Internet Use, Social Capital, and Farmers’ Green Production Behavior: Evidence from Agricultural Cooperatives in China
Abstract
:1. Introduction
2. Theoretical Analysis and Hypothesis
2.1. Social Capital Theory
2.2. Research Hypothesis
3. Research Design
3.1. Data Sources
3.2. Variable Selection
3.3. Model Design
3.3.1. Ordered Probit Model
3.3.2. Mechanism Test
4. Empirical Analysis
4.1. Baseline Regression: Analysis of the Impact of Internet Use on the Green Production Behavior of Cooperative Members
4.2. Endogeneity Test
4.3. Heterogeneity Analysis
4.4. Robustness Test
4.5. Mechanism Analysis: Analysis of the Intermediary Effect of Organizational Trust and Organizational Norms
4.6. Further Discussion: Analysis of the Moderating Effect of Sales Satisfaction
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahmohamadloo, R.S.; Febria, C.M.; Fraser, E.D.G.; Sibley, P.K. The sustainable agriculture imperative: A perspective on the need for an agrosystem approach to meet the United Nations Sustainable Development Goals by 2030. Integr. Environ. Assess. Manag. 2021, 18, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Tubiello, F.N.; Rosenzweig, C.; Conchedda, G.; Karl, K.; Gütschow, J.; Xueyao, P.; Obli-Laryea, G.; Wanner, N.; Qiu, S.Y.; De Barros, J. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 2021, 16, 065007. [Google Scholar] [CrossRef]
- Yang, C.; Liang, X.; Xue, Y.; Zhang, Y.Y.; Xue, Y. Can government regulation weak the gap between green production intention and behavior? Based on the perspective of farmers’ perceptions. J. Clean. Prod. 2024, 434, 139743. [Google Scholar] [CrossRef]
- Hu, L.-x.; Zhang, X.-h.; Zhou, Y.-h. Farm size and fertilizer sustainable use: An empirical study in Jiangsu, China. J. Integr. Agric. 2019, 18, 2898–2909. [Google Scholar] [CrossRef]
- Jiang, W.; Yan, T.; Chen, B. Impact of media channels and social interactions on the adoption of straw return by Chinese farmers. Sci. Total Environ. 2021, 756, 144078. [Google Scholar] [CrossRef]
- Yu, L.W.; Liu, W.X.; Yang, S.X.; Kong, R.; He, X.S. Impact of environmental literacy on farmers’ agricultural green production behavior: Evidence from rural China. Front. Environ. Sci. 2022, 10, 990981. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Ma, W.; Valentinov, V. The effect of cooperative membership on agricultural technology adoption in Sichuan, China. China Econ. Rev. 2020, 62, 101334. [Google Scholar] [CrossRef]
- Markelova, H.; Meinzen-Dick, R.; Hellin, J.; Dohrn, S. Collective action for smallholder market access. Food Policy 2009, 34, 1–7. [Google Scholar] [CrossRef]
- Sajeev, M.; Gangadharappa, N. The Notion of Social Capital and its Value in Promoting Acceptance of Biotech Crops: Pre-Introductory Assessment of an Indian Case. Outlook Agric. 2010, 39, 305–310. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Liang, Q. Cooperative membership, social capital, and chemical input use: Evidence from China. Land Use Policy 2018, 70, 394–401. [Google Scholar] [CrossRef]
- Abebaw, D.; Haile, M.G. The impact of cooperatives on agricultural technology adoption: Empirical evidence from Ethiopia. Food Policy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Li, D.; Dang, H.; Yu, J. Can participation in cooperatives promote the adoption of green production techniques by Chinese apple growers: Counterfactual estimation based on propensity score matching. Front. Environ. Sci. 2022, 10, 1026273. [Google Scholar] [CrossRef]
