2. Methodology
2.1. Conceptual Framework of Green Growth Accounting for Agriculture
2.2. Output Variables and Data
2.3. Input Variables and Data
2.3.1. Labour
2.3.2. Produced Capital
2.3.3. Natural Capital
2.4. Elasticities with Respect to Outputs
2.5. Elasticities with Respect to Inputs
3. Results
3.1. The Growth of GVA and Pollution-Adjusted GVA in Agriculture
3.2. Contribution of Production Factors and EAMFP to Agricultural Green Growth
3.3. Comparison of EAMFP and MFP in Agriculture
4. Discussion
5. Conclusions and Research Limitations
5.1. Conclusions
5.2. Research Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Input | Output | |||
---|---|---|---|---|
Labour | Produced Capital | Natural Capital | GHGnet Emission | |
Belgium | 0.169 | 0.777 | 0.054 | 0.072 |
Bulgaria | 0.197 | 0.677 | 0.126 | 0.038 |
Czechia | 0.209 | 0.748 | 0.043 | 0.089 |
Denmark | 0.144 | 0.738 | 0.119 | 0.103 |
Germany | 0.188 | 0.728 | 0.084 | 0.096 |
Estonia | 0.201 | 0.769 | 0.029 | 0.128 |
Ireland | 0.205 | 0.692 | 0.103 | 0.174 |
Greece | 0.277 | 0.662 | 0.061 | 0.018 |
Spain | 0.303 | 0.628 | 0.069 | 0.020 |
France | 0.207 | 0.723 | 0.070 | 0.044 |
Croatia | 0.306 | 0.663 | 0.031 | 0.040 |
Italy | 0.317 | 0.624 | 0.049 | 0.016 |
Cyprus | 0.231 | 0.735 | 0.034 | 0.019 |
Latvia | 0.214 | 0.760 | 0.026 | 0.218 |
Lithuania | 0.246 | 0.709 | 0.045 | 0.084 |
Luxembourg | 0.159 | 0.772 | 0.069 | 0.093 |
Hungary | 0.178 | 0.758 | 0.064 | 0.033 |
Malta | 0.309 | 0.686 | 0.005 | 0.024 |
Netherlands | 0.172 | 0.763 | 0.065 | 0.040 |
Austria | 0.247 | 0.684 | 0.069 | 0.044 |
Poland | 0.261 | 0.707 | 0.032 | 0.057 |
Portugal | 0.342 | 0.595 | 0.063 | 0.026 |
Romania | 0.320 | 0.625 | 0.056 | 0.023 |
Slovenia | 0.260 | 0.719 | 0.022 | 0.049 |
Slovakia | 0.189 | 0.777 | 0.034 | 0.045 |
Finland | 0.192 | 0.729 | 0.079 | 0.181 |
Sweden | 0.208 | 0.714 | 0.024 | 0.087 |
References
- Ali, S.H.; Puppim de Oliveira, J.A. Pollution and economic development: An empirical research review. Environ. Res. Lett. 2018, 13, 123003. [Google Scholar] [CrossRef]
- Anik, A.R.; Rahman, S.; Sarker, J.R. Agricultural productivity growth and the role of capital in South Asia (1980–2013). Sustainability 2017, 9, 470. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J.; et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Tan, D.; Adedoyin, F.F.; Alvarado, R.; Ramzan, M.; Kayesh, M.S.; Shah, M.I. The effects of environmental degradation on agriculture: Evidence from European countries. Gondwana Res. 2022, 106, 92–104. [Google Scholar] [CrossRef]
- Lv, X.; Lu, X.; Fu, G.; Wu, C. A spatial-temporal approach to evaluate the dynamic evolution of green growth in China. Sustainability 2018, 10, 2341. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, L.; Xu, C.; Fu, T.; Lin, J. Exploring the nonlinear association between agri-environmental regulation and green growth: The mediating effect of agricultural production methods. J. Clean. Prod. 2024, 444, 141138. [Google Scholar] [CrossRef]
- Hickel, J.; Kallis, G. Is green growth possible? New Political Econ. 2019, 25, 469–486. [Google Scholar] [CrossRef]
- Adamowicz, M. Green deal, green growth and green economy as a means of support for attaining the sustainable development goals. Sustainability 2022, 14, 5901. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 Climate Ambition. Investing in a Climate-Neutral Future for the Benefit of Our People. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0562 (accessed on 8 March 2022).
