Integrated Water Resources Management for Implementing Sustainable Energy Development—Challenges and Perspectives in Poland
Abstract
:1. Introduction
2. Material and Methods
- Analysis of the environment of the water management system based on available legal acts, planning documents, and media reports on the course of consultation processes of water management issues in the context of energy development.
- A questionnaire survey of three independent catchments located in different regions of Poland: the Białka River, the Widawa River, and the Nysa Kłodzka River.
- Activities of the administration—this group includes survey questions to obtain information on the activities undertaken by the state administration in terms of IWRM implementation. This group of questions provided information on whether and to what extent government authorities are taking IWRM-related actions, including actions to counteract adverse natural and social phenomena. The uptake of IWRM-related initiatives or the lack of such activities provides information on the willingness and capacity of both government and local authorities to act.
- Transfer of knowledge among stakeholders—a group of questions allowing the identification of activities related to enhancing the knowledge of stakeholders of stakeholders. As a result of this series of questions, it was possible to obtain information about relations between stakeholders, both within groups and between them. Transfer of knowledge between stakeholders is the foundation of cooperation and therefore participatory management of water resources.
- Knowledge assessment—questions in this group concern the assessment of the respondents’ knowledge of water management. The group focuses on questions providing data on available information campaigns, training and their results, but also on ensuring constant access to knowledge about the state of water resources. The way in which respondents perceive their own state of knowledge, as well as the state of knowledge of other stakeholders, is important for the willingness to learn, and therefore is crucial for assessing the potential for participation.
- Social potential—questions representing potential willingness to engage in the process of planning and implementation of water management activities. A group that referred to the willingness of stakeholders to cooperate and participate in the water management process, as well as their interest in the subject of water protection. Some of the questions concerned the willingness of stakeholders to work out compromises or the ability to bear the costs resulting from the use and management of water resources. The knowledge acquired makes it possible to assess the current status and potential for the implementation of IWRM principles.
- Assessment of the administration’s actions—a group of questions to identify the public’s perception of the administration’s actions. A group of questions allowing to determine whether the level of activity of the state administration in the implementation of IWRM is sufficient according to the society and public administration employees themselves.
3. Results
3.1. The Environment of the Water Management System
3.1.1. Drought Risk in the Nysa Kłodzka, Białka and Widawa Basins
- effective management of water resources to increase available water resources,
- increasing water retention (storage),
- drought education and coordination of drought related activities,
- creation of mechanisms for the implementation and financing of drought-related activities.
3.1.2. Development of the Energy System in Poland
3.1.3. The Role of Stakeholders in the Development of Energy Investments in Poland—Hydropower and Nuclear Energy
3.1.4. Integrated Water Resources Management
3.2. Survey Results
3.2.1. Group 1
3.2.2. Group 2
3.2.3. Group 3
3.2.4. Group 4
3.2.5. Group 5
4. Discussion
4.1. Local Government as Coordinator of the Lowest Level of Water Resources Management—Role in the Process of Building a Resilient Energy System
4.2. Knowledge Transfer
4.3. Level of Knowledge
4.4. Social Potential—Public Participation
4.5. Evaluation of the Authorities’ Activity
5. Conclusions
5.1. Main Findings
5.2. Future Recommendations
- -
- Ensuring stakeholder diversity: Stakeholders can include diverse groups, such as local communities, businesses, farmers, non-governmental organizations, government institutions, scientists and others. All these groups have different perspectives and needs related to water resources.
- -
- Maintaining constant consultation and dialogue: The essence of stakeholder participation is open dialogue and consultation between different groups. This allows for the exchange of information, understanding different points of view and joint search for solutions.
- -
- Engagement in participatory decision-making processes: Stakeholders can be involved in all stages of the water management process, from problem identification, through planning, to assessment of the effects of actions. This participation can be organized in the form of public meetings, online consultations, workshops or discussion panels.
- -
- Education and Information: Stakeholder participation is also a process of educating and informing the public about water management issues. This helps to increase awareness and understanding, which in turn influences social participation in this area.
