Strain Analysis of Membrane Structures for Photovoltaic Integration in Built Environment
Abstract
:1. Introduction
2. Materials and Methods
- Numerical simulation that explains the use of FEM software (in SOFiSTiK 2023) for modeling membrane structures and their loads (Section 2.1).
- Model setup that provides details about the initial model (hypar-shaped membrane, dimensions, material properties) and explains the choice of parameters and applied loads (Section 2.2).
- Variable parameters that describe the six parameters analyzed and their relevance in influencing strain under load (Section 2.3).
- Simulation of multiple scenarios that analyzes a series of 88 different models, each with varying values for the six parameters (Section 2.4).
2.1. Numerical Simulation
2.2. Model Setup
2.3. Variable Parameters
- Size of the structure (Section 2.3.1).
- Curvature of the structure (Section 2.3.2).
- Membrane material properties (Section 2.3.3).
- Prestress intensity (Section 2.3.4).
- Membrane patterning direction (Section 2.3.5).
- Membrane edges (Section 2.3.6).
2.3.1. Size of the Structure
- S1: 2.00 × 2.00 × 0.67 m.
- S2: 4.00 × 4.00 × 1.33 m.
- S3: 6.00 × 6.00 × 2.00 m.
- S4: 8.00 × 8.00 × 2.67 m.
- S5: 10.00 × 10.00 × 3.33 m.
2.3.2. Curvature of the Structure
- H1: 0.50 m.
- H2: 1.00 m.
- H3: 1.50 m.
- H4: 2.00 m.
- H5: 2.50 m.
- H6: 3.00 m.
2.3.3. Membrane Material Properties
- M1: Elastic modulus 100.00 kN/m, shear modulus 5.00 kN/m, Poisson’s coefficient 0.4.
- M2: Elastic modulus 300.00 kN/m, shear modulus 15.00 kN/m, Poisson’s coefficient 0.4.
- M3: Elastic modulus 600.00 kN/m, shear modulus 30.00 kN/m, Poisson’s coefficient 0.4.
- M4: Elastic modulus 1000.00 kN/m, shear modulus 50.00 kN/m, Poisson’s coefficient 0.4.
- M5: Elastic modulus 2000.00 kN/m, shear modulus 100.00 kN/m, Poisson’s coefficient 0.4.
- M6: Elastic modulus 5000.00 kN/m, shear modulus 250.00 kN/m, Poisson’s coefficient 0.4.
2.3.4. Prestress Intensity
- P1: 1.00 kN/m.
- P2: 2.00 kN/m.
- P3: 3.00 kN/m.
- P4: 4.00 kN/m.
- P5: 5.00 kN/m.
2.3.5. Membrane Patterning Direction
- DP: diagonal patterning.
- PP: parallel patterning.
2.3.6. Membrane Edges
- FE: flexible edges.
- RE: rigid edges.
2.4. Simulation of Multiple Scenarios
- Structure size: 5 analyzed values (Section 2.3.1).
- Height of the structure: 6 analyzed values (Section 2.3.2).
- Membrane material properties: 6 analyzed values (Section 2.3.3).
- Prestress intensity: 5 analyzed values (Section 2.3.4).
3. Results
- Size of the structure (Section 3.2).
- Curvature of the structure (Section 3.3).
- Membrane material properties (Section 3.4).
- Prestress intensity (Section 3.5).
- Membrane patterning direction (Section 3.6).
- Membrane edges (Section 3.7).
3.1. Initial Model
3.2. Size of the Structure
3.3. Curvature of the Structure
3.4. Membrane Material Properties
3.5. Prestress Intensity
3.6. Membrane Patterning Direction
3.7. Membrane Edges
4. Discussion
Guidelines for Strain Analysis of Photovoltaics-Integrated Tensioned Membrane Structures
- Strain management should be a critical focus during the conceptual and design stages to ensure compatibility between the PV system and the membrane structure. The following elements should be considered:
- Strain limits determination:
- a.
- Establish strain limit values specific to the PV system to be integrated, based on its tolerances for mechanical deformation and electrical efficiency degradation.
- b.
- Define acceptable strain thresholds by quantifying the impact of strain on the electrical output and lifespan of the PV system.
- c.
- Obtain limit values for strains for the PV system that will be integrated with the membrane.
- Strain-focused design analysis:
- a.
- Use strain analysis in the early design phase to evaluate the impact of anticipated external loads and optimize structural performance.
- b.
- If predicted strain values exceed the limits for the PV system, apply mitigation strategies listed below, such as geometry adjustments, material upgrades, or prestress optimization.