- Liu, L.; Yang, Y.; Liu, S.; Gong, X.; Zhao, Y.; Jin, R.; Duan, H.; Jiang, P. A comparative study of green growth efficiency in Yangtze River Economic Belt and Yellow River Basin between 2010 and 2020. Ecol. Indic. 2023, 150, 110214. [Google Scholar] [CrossRef]
- Bowen, A.; Hepburn, C. Green growth: An assessment. Oxf. Rev. Econ. Policy 2014, 30, 407–422. [Google Scholar] [CrossRef]
- Antal, M.; Van Den Bergh, J.C. Green growth and climate change: Conceptual and empirical considerations. Clim. Policy 2016, 16, 165–177. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Haščič, I.; Souchier, M. Environmentally adjusted multifactor productivity: Methodology and empirical results for OECD and G20 countries. Ecol. Econ. 2018, 153, 147–160. [Google Scholar] [CrossRef]
- Capasso, M.; Hansen, T.; Heiberg, J.; Klitkou, A.; Steen, M. Green growth–A synthesis of scientific findings. Technol. Forecast. Soc. Change 2019, 146, 390–402. [Google Scholar] [CrossRef]
- Dogaru, L. Green economy and green growth—Opportunities for sustainable development. Proceedings 2021, 63, 70. [Google Scholar] [CrossRef]
- Brad, S.; Mocan, B.; Brad, E.; Fulea, M. Environmentally sustainable economic growth. Amfiteatru Econ. J. 2016, 18, 446–460. [Google Scholar]
- Chung, R.K.; Lee, H.H. Towards Environmentally Sustainable Economic Growth (Green Growth) in Asia and the Pacific. Prepared for the State of the Environment in Asia and the Pacific. 2005. Available online: https://www.apeaweb.org/confer/hito05/papers/chung_lee.pdf (accessed on 8 March 2022).
- Saufi, N.A.A.; Daud, S.; Hassan, H. Green growth and corporate sustainability performance. Procedia Econ. Financ. 2016, 35, 374–378. [Google Scholar] [CrossRef]
- Kim, S.E.; Kim, H.; Chae, Y. A new approach to measuring green growth: Application to the OECD and Korea. Futures 2014, 63, 37–48. [Google Scholar] [CrossRef]
- Rubio, S.J.; Aznar, J. Sustainable Growth and Environmental Policies. 2000. Available online: https://www.econstor.eu/bitstream/10419/155079/1/NDL2000-025.pdf (accessed on 8 March 2022).
- Sawyer, M. Financialization, financial systems and sustainable development. In The Economic Crisis in Social and Institutional Context; Routledge: London, UK, 2015; pp. 42–54. [Google Scholar]
- Bouma, J.; Berkhout, E. Inclusive green growth. PBL Netherlands Environmental Assessment Agency. PBL Publ. 2015, 17, 8. [Google Scholar]
- Narloch, U.; Kozluk, T.; Lloyd, A.; Measuring Inclusive Green Growth at the Country Level. Taking Stock of Measurement Approaches and Indicators. 2016. Available online: https://www.greenpolicyplatform.org/sites/default/files/downloads/resource/Measuring_Inclusive_Green_Growth_at_the_Country_Level.pdf (accessed on 8 March 2022).