- -
- Stakeholder participation in water management is an essential element of sustainable development practices that allows for the consideration of the diverse perspectives and needs of communities related to water. The introduction of this approach can contribute to better and more acceptable decisions regarding water management. It also concerns the sensitive area of the relationship between energy and water management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
CAWI | Computer-Assisted Web Interview |
CHP | Combined Heat and Power |
CWB | Climatic Water Balance |
DECP | Drought Effects Counteracting Plan |
EPP2040 | Energy Policy of Poland until 2040 |
EU | European Union |
IWRM | Integrated Water Resources Management |
NGOs | non-governmental organizations |
PAPI | Paper & Pen Personal Interview |
RBMP | River Basin Management Plan |
RES | renewable energy source |
SDG | Sustainable Development Goals |
SMR | small modular reactor |
SPI | Standardized Precipitation Index |
SPEI | Standardised Climatic Water Balance Index |
SWH PW | State Water Holding Polish Waters |
UN | United Nations |
WFD | Water Framework Directive |
References
- Spang, E.S.; Moomaw, W.R.; Gallagher, K.S.; Kirshen, P.H.; Marks, D.H. The water consumption of energy production: An international comparison. Environ. Res. Lett. 2014, 9, 105002. [Google Scholar] [CrossRef]
- Norouzi, N. A Fuzzy Multi-Criteria Decision-Making Framework for Locating An Optimum Site For A Nuclear Power Plant: A Case for Iran. Majlesi J. Energy Manag. 2022, 11, 27–35. [Google Scholar]
- Yesuf, M.B. Impacts of Cascade Hydropower Plants on the Flow of the River System and Water Level in Lake Turkana in Omo-Ghibe Catchment, Ethiopia; Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology: Trondheim, Norway, 2012. [Google Scholar]
- Juraku, K.; Suzuki, T.; Sakura, O. Social decision-making processes in local contexts: An STS case study on nuclear power plant siting in Japan. East Asian Science. Technol. Soc. Int. J. 2007, 1, 53–75. [Google Scholar] [CrossRef]
- Chávez, B.V.; Bernal, A.S. Planning hydroelectric power plants with the public: A case of organizational and social learning in Mexico. Impact Assess. Proj. Apprais. 2008, 26, 163–176. [Google Scholar] [CrossRef]
- Hadian, S.; Madani, K. The Water Demand of Energy: Implications for Sustainable Energy Policy Development. Sustainability 2013, 5, 4674–4687. [Google Scholar] [CrossRef]
- Raptis, C.E.; van Vliet, M.T.H.; Pfister, S. Global thermal pollution of rivers from thermoelectric power plants. Environ. Res. Lett. 2016, 11, 104011. [Google Scholar] [CrossRef]
- Johnson, J.A.; Sivakumar, K.; Rosenfeld, J. Ecological flow requirement for fishes of Godavari River: Flow estimation using the PHABSIM method. Curr. Sci. 2017, 113, 2187–2193. [Google Scholar] [CrossRef]
- Global Water Partnership (GWP); International Network of Basin Organizations (INBO). A Handbook for Integrated Water Resources Management in Basis; Global Water Partnership (GWP): Stockholm, Sweden, 2009; Available online: https://www.gwp.org/globalassets/global/toolbox/references/a-handbook-for-integrated-water-resources-management-in-basins-inbo-gwp-2009-english.pdf (accessed on 7 January 2025).
- Hansen, H.S. Meeting the climate change challenges in river basin planning: A scenario and model-based approach. Int. J. Clim. Change Strateg. Manag. 2013, 5, 21–37. [Google Scholar] [CrossRef]
- Dugan, J.; Gonçalves, E.; Costa, L.; Dutra, J.; Souza, R.; Mohagheghi, S. Social vulnerability to long-duration power outages in Brazil. Nat. Hazards 2024, 1–28. [Google Scholar] [CrossRef]
- Sobik, B. Analiza przyczyn wystąpienia zagrożenia bezpieczeństwa dostaw energii elektrycznej w sierpniu 2015 roku w Polsce oraz sposoby zapobiegania takim zdarzeniom. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2018, 103, 193–208. [Google Scholar]
- Koch, H.; Vögele, S. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol. Econ. 2009, 68, 2031–2039. [Google Scholar] [CrossRef]
- Erbach, G.; Jensen, L. Fit for 55 Package, European Parliamentary Research Service. 2024. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/733513/EPRS_BRI(2022)733513_EN.pdf (accessed on 25 September 2024).
- Statistic of Poland GUS 2020. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2020,1,12.html (accessed on 6 January 2024).
- Węglowski, M. Moc nie Będzie z Nami, Tygodnik Newseek, Warszawam, Polska 2018. Available online: https://www.newsweek.pl/biznes/rynek-energii-ogarnelo-szalenstwo-beda-wyzsze-rachunki/dwpb4vq (accessed on 7 January 2025).
- Majewski, W. Woda w Inżynierii Środowiska; IMGW-PIB: Warsaw, Poland, 2017. [Google Scholar]
- Ministerstwo Klimatu i Środowiska. Polityka Energetyczna Polski do 2040 Roku (PEP2040), Załącznik do Uchwały nr 22/2021 Rady Ministrów z Dnia 2 Lutego 2021 r. Ministerstwo Klimatu i Środowiska: Warsaw, Poland, 2021. [Google Scholar]
- Directive 2000/60/EC; Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. European Union: Brussels, Belgium, 2000; 327, pp. 1–73.
