Toxicity-Based Evaluation of Material Recovery Potential in the Built Environment
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Collection
3.2. Index Calculation
3.3. Material Selection
3.4. Weighting
4. Results
4.1. Concrete
4.2. Resin-Based Composite
4.3. Stone
4.4. Timber
5. Discussion
5.1. Findings
5.2. Applications in Industry and Policymaking
5.3. Limitations and Future Work
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TREI | Toxicity–Recyclability Evaluation Index |
HPD | Health Product Declaration |
ILFI | International Living Future Institute |
AQU | Aquatic Toxicity |
DEV | Developmental Toxicity |
END | Endocrine Activity |
EYE | Eye Irritation/Corrosivity |
GEN | Gene Mutation |
GLO | Global Warming |
LAN | Land Toxicity |
MAM | Mammalian/Systemic/Organ Toxicity |
MUL | Multiple Hazards |
NEU | Neurotoxicity |
NF | Unknown or Not Found on Priority Hazard Lists |
OZO | Ozone Depletion |
PBT | Persistent, Bioaccumulative, And Toxic |
PHY | Physical Hazard—Flammable Or Reactive |
RES | Respiratory Sensitization |
SKI | Skin Sensitization/Irritation/Corrosivity |
References
- Awere, E.; Obeng, P.A.; Bonoli, A.; Obeng, P.A. E-waste recycling and public exposure to organic compounds in developing countries: A review of recycling practices and toxicity levels in Ghana. Environ. Technol. Rev. 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Blumenthal, J.; Diamond, M.L.; Liu, G.; Wang, Z. Introducing “Embedded Toxicity”: A Necessary Metric for the Sound Management of Building Materials. Environ. Sci. Technol. 2022, 56, 9838–9841. [Google Scholar] [CrossRef] [PubMed]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Clean Production Action. The GreenScreen Method. 2024. Available online: https://www.greenscreenchemicals.org/learn/full-greenscreen-method (accessed on 2 November 2024).
- Eldh, P.; Johansson, J. Weighting in LCA based on ecotaxes-development of a mid-point method and experiences from case studies. Int. J. Life Cycle Assess. 2006, 11, 81–88. [Google Scholar] [CrossRef]
- Finnveden, G. A Critical Review of Operational Valuation/Weighting Methods for Life Cycle Assessment; AFR-REPORT 253; Swedish Environmental Protection Agency: Stockholm, Sweden, 1999. [Google Scholar]
- Foster, G. Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts. Resour. Conserv. Recycl. 2020, 152, 104507. [Google Scholar] [CrossRef]
- Hoy, M.; Horpibulsuk, S.; Rachan, R.; Chinkulkijniwat, A.; Arulrajah, A. Recycled asphalt pavement–fly ash geopolymers as a sustainable pavement base material: Strength and toxic leaching investigations. Sci. Total Environ. 2016, 573, 19–26. [Google Scholar] [CrossRef]
- International Living Future Institute. The Living Building Challenge Red List. 2024. Available online: https://living-future.org/lbc/red-list/#red-list-and-watch-list-casrn-guide (accessed on 2 November 2024).