- Li, M.; Zhang, Y.; Fan, Z.; Chen, H. Evaluation and research on the level of inclusive green growth in Asia-Pacific region. Sustainability 2021, 13, 7482. [Google Scholar] [CrossRef]
- Tilsted, J.P.; Bjørn, A.; Majeau-Bettez, G.; Lund, J.F. Accounting matters: Revisiting claims of decoupling and genuine green growth in Nordic countries. Ecol. Econ. 2021, 187, 107101. [Google Scholar] [CrossRef]
- Bruckmeier, K.; Bruckmeier, K. Ecological Economics: Critical Perspectives. In Economics and Sustainability: Social-Ecological Perspectives; Palgrave Macmillan: London, UK, 2020; pp. 239–292. [Google Scholar]
- Bowen, A.; Fankhauser, S.; Best, S. Low-carbon development for least developed countries. Oxfam Policy Pract.: Clim. Change Resil. 2011, 7, 33–56. [Google Scholar]
- Al-Amin, A.Q.; Filho, W.L. Towards long-term climate change mitigation: The role of low-carbon growth planning. Int. J. Glob. Warm. 2012, 4, 81–90. [Google Scholar] [CrossRef]
- Zachmann, G. An Approach to Identify the Sources of Low-Carbon Growth for Europe. 2016. Available online: https://www.jstor.org/stable/resrep28621 (accessed on 8 March 2022).
- Schapper, A.; Hoffmann, C.; Lee, P. Procedural rights for nature—A pathway to sustainable decarbonisation? Third World Q. 2022, 43, 1197–1216. [Google Scholar] [CrossRef]
- OECD. Food and Agriculture. In OECD Green Growth Studies; OECD Publishing: Paris, France, 2012. [Google Scholar] [CrossRef]
- Kasztelan, A. Green growth, green economy and sustainable development: Terminological and relational discourse. Prague Econ. Pap. 2017, 26, 487–499. [Google Scholar] [CrossRef]
- OECD. Policy Instruments to Support Green Growth in Agriculture. In OECD Green Growth Studies; OECD Publishing: Paris, France, 2013; Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2013/10/policy-instruments-to-support-green-growth-in-agriculture_g1g331bc/9789264203525-en.pdf (accessed on 9 November 2024).
- OECD. Green Growth Indicators for Agriculture: A Preliminary Assessment. In OECD Green Growth Studies; OECD Publishing: Paris, France, 2014; Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2014/10/green-growth-indicators-for-agriculture_g1g496e3/9789264223202-en.pdf (accessed on 8 March 2024).
- Kasztelan, A.; Nowak, A. Green growth in agriculture—New measurement concept and its empirical verification. Sustain. Dev. 2024, 32, 325–335. [Google Scholar] [CrossRef]
- Kasztelan, A.; Nowak, A.; Hawlena, J. Green growth in agriculture in the European Union: Myth or reality? Eur. Res. Stud. J. 2019, 22, 35–48. [Google Scholar] [CrossRef]
- Obst, C.; Eigenraam, M. Incorporating the environment in agricultural productivity: Applying advances in international environmental accounting. In New Directions in Productivity Measurement and Efficiency Analysis; Edward Elgar Publishing: Cheltenham, UK, 2017; pp. 151–172. [Google Scholar] [CrossRef]
- Agarwala, M.; Martin, J. Environmentally-Adjusted Productivity Measures for the UK. SSRN 2022. [CrossRef]
- Xu, X.; Huang, X.; Huang, J.; Gao, X.; Chen, L. Spatial-temporal characteristics of agriculture green total factor productivity in China, 1998–2016: Based on more sophisticated calculations of carbon emissions. Int. J. Environ. Res. Public Health 2019, 16, 3932. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLoS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef]
- Zhao, S.; Chancellor, W.; Jackson, T.; Boult, C. Productivity as a measure of performance: ABARES perspective. Farm. Policy J. 2021, 18, 4–14. [Google Scholar]
- Colucci, D.; Coli, A. Total Factor Productivity Growth in Agriculture, Adjusted for Greenhouse Gas Emissions: Trends in Developed and Developing Countries Between 1992–2016. 2023. Available online: https://doi.org/10.2139/ssrn.4394541 (accessed on 9 November 2024).