- Chen, F.; Xu, Z.; Luo, Y. False prosperity: Rethinking government support for farmers’ cooperatives in China. Ann. Public Coop. Econ. 2023, 94, 905–920. [Google Scholar] [CrossRef]
- Liu, G.; Chen, C.; Fu, X.; Liu, Y.; Khan, N.; Luo, L. Has the agricultural cooperatives served each member fairly? A new perspective based on utilization level of member services. PLoS ONE 2024, 19, e0294439. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Jiang, W.; Li, Y. Bridging the gap between smallholders and modern agriculture: Full insight into China’s agricultural cooperatives. J. Rural Stud. 2023, 101, 103037. [Google Scholar] [CrossRef]
- Sebhatu, K.T.; Gezahegn, T.W.; Berhanu, T.; Maertens, M.; Van Passel, S.; D’Haese, M. Conflict, fraud, and distrust in Ethiopian agricultural cooperatives. J. Co-Oper. Organ. Manag. 2020, 8, 100106. [Google Scholar] [CrossRef]
- Hoang, H.G.; Tran, H.D. Smallholder farmers’ perception and adoption of digital agricultural technologies: An empirical evidence from Vietnam. Outlook Agric. 2023, 52, 457–468. [Google Scholar] [CrossRef]
- Vatsa, P.; Li, J.; Luu, P.Q.; Botero-R, J.C. Internet use and consumption diversity: Evidence from rural China. Rev. Dev. Econ. 2023, 27, 1287–1308. [Google Scholar] [CrossRef]
- Ma, W.; Wang, X. Internet use, sustainable agricultural practices and rural incomes: Evidence from China. Aust. J. Agric. Resour. Econ. 2020, 64, 1087–1112. [Google Scholar] [CrossRef]
- Kaila, H.; Tarp, F. Can the Internet improve agricultural production? Evidence from Viet Nam. Agric. Econ. 2019, 50, 675–691. [Google Scholar] [CrossRef]
- Goldbach, K.; Rotaru, A.M.; Reichert, S.; Stiff, G.; Gölz, S. Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts. Energy Policy 2018, 115, 239–248. [Google Scholar] [CrossRef]
- Wang, J.; Yang, G.; Zhou, C. Does internet use promote agricultural green development? Evidence from China. Int. Rev. Econ. Financ. 2024, 93, 98–111. [Google Scholar] [CrossRef]
- Zheng, Y.-y.; Zhu, T.-h.; Jia, W. Does Internet use promote the adoption of agricultural technology? Evidence from 1 449 farm households in 14 Chinese provinces. J. Integr. Agric. 2022, 21, 282–292. [Google Scholar] [CrossRef]
- Huang, Z.; Zhuang, J.; Xiao, S. Impact of Mobile Internet Application on Farmers’ Adoption and Development of Green Technology. Sustainability 2022, 14, 16745. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, J.; Zhang, H.; Cheng, M.; Wang, F.; Yu, N. Internet use encourages pro-environmental behavior: Evidence from China. J. Clean. Prod. 2020, 256, 120725. [Google Scholar] [CrossRef]
- Ma, Q.; Zheng, S.; Deng, P. Impact of internet use on farmers’ organic fertilizer application behavior under the climate change context: The role of social network. Land 2022, 11, 1601. [Google Scholar] [CrossRef]
- Li, F.; Yang, P.; Zhang, K.; Yin, Y.; Zhang, Y.; Yin, C. The influence of smartphone use on conservation agricultural practice: Evidence from the extension of rice-green manure rotation system in China. Sci. Total Environ. 2022, 813, 152555. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, Z.; Yi, X.; Yin, C. The direction of promoting smallholders’ adoption of agricultural green production technologies in China. J. Clean. Prod. 2023, 415, 137734. [Google Scholar] [CrossRef]
- Cui, B.; Wang, X.; Sun, D. Whether E-commerce Adoption of Cooperative Can “Work with One Network”?—Concurrent Discussion on the Possibility of “Partnership” System Formation. J. China Agric. Univ. (Soc. Sci.) 2021, 38, 105–118. [Google Scholar]
