Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry
Abstract
:1. Introduction
2. Data Description
3. Model Development
3.1. Artificial Neural Network Model
3.2. Decision Tree Model
3.3. Random Forest Model
3.4. Support Vector Regression Model
3.5. Linear Regression Model
3.6. Interpretation for Black-Box Prediction
4. Results and Discussion
4.1. Predictions of the Developed Models
4.2. Interpretations for the Predictions
4.2.1. Interpretations at the Global Level
4.2.2. Interpretations at the Local Level
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, Y.; Park, J.-M. The Effect of a Company’s Sustainable Competitive Advantage on Their Tax Avoidance Strategy—Focusing on Market Competition in Korea. Sustainability 2023, 15, 7810. [Google Scholar] [CrossRef]
- Minnick, K.; Noga, T. Do corporate governance characteristics influence tax management? J. Corp. Financ. 2010, 16, 703–718. [Google Scholar] [CrossRef]
- Guenther, D.A.; Peterson, K.; Searcy, J.; Williams, B.M. How Useful Are Tax Disclosures in Predicting Effective Tax Rates? A Machine Learning Approach. Account. Rev. 2023, 98, 297–322. [Google Scholar] [CrossRef]
- Salamian, F.; Paksaz, A.; Khalil Loo, B.; Mousapour Mamoudan, M.; Aghsami, M.; Aghsami, A. Supply Chains Problem During Crises: A Data-Driven Approach. Modelling 2024, 5, 2001–2039. [Google Scholar] [CrossRef]
- Pereira, R.M.S.; Oliveira, F.; Romanyshyn, N.; Estevez, I.; Borges, J.; Clain, S.; Vasilevskiy, M.I. Classification of Real-World Objects Using Supervised ML-Assisted Polarimetry: Cost/Benefit Analysis. Appl. Sci. 2024, 14, 11059. [Google Scholar] [CrossRef]
- Marino, A.; Pariso, P.; Picariello, M. Organizational and Energy Efficiency Analysis of Italian Hospitals and Identification of Improving AI Solutions. Int. J. Energy Econ. Policy 2024, 14, 628–640. [Google Scholar] [CrossRef]
- Imran, M.; Qureshi, S.H.; Qureshi, A.H.; Almusharraf, N. Classification of English Words into Grammatical Notations Using Deep Learning Technique. Information 2024, 15, 801. [Google Scholar] [CrossRef]
- Qin, J.; Hu, F.; Liu, Y.; Witherell, P.; Wang, C.C.L.; Rosen, D.W.; Simpson, T.W.; Lu, Y.; Tang, Q. Research and application of machine learning for additive manufacturing. Addit. Manuf. 2022, 52, 102691. [Google Scholar] [CrossRef]
- Marino, A.; Pariso, P.; Picariello, M. Transition towards the artificial intelligence via re-engineering of digital platforms: Comparing European Member States. Entrep. Sustain. Issues 2022, 9, 350. [Google Scholar]
- Alarfaj, F.K.; Malik, I.; Khan, H.U.; Almusallam, N.; Ramzan, M.; Ahmed, M. Credit card fraud detection using state-of-the-art machine learning and deep learning algorithms. IEEE Access 2022, 10, 39700–39715. [Google Scholar] [CrossRef]
- Qin, J.; Liu, Y.; Grosvenor, R. Multi-source data analytics for AM energy consumption prediction. Adv. Eng. Inform. 2018, 38, 840–850. [Google Scholar] [CrossRef]
- Xiangyu, X.; Youlin, Y.; Qicheng, X. Intelligent identification of corporate tax evasion based on LM neural network. In Proceedings of the 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 4507–4511. [Google Scholar]
- Savić, M.; Atanasijević, J.; Jakovetić, D.; Krejić, N. Tax evasion risk management using a Hybrid Unsupervised Outlier Detection method. Expert Syst. Appl. 2022, 193, 116409. [Google Scholar] [CrossRef]
- Rahimikia, E.; Mohammadi, S.; Rahmani, T.; Ghazanfari, M. Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran. Int. J. Account. Inf. Syst. 2017, 25, 1–17. [Google Scholar] [CrossRef]