- Ustawa z Dnia 20 Lipca 2017 r. Prawo Wodne (Dz. U. 2024.1087 t.j.). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 7 January 2025).
- Ustawa z Dnia 18 Lipca 2001 r. Prawo Wodne (Dz. U. 2001 nr 115 poz. 1229). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20011151229 (accessed on 7 January 2025).
- Corine Land Cover 2018, ver. 2020. Available online: https://clc.gios.gov.pl/index.php/clc-2018/o-projekcie (accessed on 20 September 2024).
- Data from Institute of Meteorology and Water Management National Research Institute Database. Available online: https://danepubliczne.imgw.pl/ (accessed on 15 September 2024).
- GIOŚ. Available online: https://www.gov.pl/web/gdos/dostep-do-danych-geoprzestrzennych (accessed on 10 October 2024).
- Krąż, P. Antropogeniczne Zagrożenia Środowiska Przyrodniczego Doliny Białki [Anthropogenic Hazards to the Białka Valley Natural Environment]; Prace Geograficzne, Instytut Geografii i Gospodarki Przestrzennej UJ: Krakow, Poland, 2012; Volume 128, pp. 45–54. [Google Scholar] [CrossRef]
- Czaja, S.; Tutaj, J.; Becla, A.; Andreeva, N. Uzdrowiska w Zrównoważonym Rozwoju Regionu Dolnośląskiego; Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu: Wroclaw, Poland, 2018. [Google Scholar]
- PGE Polska Grupa Energetyczna, Projekt Młoty. Available online: https://www.gkpge.pl/projekt-mloty (accessed on 20 September 2024).
- Rozporządzenie Ministra Infrastruktury z Dnia 15 Lipca 2021 r. w Sprawie Przyjęcia Planu Przeciwdziałania Skutkom Suszy (Dz. U. 2021 poz. 1615.). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210001615 (accessed on 7 January 2025).
- Energy Policy of Poland—Założenia do Aktualizacji Polityki Energetycznej Polski do 2040 r. z Marca 2022 r. Available online: https://www.gov.pl/web/klimat/zalozenia-do-aktualizacji-polityki-energetycznej-polski-do-2040-r (accessed on 15 September 2024).
- Forum Energii—Ósma Aukcja Rynku Mocy—Najwyższy Czas na Rynek Elastyczności. Available online: https://www.forum-energii.eu/8-aukcja-rynku-mocy (accessed on 17 October 2024).
- Niezatapialna Wioska Młoty—Protest Przeciwko Budowie ESP Młoty. Available online: https://mloty.org/2023/03/26/protest-przeciwko-budowie-esp-mloty/ (accessed on 25 September 2024).
- Nie Chcą Ekologicznej Elektrowni—Młoty Protestują Przeciw Planom Inwestycji. Available online: https://sudeckiefakty.pl/nie-chca-ekologicznej-elektrowni-mloty-protestuja-przeciw-planom-inwestycji/ (accessed on 15 September 2024).
- Ciołek, G. Budowa zapory wodnej w Czorsztynie. Ochr. Zabyt. 1948, 3, 104–110. [Google Scholar]
- Dąb-Kocioł, J. Bitwa o Czorsztyn. Sylwan 1959, 103, 13–15. [Google Scholar]
- Rebowska, A. Wielkie Inwestycje a Model Rozwoju wsi Karpackiej na Przykładzie Zbiorników Wodnych w Czorsztynie (Large capital projects and model of the carpathian village development based on the example of the Czorsztyn man-made lakes), Problemy Rozwoju Miast. 2004, 1/1-2, p. 25–37. Available online: https://bazhum.muzhp.pl/media/files/Problemy_Rozwoju_Miast/Problemy_Rozwoju_Miast-r2004-t1-n1_2/Problemy_Rozwoju_Miast-r2004-t1-n1_2-s25-37/Problemy_Rozwoju_Miast-r2004-t1-n1_2-s25-37.pdf (accessed on 7 January 2025).
- Lupa, A. Zapora w Niedzicy Działa już od 25 lat. Zobaczcie, Jak Powstawała ta Gigantyczna Inwestycja. Available online: https://dziennikpolski24.pl/zapora-w-niedzicy-dziala-juz-od-25-lat-zobaczcie-jak-powstawala-ta-gigantyczna-inwestycja/ar/c1-17063305 (accessed on 15 September 2024).
- Ratujmy Pieniny Czyli “Tama Tamie” Inaczej. Available online: http://zb.eco.pl/zb/32/tamtam.htm (accessed on 15 September 2024).