- Putnam, R.D.; Leonardi, R.; Nanetti, R.Y. Making Democracy Work: Civic Traditions in Modern Italy; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Xu, Y.; Liang, Q.; Huang, Z. Benefits and pitfalls of social capital for farmer cooperatives: Evidence from China. Int. Food Agribus. Manag. Rev. 2018, 21, 1137–1152. [Google Scholar] [CrossRef]
- Khan, N.; Ray, R.L.; Kassem, H.S.; Khan, F.U.; Ihtisham, M.; Zhang, S. Does the adoption of mobile internet technology promote wheat productivity? Evidence from rural farmers. Sustainability 2022, 14, 7614. [Google Scholar] [CrossRef]
- Zhang, F.; Bao, X.; Guo, S.; Deng, X.; Song, J.; Xu, D. Internet use and land transfer in: Empirical evidence from China’s rural panel data. Environ. Sci. Pollut. Res. 2022, 29, 88288–88301. [Google Scholar] [CrossRef]
- Li, L.; Jin, J.; He, R.; Kuang, F.; Zhang, C.; Qiu, X. Effects of social capital on farmers’ choices of climate change adaptation behavior in Dazu District, China. Clim. Dev. 2023, 15, 110–121. [Google Scholar] [CrossRef]
- Ren, Z.; Fu, Z.; Zhong, K. The influence of social capital on farmers’ green control technology adoption behavior. Front. Psychol. 2022, 13, 1001442. [Google Scholar] [CrossRef]
- Fukuyama, F. Trust: The Social Virtues and the Creation of Prosperity; Free Press: New York, NY, USA, 1995. [Google Scholar]
- Zhao, J.; Sun, Y.; Chuan, L. Deviation between the willingness and behavior of farmers to adopt water saving irrigation technologies:A survey in the Beijing-Tianjin-Hebei region. J. Arid Land Resour. Environ. 2024, 38, 90–99. [Google Scholar]
- Van Campenhout, B.; Spielman, D.J.; Lecoutere, E. Information and Communication Technologies to Provide Agricultural Advice to Smallholder Farmers: Experimental Evidence from Uganda. Am. J. Agric. Econ. 2021, 103, 317–337. [Google Scholar] [CrossRef]
- Zhao, Q.; Pan, Y.; Xia, X. Internet can do help in the reduction of pesticide use by farmers: Evidence from rural China. Environ. Sci. Pollut. Res. 2021, 28, 2063–2073. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. Does cooperative membership improve household welfare? Evidence from apple farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
- Fisman, R.; Khanna, T. Is trust a historical residue? Information flows and trust levels. J. Econ. Behav. Organ. 1999, 38, 79–92. [Google Scholar] [CrossRef]
- Jia, S.; Xu, X. Community-level social capital and agricultural cooperatives: Evidence from Hebei, China. Agribusiness 2021, 37, 804–817. [Google Scholar] [CrossRef]
- Zhu, J.; Zheng, S.; Kaabar, M.K.; Yue, X.-G. Online or offline? The impact of environmental knowledge acquisition on environmental behavior of Chinese farmers based on social capital perspective. Front. Environ. Sci. 2022, 10, 1052797. [Google Scholar] [CrossRef]
- Xu, Z.-g.; Zhang, S.; Deng, H.-s.; Huang, J.-k. Is Social Trust a Prerequisite for the Emergence, Survival and Development of Farmer Professional Cooperatives?-Evidence from the development of Farmer Professional Cooperatives in China. China Soft Sci. 2011, 01, 47–58+192. [Google Scholar]
- Joffre, O.M.; De Vries, J.R.; Klerkx, L.; Poortvliet, P.M. Why are cluster farmers adopting more aquaculture technologies and practices? The role of trust and interaction within shrimp farmers’ networks in the Mekong Delta, Vietnam. Aquaculture 2020, 523, 735181. [Google Scholar] [CrossRef]
- Luo, L.; Qiao, D.; Tang, J.; Wan, A.; Qiu, L.; Liu, X.; Liu, Y.; Fu, X. Training of Farmers’ Cooperatives, Value Perception and Members’ Willingness of Green Production. Agriculture 2022, 12, 1145. [Google Scholar] [CrossRef]