- Zhang, L.; Nan, X.; Huang, E.; Liu, S. Social E-commerce Tax Evasion Detection Using Multi-modal Deep Neural Networks. In Proceedings of the 2021 Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 29 November–1 December 2021; pp. 1–6. [Google Scholar]
- Lismont, J.; Cardinaels, E.; Bruynseels, L.; De Groote, S.; Baesens, B.; Lemahieu, W.; Vanthienen, J. Predicting tax avoidance by means of social network analytics. Decis. Support Syst. 2018, 108, 13–24. [Google Scholar] [CrossRef]
- Liu, L.; Zhuang, Y.; Liu, X. Tax forecasting theory and model based on SVM optimized by PSO. Expert Syst. Appl. 2011, 38, 116–120. [Google Scholar] [CrossRef]
- Raja Wahab, R.A.S.; Abu Bakar, A. Digital Economy Tax Compliance Model in Malaysia using Machine Learning Approach. Sains Malays. 2021, 50, 2059–2077. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Y. Machine learning model of tax arrears prediction based on knowledge graph. Electron. Res. Arch. 2023, 31, 4057–4076. [Google Scholar] [CrossRef]
- Che, Z.; Purushotham, S.; Khemani, R.; Liu, Y. Interpretable deep models for ICU outcome prediction. In Proceedings of the AMIA Annual Symposium Proceedings, Chicago, USA, 12–16 November 2016; p. 371. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, USA, 4–9 December 2017. [Google Scholar]
- Wang, H.; Liang, Q.; Hancock, J.T.; Khoshgoftaar, T.M. Feature selection strategies: A comparative analysis of SHAP-value and importance-based methods. J. Big Data 2024, 11, 44. [Google Scholar] [CrossRef]
- Salih, A.M.; Raisi-Estabragh, Z.; Galazzo, I.B.; Radeva, P.; Petersen, S.E.; Lekadir, K.; Menegaz, G. A perspective on explainable artificial intelligence methods: Shap and lime. Adv. Intell. Syst. 2024, 7, 2400304. [Google Scholar] [CrossRef]
- Arenas, M.; Barceló, P.; Bertossi, L.; Monet, M. On the complexity of SHAP-score-based explanations: Tractability via knowledge compilation and non-approximability results. J. Mach. Learn. Res. 2023, 24, 1–58. [Google Scholar]
- Liu, X.; Sun, G.; Ju, R.; Li, J.; Li, Z.; Jiang, Y.; Zhao, K.; Zhang, Y.; Jing, Y.; Yang, G. Prediction of load-bearing capacity of FRP-steel composite tubed concrete columns: Using explainable machine learning model with limited data. Structures 2025, 71, 107890. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, W.; Zheng, Y. Data-driven shear capacity analysis of headed stud in steel-UHPC composite structures. Eng. Struct. 2024, 321, 118946. [Google Scholar] [CrossRef]
- Zhou, C.; Xie, Y.; Wang, W.; Zheng, Y. Machine learning driven post-impact damage state prediction for performance-based crashworthiness design of bridge piers. Eng. Struct. 2023, 292, 116539. [Google Scholar] [CrossRef]
- Wang, D.; Thunéll, S.; Lindberg, U.; Jiang, L.; Trygg, J.; Tysklind, M. Towards better process management in wastewater treatment plants: Process analytics based on SHAP values for tree-based machine learning methods. J. Environ. Manag. 2022, 301, 113941. [Google Scholar] [CrossRef] [PubMed]
- Prendin, F.; Pavan, J.; Cappon, G.; Del Favero, S.; Sparacino, G.; Facchinetti, A. The importance of interpreting machine learning models for blood glucose prediction in diabetes: An analysis using SHAP. Sci. Rep. 2023, 13, 16865. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, N.; Qian, Z.; Zhang, G. What makes an online review more helpful: An interpretation framework using XGBoost and SHAP values. J. Theor. Appl. Electron. Commer. Res. 2020, 16, 466–490. [Google Scholar] [CrossRef]