- OECD. Towards green growth: Monitoring progress. In OECD Green Growth Studies; OECD Publishing: Paris, France, 2011; Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2011/05/towards-green-growth-monitoring-progress_g1g1342e/9789264111356-en.pdf (accessed on 9 November 2024).
- OECD. Fostering Green Growth in Agriculture: The Role of Training, Advisory Services and Extension Initiatives. In OECD Green Growth Studies; OECD Publishing: Paris, France, 2015; Available online: https://read.oecd-ilibrary.org/agriculture-and-food/fostering-green-growth-in-agriculture_9789264232198-en (accessed on 9 November 2024).
- Brandt, N.; Schreyer, P.; Zipperer, V. Productivity measurement with natural capital and bad outputs. In OECD Economics Department Working Papers; No. 1154; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Brandt, N.; Schreyer, P.; Zipperer, V. Productivity measurement with natural capital. In OECD Economics Department Working Papers; No. 1092; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Rodríguez, M.C.; Haščič, I.; Souchier, M. Environmentally Adjusted Multifactor Productivity: Methodology and Empirical Results for OECD and G20 Countries. In OECD Green Growth Papers; No. 2018/02; OECD Publishing: Paris, France, 2016. [Google Scholar]
- You, S.; Yan, H. A new approach in modelling undesirable output in DEA model. J. Oper. Res. Soc. 2011, 62, 2146–2156. [Google Scholar] [CrossRef]
- Kao, C.; Hwang, S.N. Measuring the effects of undesirable outputs on the efficiency of production units. Eur. J. Oper. Res. 2021, 292, 996–1003. [Google Scholar] [CrossRef]
- Baráth, L.; Fertő, I. Accounting for TFP Growth in Global Agriculture-a Common-Factor-Approach-Based TFP Estimation. AGRIS—Online Pap. Econ. Inform. 2020, 10, 3–13. [Google Scholar] [CrossRef]
- Han, H.; Zhong, Z.; Wen, C.; Sun, H. Agricultural environmental total factor productivity in China under technological het-erogeneity: Characteristics and determinants. Environ. Sci. Pollut. Res. 2018, 25, 32096–32111. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, J. Attempting to measure sustainable intensification of agriculture in countries of the European Union. J. Environ. Prot. Ecol. 2018, 19, 949–957. [Google Scholar]
- Po-Chi, C.H.E.N.; Ming-Miin, Y.U.; Chang, C.C.; Shih-Hsun, H.S.U. Total factor productivity growth in China’s agricultural sector. China Econ. Rev. 2008, 19, 580–593. [Google Scholar]
- Eurostat. Economic Accounts for Agriculture Manual—2024 Edition; Publications Office of the European Union: Luxembourg, 2024; Available online: https://ec.europa.eu/eurostat/documents/3859598/20260791/KS-GQ-24-013-EN-N.pdf/a5df621f-293a-5f92-ec69-1a145c2de28f?version=1.0&t=1730196739606 (accessed on 9 November 2024).