- Cialdini, R.B.; Trost, M.R. Social influence: Social norms, conformity and compliance. In The Handbook of Social Psychology; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Liu, P.; Han, C.; Teng, M. The influence of Internet use on pro-environmental behaviors: An integrated theoretical framework. Resour. Conserv. Recycl. 2021, 164, 105162. [Google Scholar] [CrossRef]
- Tran-Nam, Q.; Tiet, T. The role of peer influence and norms in organic farming adoption: Accounting for farmers’ heterogeneity. J. Environ. Manag. 2022, 320, 115909. [Google Scholar] [CrossRef]
- Momenpour, Y.; Sadighi, H.; Choobchian, S.; Lebailly, P.; Dogot, T.; Viira, A.-H.; Azadi, H. Towards predicting the pro-environmental behaviour of wheat farmers by using the application of value-belief-norm theory. Environ. Dev. Sustain. 2024, 1–31. [Google Scholar] [CrossRef]
- Xie, J.; Yang, G.; Guo, Z.; Wang, G. Exploring the Influence Mechanism of Farmers’ Organic Fertilizer Application Behaviors Based on the Normative Activation Theory. Land 2021, 10, 1111. [Google Scholar] [CrossRef]
- Li, X.; Wu, X. The impact of social norms on rice farmers’ behavior of organic fertilizers application: Mediating effect of value perception and moderating effect of education level. Int. J. Low-Carbon Technol. 2021, 16, 1492–1503. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, H.; Gong, C.; Wu, Z. The role of farmers’ green values in creation of green innovative intention and green technology adoption behavior: Evidence from farmers grain green production. Front. Psychol. 2022, 13, 980570. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, X.-w.; Dou, P.; Chen, X.-m. Analysis on Influencing Factors of Migrant Workers’ Use of WeChat Official Account under New Media Environment. Inf. Sci. 2021, 39, 161–170. [Google Scholar] [CrossRef]
- Woodside, A.G.; Frey, L.L.; Daly, R.T. Linking service quality, customer satisfaction, and behavior. Mark. Health Serv. 1989, 9, 5. [Google Scholar]
- Tang, K.; Xiong, Q.; Zhang, F. Can the E-commercialization improve residents’ income?--Evidence from “Taobao Counties” in China. Int. Rev. Econ. Financ. 2022, 78, 540–553. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Q. Impacts of farmer cooperative membership on household income and inequality: Evidence from a household survey in China. Agric. Food Econ. 2022, 10, 17. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Q.; Yang, C.; Grant, M.K. Cooperative membership, service provision, and the adoption of green control techniques: Evidence from China. J. Clean. Prod. 2023, 384, 135462. [Google Scholar] [CrossRef]
- He, Y.; Qi, Y. An empirical study on the formation mechanism of farmers’ green production behavior: Based on the investigation of fertilization behavior of 860 citrus growers in Sichuan and Chongqing. Resour. Environ. Yangtze Basin 2021, 30, 493–506. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook; National Bureau of Statistics: Beijing, China, 2023.
- Zhang, G.; Li, N.; Zhang, D.; Li, Z.; Zhang, A.; Guo, X. Exploring japonica rice epigenetic diversity in the main production regions of Heilongjiang Province. Sci. Rep. 2022, 12, 4592. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, L.; Wang, Y.; Liu, E. Viability, Government Support and the Service Function of Farmer Professional Cooperatives—Evidence from 487 Cooperatives in 13 Cities in Heilongjiang, China. Agriculture 2024, 14, 616. [Google Scholar] [CrossRef]
- Liu, T.; Wu, G. Does agricultural cooperative membership help reduce the overuse of chemical fertilizers and pesticides? Evidence from rural China. Environ. Sci. Pollut. Res. 2022, 29, 7972–7983. [Google Scholar] [CrossRef]