- AsSadhan, B.; Bashaiwth, A.; Binsalleeh, H. Enhancing Explanation of LSTM-Based DDoS Attack Classification Using SHAP With Pattern Dependency. IEEE Access 2024, 12, 90707–90725. [Google Scholar] [CrossRef]
- Lee, N.; Swenson, C. Effects of overseas subsidiaries on worldwide corporate taxes. J. Int. Account. Audit. Tax. 2016, 26, 47–59. [Google Scholar] [CrossRef]
- Gaertner, F.B. CEO after-tax compensation incentives and corporate tax avoidance. Contemp. Account. Res. 2014, 31, 1077–1102. [Google Scholar] [CrossRef]
- Lanis, R.; Richardson, G. Is corporate social responsibility performance associated with tax avoidance? J. Bus. Ethics 2015, 127, 439–457. [Google Scholar] [CrossRef]
- Watts, R.L.; Zimmerman, J.L. Towards a positive theory of the determination of accounting standards. Account. Rev. 1978, L111, 112–134. [Google Scholar]
- Rego, S.O. Tax-avoidance activities of US multinational corporations. Contemp. Account. Res. 2003, 20, 805–833. [Google Scholar] [CrossRef]
- Markle, K.; Shackelford, D.A.J.T.L.R. Cross-country comparisons of the effects of leverage, intangible assets, and tax havens on corporate income taxes. Tax Law Rev. 2012, 65, 2013–2025. [Google Scholar]
- Dyreng, S.D.; Hanlon, M.; Maydew, E.L. Long-run corporate tax avoidance. Account. Rev. 2008, 83, 61–82. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Q.; Lu, M.; Shan, Y. Industry and geographic peer effects on corporate tax avoidance: Evidence from China. Pac.-Basin Financ. J. 2021, 67, 101545. [Google Scholar] [CrossRef]
- Chen, H.; Tang, S.; Wu, D.; Yang, D. The political dynamics of corporate tax avoidance: The Chinese experience. Account. Rev. 2021, 96, 157–180. [Google Scholar] [CrossRef]
- Liu, X.; Qin, J.; Zhao, K.; Featherston, C.A.; Kennedy, D.; Jing, Y.; Yang, G. Design optimization of laminated composite structures using artificial neural network and genetic algorithm. Compos. Struct. 2023, 305, 116500. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Ketkar, N. Introduction to Keras. In Deep Learning with Python: A Hands-On Introduction; Apress: Berkeley, CA, USA, 2017. [Google Scholar]
- Patalas-Maliszewska, J.; Łosyk, H.; Rehm, M. Decision-Tree Based Methodology Aid in Assessing the Sustainable Development of a Manufacturing Company. Sustainability 2022, 14, 6362. [Google Scholar] [CrossRef]
- Abd El Aal, A.K.; GabAllah, H.M.; Megahed, H.A.; Selim, M.K.; Hegab, M.A.; Fadl, M.E.; Rebouh, N.Y.; El-Bagoury, H. Geo-Environmental Risk Assessment of Sand Dunes Encroachment Hazards in Arid Lands Using Machine Learning Techniques. Sustainability 2024, 16, 11139. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, P.; Liu, X.; Wang, L. Impact response prediction and optimization of SC walls using machine learning algorithms. Structures 2022, 45, 390–399. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, N.; Xu, W.; Song, Q.; Zhao, K.; Xu, Y. Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry. Sustainability 2025, 17, 1121. https://doi.org/10.3390/su17031121
Han N, Xu W, Song Q, Zhao K, Xu Y. Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry. Sustainability. 2025; 17(3):1121. https://doi.org/10.3390/su17031121
Chicago/Turabian StyleHan, Ning, Wen Xu, Qian Song, Kai Zhao, and Yao Xu. 2025. "Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry" Sustainability 17, no. 3: 1121. https://doi.org/10.3390/su17031121
APA StyleHan, N., Xu, W., Song, Q., Zhao, K., & Xu, Y. (2025). Application of Interpretable Artificial Intelligence for Sustainable Tax Management in the Manufacturing Industry. Sustainability, 17(3), 1121. https://doi.org/10.3390/su17031121