- Wu, H.; Huang, H.; Tang, J.; Chen, W.; He, Y. Net greenhouse gas emissions from agriculture in China: Estimation, spatial correlation and convergence. Sustainability 2019, 11, 4817. [Google Scholar] [CrossRef]
- Dakpo, K.H.; Lansink, A.O. Dynamic pollution-adjusted inefficiency under the by-production of bad outputs. Eur. J. Oper. Res. 2019, 276, 202–211. [Google Scholar] [CrossRef]
- Lewis, M.A. Non-Point Source Pollution. In Proceedings of the Presented at Urban Stormwater County Task Force Meeting, Pensacola Junior College Media Center, Pensacola, FL, USA, 9 November 1999. [Google Scholar]
- Cason, T.N.; Gangadharan, L.; Duke, C. A laboratory study of auctions for reducing non-point source pollution. J. Environ. Econ. Manag. 2003, 46, 446–471. [Google Scholar] [CrossRef]
- Meyer-Aurich, A.; Weersink, A.; Janovicek, K.; Deen, B. Cost efficient rotation and tillage options to sequester carbon and mitigate GHG emissions from agriculture in Eastern Canada. Agric. Ecosyst. Environ. 2006, 117, 119–127. [Google Scholar] [CrossRef]
- Wagner-Riddle, C.; Weersink, A. Net Agricultural Greenhouse Gases: Mitigation Strategies and Implications. In Sustaining Soil Productivity in Response to Global Climate Change: Science, Policy, and Ethics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 169–182. [Google Scholar]
- Baah-Acheamfour, M.; Carlyle, C.N.; Lim, S.S.; Bork, E.W.; Chang, S.X. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils. Sci. Total Environ. 2016, 571, 1115–1127. [Google Scholar] [CrossRef]
- Grewer, U.; Nash, J.; Gurwick, N.; Bockel, L.; Galford, G.; Richards, M.; Junior, C.C.; White, J.; Pirolli, G.; Wollenberg, E. Analyzing the greenhouse gas impact potential of smallholder development actions across a global food security program. Environ. Res. Lett. 2018, 13, 044003. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Li, S.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Huang, M.; Shang, Z. Instability of decoupling livestock greenhouse gas emissions from economic growth in livestock products in the Tibetan highland. J. Environ. Manag. 2021, 287, 112334. [Google Scholar] [CrossRef] [PubMed]
- Hasukawa, H.; Inoda, Y.; Toritsuka, S.; Sudo, S.; Oura, N.; Sano, T.; Shirato, Y.; Yanai, J. Effect of paddy-upland rotation system on the net greenhouse gas balance as the sum of methane and nitrous oxide emissions and soil carbon storage: A case in western Japan. Agriculture 2021, 11, 52. [Google Scholar] [CrossRef]
- Fuglie, K. Accounting for growth in global agriculture. Bio-Based Appl. Econ. 2015, 4, 201–234. [Google Scholar]
- European Union. Regulation (EC) No 138/2004 of the European Parliament and of the Council of 5 December 2003 on the Economic Accounts for Agriculture in the Community. 2004. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004R0138&qid=1676970489643&from=EN (accessed on 29 October 2024).
- Vander Donckt, M.; Chan, P.; Silvestrini, A. A new global database on agriculture investment and capital stock. Food Policy 2021, 100, 101961. [Google Scholar] [CrossRef]
- Vander Donckt, M.; Chan, P. The New FAO Global Database on Agriculture Investment and Capital Stock. In Food and Agriculture Organization of the United Nations; FAO Statistics Working Paper Series/19-16; FAO UN: Rome, Italy, 2019; ISBN 978-92-5-5-131819-5. [Google Scholar]
- FAO. Agricultural Investment and Capital Stock; FAOSTAT Analytical Brief Series No. 7; FAO UN: Rome, Italy, 2020. [Google Scholar]
- Ascui, F.; Cojoianu, T. Natural Capital Credit Risk Assessment in Agricultural Lending: An Approach Based on the Natural Capital Protocol; Natural Capital Finance Alliance: Oxford, UK, 2019. [Google Scholar]
- Barbier, E.B. The concept of natural capital. Oxf. Rev. Econ. Policy 2019, 35, 14–36. [Google Scholar] [CrossRef]
- USDA. International Agricultural Productivity: Documentation and Methods. 2024. Available online: https://www.ers.usda.gov/data-products/international-agricultural-productivity/documentation-and-methods/ (accessed on 7 October 2024).
- Cheba, K.; Bąk, I. Environmental production efficiency in the European Union countries as a tool for the implementation of goal 7 of the 2030 agenda. Energies 2021, 14, 4593. [Google Scholar] [CrossRef]
- Committee for the Farm Accountancy Data Network (FADN). Definitions of Variables Used in FADN Standard Results; RI/CC 1750; European Commision: Brussels, Belgium, 2022. [Google Scholar]
- Rodríguez, C.M.; Mante, F.; Haščič, I.; Rojas Lleras, A. Environmentally adjusted multifactor productivity: Accounting for renewable natural resources and ecosystem services. In OECD Green Growth Papers; 2023-01. OECD Publishing: Paris, France. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/11/environmentally-adjusted-multifactor-productivity_55d1896c/9096211d-en.pdf (accessed on 11 November 2024).