- Zhou, X.; Cui, Y.; Zhang, S. Internet use and rural residents’ income growth. China Agric. Econ. Rev. 2020, 12, 315–327. [Google Scholar] [CrossRef]
- Liu, J. Does social capital enhance the performance of farmer cooperatives-Based on a survey of 110 planting cooperatives in three provinces. Rural Econ. 2023, 9, 136–144. [Google Scholar]
- Luo, L.; Qiao, D.; Tang, J.; Wang, L.; Liu, Y.; Fu, X. Research on the influence of education and training of farmers’ professional cooperatives on the willingness of members to green production—Perspectives based on time, method and content elements. Environ. Dev. Sustain. 2024, 26, 987–1006. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Han, X. The Impact of Digital Literacy on Farmers’ Green Production Behavior: Mediating Effects Based on Ecological Cognition. Sustainability 2024, 16, 7507. [Google Scholar] [CrossRef]
- Chandio, A.A.; Gokmenoglu, K.K.; Khan, I.; Ahmad, F.; Jiang, Y. Does internet technology usage improve food production? Recent evidence from major rice-producing provinces of China. Comput. Electron. Agric. 2023, 211, 108053. [Google Scholar] [CrossRef]
- Geffersa, A.G. Does cooperative membership enhance inorganic fertilizer use intensity? Panel data evidence from maize farmers in Ethiopia. Ann. Public Coop. Econ. 2024, 95, 327–361. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, S.; Brooke, W. Influence of Cooperatives’ Socialized Services on Agricultural Households’ Chemical Fertilizer and Pesticide Use Intensity—Based on the Evidence from Two Counties, Hubei, China. J. Resour. Ecol. 2024, 15, 1286–1298. [Google Scholar]
- Yu, L.; Nilsson, J.; Zhan, F.; Cheng, S. Social Capital in Cooperative Memberships and Farmers’ Access to Bank Credit–Evidence from Fujian, China. Agriculture 2023, 13, 418. [Google Scholar] [CrossRef]
- Sheng, J.; Lu, Q. The influence of information communication technology on farmers’ sales channels in environmentally affected areas of China. Environ. Sci. Pollut. Res. 2020, 27, 42513–42529. [Google Scholar] [CrossRef]
- Hernández-Espallardo, M.; Arcas-Lario, N.; Marcos-Matás, G. Farmers’ satisfaction and intention to continue membership in agricultural marketing co-operatives: Neoclassical versus transaction cost considerations. Eur. Rev. Agric. Econ. 2013, 40, 239–260. [Google Scholar] [CrossRef]
Type | Variable’s Name | Variable’s Meaning | Description | Mean | Sd. | Min. | Max. | |
---|---|---|---|---|---|---|---|---|
Explained variable | Green production behavior | Green production behavior of cooperative members | Number of green production technologies adopted | 5.047 | 1.578 | 1 | 8 | |
Explanatory variable | Internet use (IU) | Whether to use the internet | 1 = yes; 0 = no | 0.715 | 0.451 | 0 | 1 | |
Mediating variable | Organizational trust | You trust the major decisions of the cooperative. | 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = fully agree | 4.02 | 0.921 | 2 | 5 | |
Organizational norms | I and the cooperative attach importance to agricultural green production. | 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = fully agree | 3.989 | 0.862 | 2 | 5 | ||
Moderating variable | Sales satisfaction | Your transaction cost will increase if you quit the cooperative. | 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = fully agree | 3.74 | 0.98 | 1 | 5 | |
Grouping variable | Degree of dependence on cooperatives | Whether a member of your family works in a cooperative | 1 = yes; 0 = no | 0.179 | 0.384 | 0 | 1 | |