- Geometry of the membrane structure significantly affects strain behavior and should be carefully designed during the design stage, considering:
- Size reduction as larger membrane structures generate higher strains.
- Curvature control:
- a.
- Adjust the membrane curvature by changing the height of the structure.
- b.
- Increase in curvature does not result in unambiguous change in maximal strains. For membranes with parallel patterning, higher curvature tends to increase strain. For membranes with diagonal patterning, the relationship is less pronounced and may allow for optimized curvature without excessive strain.
- Patterning and edge design influence strain distribution but require several considerations in the design stage:
- Patterning direction:
- a.
- Switch from parallel to diagonal patterning to achieve significant reductions in strain values under external loads.
- b.
- Diagonal patterning distributes forces more evenly, reducing stress concentrations and mitigating extreme strain values.
- Edge type selection:
- a.
- The edge type (rigid or flexible) has minimal impact on strain levels and can be chosen based on other design or structural factors such as ease of assembly or aesthetic considerations.
- Material selection is fundamental in the design stage to ensure strain mitigation:
- Tensile strength requirements:
- a.
- Set the minimal tensile strength according to the typical structural analysis of the membrane structure based on stresses and deflections.
- Elastic and shear modulus:
- a.
- Use membrane materials with higher elastic and shear moduli to effectively reduce strains under load.
- Prestress optimization is essential in the design stage to ensure strain management:
- Prestress intensities:
- a.
- Higher prestress intensities generally reduce strain magnitudes, particularly for positive strains, which show near-linear reduction with increased prestress.
- b.
- Negative strains may plateau beyond a certain prestress value, indicating diminishing returns at high prestress intensities.
- Balancing prestress:
- a.
- Optimize prestress to balance strain reduction without overloading the membrane or creating unnecessary material stresses.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Available online: https://sustainabledevelopment.un.org/content/documents/5839GSDR%202015_SD_concept_definiton_rev.pdf (accessed on 25 January 2024).
- Lucchi, E. Solar Energy Technologies in Cultural Heritage; Elsevier: Amsterdam, The Netherlands, 2025. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Cheng, H.-M.; Silva, S.R.P. Critical review of recent progress of flexible perovskite solar cells. Mater. Today 2020, 39, 66–88. [Google Scholar] [CrossRef]
- Milošević, V.; Marchwiński, J. Photovoltaic Technology Integration with Tensile Membrane Structures: A Critical Review. Tech. Gaz. 2022, 29, 702–713. [Google Scholar]
- Thorpe, D. Passive Solar Architecture Pocket Reference; Tailor and Francis: Oxfordshire, UK, 2017. [Google Scholar]
- Lucchi, E. Chapter 8—Active solar design principles for natural and architectural heritage. In Solar Energy Technologies in Cultural Heritage; Lucchi, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 215–259. [Google Scholar] [CrossRef]
- Lucchi, E.; Agliata, R. HBIM-based workflow for the integration of advanced photovoltaic systems in historical buildings. J. Cult. Herit. 2023, 64, 301–314. [Google Scholar] [CrossRef]
- Teka, L.G.; Zadshir, M.; Yin, H. Mechanical analysis and design of large building integrated photovoltaic panels for a seamless roof. Sol. Energy 2023, 251, 1–12. [Google Scholar] [CrossRef]
- Li, Q.; Zanelli, A. A review on fabrication and applications of textile envelope integrated flexible photovoltaic systems. Renew. Sustain. Energy Rev. 2021, 139, 110678. [Google Scholar] [CrossRef]
- Borazan, I.; Bedeloglu, A.C.; Demir, A. A photovoltaic textile design with a stainless steel mesh fabric. J. Ind. Text. 2022, 51, 1527–1538. [Google Scholar] [CrossRef]
- Parasuraman, D. A review on dye-sensitized solar cells (DSSCs), materials and applications. Iran. J. Mater. Sci. Eng. 2023, 20, 1–23. [Google Scholar]
- Park, N.G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Prasad, S.V.D.; Krishnanaik, V.; Babu, K.R. Analysis of organic photovoltaic cell. Int. J. Sci. Mod. Eng. 2013, 1, 20–23. [Google Scholar]
- Zanelli, A.; Monticelli, C.; Beccarelli, P.; Ibrahim, H. Experimental manufacture of a pneumatic cushion made of ETFE foils and OPV cells. In Proceedings of the Textiles Composites and Inflatable Structures V: Proceedings of the V International Conference on Textile Composites and Inflatable Structures, Barcelona, Spain, 5–7 October, 2011; International Center for Numerical Methods in Engineering (CIMNE): Barcelona, Spain; pp. 279–290.