- European Court of Auditors. Common Agricultural Policy and Climate. Half of EU Climate Spending but Farm Emissions are not Decreasing; Special Report, No 16.; European Court of Auditors: Luxembourgh, 2021; Available online: https://www.eca.europa.eu/Lists/ECADocuments/SR21_16/SR_CAP-and-Climate_EN.pdf (accessed on 9 November 2024).
- Yu, D.; Liu, L.; Gao, S.; Yuan, S.; Shen, Q.; Chen, H. Impact of carbon trading on agricultural green total factor productivity in China. J. Clean. Prod. 2022, 367, 132789. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union. Proposal for a Regulation of the European Parliament and of the Council Establishing a Union Certification Framework for Carbon Removals; COM/2022/672 Final. 2022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0672 (accessed on 9 November 2024).
- Li, Z.; Jin, M.; Cheng, J. Economic growth of green agriculture and its influencing factors in China: Based on emergy theory and spatial econometric model. Environ. Dev. Sustain. 2021, 23, 15494–15512. [Google Scholar] [CrossRef]
- Shen, Z.; Hong, T.; Blancard, S.; Bai, K. Digital financial inclusion and green growth: Analysis of Chinese agriculture. Appl. Econ. 2024, 56, 5555–5573. [Google Scholar] [CrossRef]
- Ren, X.; He, J.; Huang, Z. Innovation, natural resources abundance, climate change and green growth in agriculture. Resources Policy 2023, 85, 103970. [Google Scholar] [CrossRef]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]
- Hamilton, K.; Naikal, E.G.; Lange, G.M. Natural Resources and Total Factor Productivity Growth in Developing Countries: Testing A New Methodology. 2019. Available online: https://ssrn.com/abstract=3317210 (accessed on 8 March 2024).
- Baldock, D.; Caraveli, H.; Dwyer, J.; Dwyer, J.; Einschütz, S.; Petersen, J.E.; Sumpsi-Vinas, J.; Varela-Ortega, C.; The Environmental Impact of Irrigation in the European Union. A Report to the Environment Directorate of the European Commission. 2000. Available online: https://bisses-valais.ch/app/uploads/2020/06/Dwyer-Janet-The-environmental-impacts-of-irrigation-in-the-European-Union.pdf (accessed on 8 November 2024).
- Popescu, A.; Tindeche, C.; Marcuță, A.; Marcuță, L.; Honțuș, A.; Angelescu, C. Labor force in the European Union agriculture. Traits and tendencies. Econ. Anal. 2021, 20, 27. [Google Scholar]
- Megyesiova, S. Production, employment and productivity of agricultural sector in the European Union. Bulg. J. Agric. Sci. 2021, 27, 846–858. [Google Scholar]
- Rodríguez-Pose, A.; Ganau, R. Institutions and the productivity challenge for European regions. J. Econ. Geogr. 2022, 22, 1–25. [Google Scholar]
- Bureau, J.C.; Antón, J. Agricultural Total Factor Productivity and the environment: A guide to emerging best practices in measurement. In OECD Food, Agriculture and Fisheries Papers; No. 177; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Knapp, S.; Gunst, L.; Mäder, P.; Ghiasi, S.; Mayer, J. Organic cropping systems maintain yields but have lower yield levels and yield stability than conventional systems–Results from the DOK trial in Switzerland. Field Crops Res. 2023, 302, 109072. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef]
- Eurostat, DG Joint Research Centre. Methodological Document on Labour Productivity Indicators for the EU-28: Quality Adjusted Labour Input. 2016. Available online: https://ec.europa.eu/eurostat/documents/7894008/8915486/Methodology_QALI.pdf (accessed on 17 December 2024).