- ISO 14040:2006(en); Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Itsubo, N. Weighting. In Life Cycle Impact Assessment; Springer: Berlin/Heidelberg, Germany, 2015; pp. 301–330. [Google Scholar]
- Zhang, J.-H.; Min, H. Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area. J. Hazard. Mater. 2009, 165, 744–750. [Google Scholar]
- Kokai, A.; Blake, A.; Dedeo, M.; Lent, T. Building shared information infrastructure for chemical alternatives assessment. Elem. Sci. Anthr. 2020, 8, 26. [Google Scholar] [CrossRef]
- Kokai, A.; Iles, A.; Rosen, C.M. Green Design Tools: Building Values and Politics into Material Choices. Sci. Technol. Hum. Values 2021, 46, 1139–1171. [Google Scholar] [CrossRef]
- Krewitt, W.; Pennington, D.W.; Olsen, S.I.; Crettaz, P.; Jolliet, O. Indicators for human toxicity in life cycle impact assessment. In Toward Best Available Practice for Life Cycle Impact Assessment; SETAC Press: Pensacola, FL, USA, 2002; pp. 123–148. [Google Scholar]
- Kurda, R.; Silvestre, J.D.; de Brito, J. Toxicity and environmental and economic performance of fly ash and recycled concrete aggregates use in concrete: A review. Heliyon 2018, 4, e00611. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the circular economy. J. Ind. Ecol. 2013, 2, 23–44. [Google Scholar]
- Mayer, M. Economic indicators for material recovery estimation. In Environmental Sustainability and Economy; Elsevier: Amsterdam, The Netherlands, 2021; pp. 139–150. [Google Scholar]
- Mayer, M. Recycling Potential of Construction Materials: A Comparative Approach. Constr. Mater. 2024, 4, 238–250. [Google Scholar] [CrossRef]
- Muthu, S.S.; Li, Y.; Hu, J.Y.; Mok, P.Y. Recyclability Potential Index (RPI): The concept and quantification of RPI for textile fibres. Ecol. Indic. 2012, 18, 58–62. [Google Scholar] [CrossRef]
- Omer, M.M.; Rahman, R.A.; Fauzi, M.A.; Almutairi, S. Key competencies for identifying construction activities that produce recyclable materials: An exploratory study. Int. J. Build. Pathol. Adapt. 2024. [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Toxicity of building materials: A key issue in sustainable construction. Int. J. Sustain. Eng. 2011, 4, 281–287. [Google Scholar] [CrossRef]
- Pietroiusti, A.; Stockmann-Juvala, H.; Lucaroni, F.; Savolainen, K. Nanomaterial exposure, toxicity, and impact on human health. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1513. [Google Scholar] [CrossRef]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef]
- Rey-Álvarez, B.; Silvestre, J.; García-Martínez, A.; Sánchez-Montañés, B. A comparative approach to evaluate the toxicity of building materials through life cycle assessment. Sci. Total Environ. 2024, 912, 168897. [Google Scholar] [CrossRef]
- Sáez, P.V.; Osmani, M. A diagnosis of construction and demolition waste generation and recovery practice in the European Union. J. Clean. Prod. 2019, 241, 118400. [Google Scholar] [CrossRef]
- Silvestre, J.D.; De Brito, J.; Pinheiro, M.D. Environmental impacts and benefits of the end-of-life of building materials–calculation rules, results and contribution to a “cradle to cradle” life cycle. J. Clean. Prod. 2014, 66, 37–45. [Google Scholar] [CrossRef]
- Smurthwaite, M.; Jiang, L.; Williams, K.S. A review of the LCA literature investigating the methods by which distinct impact categories are compared. Environ. Dev. Sustain. 2024, 26, 19113–19129. [Google Scholar] [CrossRef]
- Vefago, L.H.M.; Avellaneda, J. Recycling concepts and the index of recyclability for building materials. Resour. Conserv. Recycl. 2013, 72, 127–135. [Google Scholar] [CrossRef]
- Yang, H.; Ma, M.; Thompson, J.R.; Flower, R.J. Waste management, informal recycling, environmental pollution and public health. J. Epidemiol. Community Health 2018, 72, 237–243. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, M. Toxicity-Based Evaluation of Material Recovery Potential in the Built Environment. Sustainability 2025, 17, 1139. https://doi.org/10.3390/su17031139
Mayer M. Toxicity-Based Evaluation of Material Recovery Potential in the Built Environment. Sustainability. 2025; 17(3):1139. https://doi.org/10.3390/su17031139
Chicago/Turabian StyleMayer, Matan. 2025. "Toxicity-Based Evaluation of Material Recovery Potential in the Built Environment" Sustainability 17, no. 3: 1139. https://doi.org/10.3390/su17031139
APA StyleMayer, M. (2025). Toxicity-Based Evaluation of Material Recovery Potential in the Built Environment. Sustainability, 17(3), 1139. https://doi.org/10.3390/su17031139