- Zhang, J.; Yang, Q.; Li, B. Form-state and loading analyses of air-inflated cushion membrane structures. J. Harbin Inst. Technol. 2008, 40, 1569–1572. [Google Scholar]
- Zhao, B.; Hu, J.; Chen, W.; Chen, J.; Jing, Z. Dynamic geometrical shape measurement and structural analysis of inflatable membrane structures using a low-cost three-camera system. Autom. Constr. 2018, 96, 442–456. [Google Scholar] [CrossRef]
- Schek, H.J. The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 1974, 3, 115–134. [Google Scholar] [CrossRef]
- Marchwiński, J.; Milošević, V.; Stefańska, A.; Lucchi, E. Irradiation analysis of tensile membrane structures for building-integrated photovoltaics. Energies 2023, 16, 5945. [Google Scholar] [CrossRef]
- Spanodimitriou, Y.; Ciampi, G.; Tufano, L.; Scorpio, M. Flexible and lightweight solutions for energy improvement in construction: A literature review. Energies 2023, 16, 6637. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Zanelli, A.; Cremers, J. The structural behaviour of PTFE/glass fabric structures integrating flexible photovoltaic modules. In Proceedings of the Textiles Composites and Inflatable Structures VI: Proceedings of the VI International Conference on Textile Composites and Inflatable Structures, Barcelona, Spain, 9–11 October 2013; International Center for Numerical Methods in Engineering (CIMNE): Barcelona, Spain; pp. 290–299.
- Scotta, R.; Lazzari, M.; Stecca, E.; Di Massimo, R.; Vitaliani, R. Membranes with embedded photovoltaic flexible cells: Structural and electrical performances under uniaxial and biaxial stresses. Compos. Struct. 2016, 157, 111–120. [Google Scholar] [CrossRef]
- Fan, Z.; De Bastiani, M.; Garbugli, M.; Monticelli, C.; Zanelli, A.; Caironi, M. Experimental investigation of the mechanical robustness of a commercial module and membrane-printed functional layers for flexible organic solar cells. Compos. Part B 2018, 147, 69–75. [Google Scholar] [CrossRef]
- Hu, J.H.; Chen, W.J.; Zhao, B.; Song, H. Experimental studies on summer performance and feasibility of a BIPV/T ethylene tetrafluoroethylene (ETFE) cushion structure system. Energy Build. 2014, 69, 394–406. [Google Scholar] [CrossRef]
- Hu, J.; Chen, W.; Liu, Y.; Zhao, B.; Yang, D.; Ge, B. Two-layer ETFE cushions integrated flexible photovoltaics: Prototype development and thermal performance assessment. Energy Build. 2017, 141, 238–246. [Google Scholar] [CrossRef]
- Hu, J.; Chen, W.; Cai, Q.; Gao, C.; Zhao, B.; Qiu, Z.; Qu, Y. Structural behavior of the PV-ETFE cushion roof. Thin-Walled Struct. 2016, 101, 169–180. [Google Scholar] [CrossRef]
- Hu, J.; Chen, W.; Yin, Y.; Li, Y.; Yang, D.; Wang, H.; Zhang, X. Electrical-thermal-mechanical properties of multifunctional OPV-ETFE foils for large-span transparent membrane buildings. Polym. Test. 2018, 66, 394–402. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, J.; Chen, W.; Qiu, Z.; Zhou, J.; Qu, Y.; Ge, B. Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure. J. Phys. D Appl. Phys. 2016, 49, 395601. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Zanelli, A. Performance evaluation of flexible photovoltaic panels for energy supply in post-disaster emergency shelters. J. Build. Eng. 2024, 98, 111285. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Kutlu, A.; Zanelli, A. Life cycle cost analysis and life cycle assessment of ETFE cushion integrated transparent organic/perovskite solar cells: Comparison with PV glazing skylight. J. Build. Eng. 2024, 87, 109140. [Google Scholar] [CrossRef]
- Li, Q.; Monticelli, C.; Kutlu, A.; Zanelli, A. Feasibility of textile envelope integrated flexible photovoltaic in Europe: Carbon footprint assessment and life cycle cost analysis. J. Clean. Prod. 2023, 430, 139716. [Google Scholar] [CrossRef]
- Marchwiński, J.; Lucchi, E. Firmitas, Utilitas, and Venustas of photovoltaic architecture. Sol. Energy 2024, 282, 112974. [Google Scholar] [CrossRef]