- Wang, S.L.; Robert, A.; Hoppe, R.; Hertz, T.; Xu, S. Farm Labor, Human Capital, and Agricultural Productivity in the US; ERR-302; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 2022. [Google Scholar]
- Cabannes, P.Y.; Montaut, A.; Pionnier, P.A. Multifactor Productivity Estimates for France: What Does it Change to Take Capital and Labour Quality into Account? No. g2013-07; Institut National de la Statistique et des Etudes Economiques: Paris, France, 2013. [Google Scholar]
- Ajayi, V.; Pollitt, M.G. Green growth and net zero policy in the UK: Some conceptual and measurement issues. Energy Strategy Rev. 2024, 55, 101506. [Google Scholar] [CrossRef]
EU Countries | Permanent Pasture (β) | Rainfed Cropland (α) | Irrigated Cropland (ρ) |
---|---|---|---|
Bulgaria, Czechia, Hungary, Poland, Romania, Slovakia | 0.094 | 1.000 | 1.570 |
Estonia, Latvia, Lithuania, Finland, Sweden, Ireland, Denmark | 0.094 | 1.000 | 1.001 |
Slovenia, Croatia, Greece, Italy, Malta, Portugal, Spain, Cyprus | 0.094 | 1.000 | 1.972 |
Luxemburg, Belgium, France, Austria, Germany, Netherlands | 0.094 | 1.000 | 1.279 |
Indicators | Code | Description of Definition and Calculation | Data Sources: Indicators [Code] in the FADN Public Database of the European Commission |
---|---|---|---|
Costs of paid and unpaid labour input | L = Lpl + wLupl | The cost of paid labour input Lpl is the amount of wages and social security charges (and insurance) of wage earners in the accounting year. | Wages paid (EUR) [SE370] |
The implicit cost of unpaid labour input wLupl is the amount obtained by multiplying the hours worked by unpaid labour input in the accounting year by the wage per hour worked w by paid labour input. (wLupl = SE016 × SE370/SE021) | Unpaid labour input (h) [SE016] Paid labour input (h) [SE021] | ||
Deprecation of fixed capital | D | The cost of consumption of fixed capital in the accounting year. | Depreciation (EUR) [SE360] |
Intermediate consumption of working capital | C | The intermediate consumption is the total cost of circulating capital in the accounting year. | Total intermediate consumption (EUR) [SE275] |
Costs of rented and owned capital | I = Irc + rIoc | The cost of rented capital Irc is the total amount of interest and financial charges paid on loans obtained for the purchase of fixed and circulating capital, interest, etc. | Interest paid (EUR) [SE380] |
The implicit cost of owned capital Ioc is the amount obtained by multiplying the total assets in ownership by long-term interest rates r. (rIoc = r × (SE436 + SE437)/2) | Total assets, closing valuation (EUR) [SE436] Total assets, opening valuation (EUR) [SE437] Long-term interest rates—Maastricht criterion interest rates [irt_lt_mcby] (Eurostat online data code: irt_lt_mcby_a) | ||
Costs of leased land and owned land | N = Nrl + Nol | The cost of leased land Nrl is the rent paid for farmland in the accounting year. | Rent paid (EUR) [SE375] |
The implicit cost of owned land Nol is the amount obtained by multiplying the rent per hectare of UAA rented by the holder r under a tenancy agreement by the area of owned UAA. (Nol = SE375/SE030 × (SE025 − SE030)) | Rented UAA (ha) [SE030] Total utilised agricultural area (ha) [SE025] | ||