Control variables | Farmers’ characteristics | Age | Actual age | - | 49.509 | 8.496 | 27 | 73 |
Educational level | Education years | - | 9.78 | 2.913 | 2 | 20 | ||
Village cadre status | Whether you are a village cadre | 1 = yes; 0 = no | 0.126 | 0.333 | 0 | 1 | ||
Family endowments | Work | Whether to work away from hometown | 1 = yes; 0 = no | 0.251 | 0.433 | 0 | 1 | |
Planting area | Family rice-planting area | Mu | 189.67 | 571.3 | 3 | 12,000 | ||
External environment | Cooperative level | The level of the cooperative you join | 1 = ungraded level; 2 = county level; 3 = municipal level; 4 = provincial; and 5 = national level | 3.347 | 1.153 | 1 | 5 | |
Policy perception | The agricultural green production demonstration provided by the government every year has a great impact on you. | 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree; and 5 = fully agree | 3.636 | 0.823 | 0 | 5 |
Variables | Model 1 | Marginal Effects | |||||||
---|---|---|---|---|---|---|---|---|---|
Adopt 1 | Adopt 2 | Adopt 3 | Adopt 4 | Adopt 5 | Adopt 6 | Adopt 7 | Adopt 8 | ||
Internet use | 0.318 *** (0.108) | −0.015 ** (0.0060) | −0.020 ** (0.0077) | −0.036 *** (0.013) | −0.022 *** (0.008) | −0.0073 ** (0.0035) | 0.033 *** (0.011) | 0.050 *** (0.0178) | 0.016 ** (0.0062) |
Age | 0.0389 *** (0.00973) | −0.002 *** (0.0006) | −0.002 *** (0.0007) | −0.004 *** (0.0011) | −0.003 *** (0.0007) | −0.0009 ** (0.0004) | 0.004 *** (0.001) | 0.006 *** (0.0015) | 0.002 *** (0.0006) |
Educational level | 0.0824 *** (0.0282) | −0.004 ** (0.0015) | −0.005 ** (0.0019) | −0.009 *** (0.0032) | −0.006 *** (0.002) | −0.002 ** (0.0009) | 0.009 *** (0.0029) | 0.013 *** (0.0043) | 0.004 ** (0.0017) |
Village cadre status | −0.0150 (0.113) | 0.0007 (0.0052) | 0.0009 (0.007) | 0.002 (0.0127) | 0.001 (0.0079) | 0.0003 (0.0026) | −0.0016 (0.0119) | −0.0023 (0.018) | −0.0008 (0.0056) |
Work | 0.182 (0.113) | −0.008 (0.0055) | −0.011 (0.0072) | −0.0204 (0.0126) | −0.0128 (0.0079) | −0.004 (0.0028) | 0.019 (0.0118) | 0.029 (0.0176) | 0.009 (0.0059) |
Planting area | 0.000121 * (0.000065) | −0.000006 * (0.000003) | −0.000007 * (0.000004) | −0.000014 * (0.0000074) | −0.0000085 * (0.000005) | −0.000003 (0.000002) | 0.000013 * (0.000007) | 0.000019 * (0.00001) | 0.000006 * (0.000003) |
Cooperative level | 0.491 *** (0.0614) | −0.023 *** (0.007) | −0.030 *** (0.006) | −0.055 *** (0.007) | −0.034 *** (0.005) | −0.011 *** (0.004) | 0.052 *** (0.007) | 0.078 *** (0.010) | 0.024 *** (0.005) |
Policy perception | −0.288 *** (0.0408) | −0.023 *** (0.006) | −0.030 *** (0.0007) | −0.055 *** (0.009) | −0.035 *** (0.005) | −0.011 *** (0.004) | 0.052 *** (0.008) | 0.078 *** (0.010) | 0.024 *** (0.005) |
Regional control variable | Yes | ||||||||
Obs. | 530 | ||||||||
LR chi2 | 130.45 | ||||||||
Pseudo R2 | 0.1142 |
Variables | Model 2 (CMP Method) | |
---|---|---|
First-Stage Coefficient | Second-Stage Coefficient | |
Internet use | 1.77 *** (0.47) | |
The average internet use of other sample farmers in the same village | 1.41 *** (0.528) | |
Control variable | Yes | Yes |
Regional control variable | Yes | Yes |
Obs. | 530 | 530 |
atanhrho_12 | −0.65 *** |
Variables | Different Education Level | Degree of Dependence on Cooperatives | Different Generation | ||||
---|---|---|---|---|---|---|---|
High-Education Group | Low-Education Group | High-Dependency Group | Low-Dependency Group | Youth Group | Middle-Aged Group | Elderly Group | |