- Ambroziak, A. Characterization study on mechanical properties of polyester coated fabric. Arch. Civ. Eng. 2020, 66, 105–118. [Google Scholar] [CrossRef]
- Hermannsdörfer, I.; Rüb, C. Solar Design: Photovoltaics for Old Buildings, Urban Space, Landscapes; Jovis: Berlin, Germany, 2005. [Google Scholar]
- Humm, O.; Toggweiler, P. Photovoltaics in Architecture; Birkhäuser: Basel, Switzerland, 1993. [Google Scholar]
- Uhlemann, J. Elastic Constants of Architectural Fabrics for Design Purposes. Ph.D. Thesis, Duisburg: Universität Duisburg-Essen, Duisburg, Germany, 2016. [Google Scholar]
- Milošević, V.; Marchwiński, J.; Lucchi, E. Exploration of the suitable tensioned membrane properties for the photovoltaics integration. J. Fac. Civ. Eng. Archit. 2024, 39, 59–66. [Google Scholar] [CrossRef]
- Bridgens, B.; Birchall, M. Form and function: The significance of material properties in the design of tensile fabric structures. Eng. Struct. 2012, 44, 1–12. [Google Scholar] [CrossRef]
- Milošević, V.S.; Marković, B.L.J. Comparison of point and snow load deflections in design and analysis of tensile membrane structures. Adv. Civ. Eng. 2020, 2020, 8810085. [Google Scholar] [CrossRef]
- Gosling, P.D.; Bridgens, B.N.; Albrecht, A.; Alpermann, H.; Angeleri, A.; Barnes, M.; Bartle, N.; Canobbio, R.; Dieringer, F.; Gellin, S.; et al. Analysis and design of membrane structures: Results of a round robin exercise. Eng. Struct. 2013, 48, 313–328. [Google Scholar] [CrossRef]
- Forster, B.; Mollaert, M. European Design Guide for Tensile Surface Structures; TensiNet: Brussels, Belgium, 2004. [Google Scholar]
- Stranghöner, N.; Uhlemann, J.; Bilginoglu, F.; Bletzinger, K.; Bögner-Balz, H.; Corne, E.; Gibson, N.; Gosling, P.; Houtman, R.; Llorens, J.; et al. Prospect for European Guidance for the Structural Design of Tensile Membrane Structures; Dimova, S., Mollaert, M., Pinto Vieira, A., Denton, S., Eds.; EUR 31430 EN; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-00053-3. [Google Scholar] [CrossRef]
- Gerlic, K. Projektowanie zadaszeń membranowych na przykładzie parkingu rowerowego w Jaworznie [Designing membrane roofs on the example of a bicycle parking lot in Jaworzno]. Builder 2021, 288, 12–15. [Google Scholar] [CrossRef]
Factors | Recommendations |
---|---|
Most significant | Material selection has the greatest influence on reducing strain levels, making it a primary focus in design optimization |
Changing patterning direction from parallel to diagonal has a substantial impact on strain mitigation | |
Reducing membrane size is highly effective in lowering strain levels | |
Moderate impact | Increasing prestress levels provides strain reduction but shows diminishing returns beyond certain thresholds |
Decreasing curvature somewhat reduces strain in parallel-patterned membranes but has limited influence in diagonal-patterned membranes | |
Least significant | Edge type has a negligible effect on strain values, allowing flexibility in selection based on secondary criteria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milošević, V.; Marchwiński, J.; Lucchi, E. Strain Analysis of Membrane Structures for Photovoltaic Integration in Built Environment. Sustainability 2025, 17, 1041. https://doi.org/10.3390/su17031041
Milošević V, Marchwiński J, Lucchi E. Strain Analysis of Membrane Structures for Photovoltaic Integration in Built Environment. Sustainability. 2025; 17(3):1041. https://doi.org/10.3390/su17031041
Chicago/Turabian StyleMilošević, Vuk, Janusz Marchwiński, and Elena Lucchi. 2025. "Strain Analysis of Membrane Structures for Photovoltaic Integration in Built Environment" Sustainability 17, no. 3: 1041. https://doi.org/10.3390/su17031041
APA StyleMilošević, V., Marchwiński, J., & Lucchi, E. (2025). Strain Analysis of Membrane Structures for Photovoltaic Integration in Built Environment. Sustainability, 17(3), 1041. https://doi.org/10.3390/su17031041