Costs of total inputs | γ | The costs of total inputs linked to the agricultural activity of the holding and related to the output of the accounting year. (γ = L + D + C + I + N) |
Countries | Output Growth | Input Growth | Residual Growth | ||||
---|---|---|---|---|---|---|---|
Pollution- Adjusted GVA Growth | GVA Growth | Adjustment for Pollution Abatement | Contribution of Labour | Contribution of Produced Capital | Contribution of Natural Capital | Growth of EAMFP | |
Czechia | 1.108 | 1.103 | 0.005 | −0.106 | 0.111 | −0.003 | 1.105 |
Latvia | 1.097 | 1.199 | −0.102 | −0.240 | 0.265 | 0.005 | 1.068 |
Slovakia | 1.087 | 0.881 | 0.206 | −0.290 | −0.690 | −0.002 | 2.068 |
Sweden | 0.989 | 0.964 | 0.025 | −0.087 | 0.158 | −0.001 | 0.918 |
Lithuania | 0.852 | 0.874 | −0.022 | −0.122 | 0.228 | 0.006 | 0.740 |
Luxembourg | 0.782 | 0.709 | 0.073 | −0.094 | 0.559 | 0.003 | 0.314 |
Ireland | 0.668 | 0.678 | −0.010 | 0.014 | 0.282 | 0.002 | 0.370 |
Austria | 0.582 | 0.586 | −0.004 | −0.057 | 0.132 | −0.003 | 0.510 |
Romania | 0.579 | 0.347 | 0.231 | −0.242 | 0.311 | −0.002 | 0.511 |
Croatia | 0.530 | 0.474 | 0.056 | −0.103 | −0.185 | 0.000 | 0.818 |
Hungary | 0.523 | 0.555 | −0.033 | −0.091 | 0.297 | −0.005 | 0.322 |
Denmark | 0.436 | 0.390 | 0.046 | −0.057 | −0.166 | 0.001 | 0.657 |
Estonia | 0.433 | 0.837 | −0.405 | −0.314 | 0.641 | 0.004 | 0.101 |
Bulgaria | 0.415 | 0.625 | −0.210 | −0.285 | 0.339 | 0.007 | 0.354 |
Poland | 0.381 | 0.384 | −0.003 | −0.102 | 0.093 | −0.002 | 0.392 |
Germany | 0.348 | 0.336 | 0.013 | −0.041 | 0.133 | −0.001 | 0.258 |
France | 0.218 | 0.214 | 0.005 | −0.048 | 0.163 | −0.001 | 0.104 |
Portugal | 0.186 | 0.094 | 0.092 | −0.185 | 0.197 | −0.002 | 0.176 |
Italy | 0.185 | 0.188 | −0.003 | −0.055 | −0.050 | −0.003 | 0.292 |
Netherlands | 0.154 | 0.148 | 0.005 | −0.009 | 0.222 | −0.002 | −0.057 |
Belgium | 0.147 | 0.146 | 0.001 | −0.075 | 0.425 | 0.001 | −0.204 |
Spain | 0.107 | 0.101 | 0.006 | −0.032 | 0.122 | −0.002 | 0.019 |
Cyprus | −0.005 | −0.018 | 0.013 | −0.184 | −0.676 | −0.013 | 0.868 |
Greece | −0.012 | −0.041 | 0.029 | −0.166 | 0.262 | −0.010 | −0.098 |
Slovenia | −0.209 | −0.090 | −0.119 | −0.074 | 0.122 | 0.004 | −0.260 |
Finland | −0.211 | −0.195 | −0.016 | −0.109 | 0.061 | 0.000 | −0.162 |
Malta | −0.331 | −0.324 | −0.007 | 0.359 | 0.483 | 0.001 | −1.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitunskienė, V.; Lauraitienė, L. Green Growth in Agriculture: Long-Term Evidence from European Union Countries. Sustainability 2025, 17, 1011. https://doi.org/10.3390/su17031011
Vitunskienė V, Lauraitienė L. Green Growth in Agriculture: Long-Term Evidence from European Union Countries. Sustainability. 2025; 17(3):1011. https://doi.org/10.3390/su17031011
Chicago/Turabian StyleVitunskienė, Vlada, and Lina Lauraitienė. 2025. "Green Growth in Agriculture: Long-Term Evidence from European Union Countries" Sustainability 17, no. 3: 1011. https://doi.org/10.3390/su17031011
APA StyleVitunskienė, V., & Lauraitienė, L. (2025). Green Growth in Agriculture: Long-Term Evidence from European Union Countries. Sustainability, 17(3), 1011. https://doi.org/10.3390/su17031011