Internet use | 0.282 * (0.149) | 0.806 *** (0.225) | 0.681 ** (0.315) | 0.283 ** (0.113) | 0.462 * (0.26) | 0.492 *** (0.149) | 0.428 (0.498) |
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Regional control variable | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 384 | 146 | 95 | 435 | 195 | 270 | 65 |
LR chi2 | 153.68 | 95.46 | 69.27 | 158.03 | 72.72 | 124.08 | 59.09 |
Pseudo R2 | 0.1074 | 0.1923 | 0.2166 | 0.0990 | 0.0983 | 0.1266 | 0.3333 |
Variables | Change the Model (Ordered Logit Model) | Restricted Sample |
---|---|---|
Model 3 | Model 4 | |
Internet use | 0.481 *** (0.188) | 0.363 *** (0.110) |
Control variable | Yes | Yes |
Regional control variable | Yes | Yes |
Obs. | 530 | 506 |
LR chi2 | 170.79 | 128.17 |
Pseudo R2 | 0.1231 | 0.1088 |
Variables | Organizational Trust | Organizational Norms |
---|---|---|
Model 5 | Model 6 | |
Internet use | 0.342 *** (0.121) | 0.283 ** (0.116) |
Age | 0.0452 *** (0.00925) | 0.0159 * (0.00936) |
Educational level | 0.0396 (0.0275) | −0.00147 (0.0268) |
Village cadre status | 0.300 ** (0.151) | 0.185 (0.142) |
Work | 0.0206 (0.118) | −0.0417 (0.112) |
Planting area | 0.00191 *** (0.000594) | 0.00171 *** (0.000585) |
Cooperative level | 0.177 *** (0.0469) | 0.106 ** (0.0473) |
Policy perception | 0.517 *** (0.0667) | 0.503 *** (0.0645) |
Regional control variable | Yes | Yes |
Obs. | 530 | 530 |
LR chi2 | 164.09 | 113.95 |
Pseudo R2 | 0.1249 | 0.0978 |
Variables | Model 7 | Model 8 |
---|---|---|
Internet use | 0.191 * (0.109) | 0.222 * (0.113) |
Organizational trust | 0.700 *** (0.0575) | - |
Organizational norms | - | 0.567 *** (0.0557) |
Age | 0.0210 ** (0.0103) | 0.0359 *** (0.0101) |
Educational level | 0.0634 ** (0.0301) | 0.0849 *** (0.0286) |
Village cadre status | −0.153 (0.123) | −0.0783 (0.120) |
Work | 0.228 ** (0.111) | 0.227 ** (0.114) |
Planting area | 0.0000634 * (0.0000382) | 0.0000663 * (0.0000378) |
Cooperative level | 0.459 *** (0.0664) | 0.491 *** (0.0649) |
Policy perception | 0.305 *** (0.0689) | 0.338 *** (0.0701) |
Regional control variable | Yes | Yes |
Obs. | 530 | 530 |
LR chi2 | 244.56 | 220.28 |
Pseudo R2 | 0.1829 | 0.1591 |
Variables | Model 9 |
---|---|
Internet use | 3.531 * (1.925) |
Sales satisfaction | 0.461 *** (0.0898) |
Internet use × sales satisfaction | −0.550 * (0.323) |
Age | 0.0333 *** (0.00979) |
Educational level | 0.0841 *** (0.0285) |
Village cadre status | −0.00579 (0.113) |
Work | 0.205 * (0.112) |
Planting area | 0.0000950 * (0.0000569) |
Cooperative level | 0.468 *** (0.0625) |
Policy perception | 0.368 *** (0.0705) |
Regional control variable | Yes |
Obs. | 530 |
LR chi2 | 151.33 |
Pseudo R2 | 0.1370 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, J.; Chen, S. Internet Use, Social Capital, and Farmers’ Green Production Behavior: Evidence from Agricultural Cooperatives in China. Sustainability 2025, 17, 1137. https://doi.org/10.3390/su17031137
Wang J, Xu J, Chen S. Internet Use, Social Capital, and Farmers’ Green Production Behavior: Evidence from Agricultural Cooperatives in China. Sustainability. 2025; 17(3):1137. https://doi.org/10.3390/su17031137
Chicago/Turabian StyleWang, Jingjing, Jiabin Xu, and Silin Chen. 2025. "Internet Use, Social Capital, and Farmers’ Green Production Behavior: Evidence from Agricultural Cooperatives in China" Sustainability 17, no. 3: 1137. https://doi.org/10.3390/su17031137
APA StyleWang, J., Xu, J., & Chen, S. (2025). Internet Use, Social Capital, and Farmers’ Green Production Behavior: Evidence from Agricultural Cooperatives in China. Sustainability, 17(3), 1137. https://doi.org/10.3390/su17031137