- „Tama Tamie” 1990–1992. Akcja Ekologów Przeciw Budowie Zapory w Czorsztynie—Niedzicy. Available online: https://staryczorsztyn.pl/tama-tamie-1990-1992-akcja-ekologow-przeciw-budowie-zapory-w-czorsztynie-niedzicy/#google_vignette (accessed on 15 September 2024).
- SMR—Małe Reaktory Modułowe. Rozwój Technologii Małych Rekatorów Jądrowych. Available online: https://www.orlen.pl/pl/zrownowazony-rozwoj/projekty-transformacyjne/smr (accessed on 25 September 2024).
- Program Rowoju BWRX-300 w Polsce. Available online: https://www.orlen.pl/content/dam/internet/orlen/pl/pl/o-firmie/media/komunikaty-prasowe/2023/obrazy/SMR_v13%20wersja%20krotka.pdf.coredownload.pdf (accessed on 25 September 2024).
- Bobela, K. Budowa Rekatora Jądrowego w Nowej Hucie Jest Możliwa. W krakowie Rozpoczęto Dyskusję o Atomie. Available online: https://krakow.eska.pl/krakow-nowa-huta-budowa-malego-reaktora-jadrowego-na-terenie-kombinatu-spotkanie-aa-xYbd-Yp5r-HoU3.html (accessed on 25 September 2024).
- Gmina Choczewo z Dużą Szansą na Lokalizację Pierwszej Elektrowni Jądrowej w Polsce. Available online: https://www.cire.pl/artykuly/serwis-informacyjny-cire-24/choczewo-z-duza-szansa-na-bycie-lokalizacja-pierwszej-elektrowni-jadrowej-w-polsce (accessed on 25 September 2024).
- Protest Przeciwników Atomówki. Pojawili się Także Zwolennicy. Available online: https://nadmorski24.pl/aktualnosci/58627-protest-przeciwnikow-atomowki-pojawili-sie-takze-zwolennicy# (accessed on 25 September 2024).
- Smuga, T. W Choczewie Protestowali Przeciwko Budowie Elektrowni Jądrowej. ‘Żadnych Prac do Końca Tego Roku Miało nie Być’. Available online: https://nadmorski24.pl/aktualnosci/61359-w-choczewie-protestowali-przeciwko-budowie-elektrowni-jadrowej-zadnych-prac-do-konca-tego-roku-mialo-nie-byc (accessed on 25 September 2024).
- Elektrownia Jądrowa w Gminie Choczewo, a Wpływ na Ekosystem Bałtyku. Naukowcy Alarmują. Available online: https://www.pap.pl/aktualnosci/elektrownia-jadrowa-w-gminie-choczewo-wplyw-na-ekosystem-baltyku-naukowcy-alarmuja (accessed on 25 September 2024).
- Wandas, M. Polski Atom ze Sporym Poślizgiem. Zaszkodzą mu Protesty Antyatomowych Aktywistów? Available online: https://oko.press/elektrownia-jadrowa-opoznienie-protesty (accessed on 25 September 2024).
- IWRM Data Portal—Report SDG 6.5.1 Poland. Available online: https://iwrmdataportal.unepdhi.org/country-reports (accessed on 25 September 2024).
- Walczykiewicz, T.; Bryła, M.; Kraj, K. Expectations and reality of IWRM implementation across 30 years of water management in Poland. Water Int. 2024, 49, 358–368. [Google Scholar] [CrossRef]
- Bryła, M.; Walczykiewicz, T.; Skonieczna, M.; Żelazny, M. Selected Issues of Adaptive Water Management on the Example of the Białka River Basin. Water 2021, 13, 3540. [Google Scholar] [CrossRef]
- Forum Energii—Wybrane Dane na Temat Polskiej Energetyki, Istotne z Perspektywy Zmian, Jakie Zachodzą w Polskim Sektorze Energetycznym, Based on: “Transformacja Energetyczna w Polsce. Edycja 2024”. Available online: https://www.forum-energii.eu/rocznik-dane-o-energetyce (accessed on 3 November 2024).
- Budowa Elektrowni Jądrowej w Lokalizacji Lubiatowo-Kopalino Rozpocznie się w 2028 r. Available online: https://nuclear.pl/wiadomosci,news,24050901,0,0.html (accessed on 30 October 2024).
- Cvijović, J.; Obradović, V.; Todorović, M. Stakeholder management and project sustainability—A throw of the dice. Sustainability 2021, 13, 9513. [Google Scholar] [CrossRef]
- Edeson, G.R. Local Innovation and Social Learning in Water Management: Integrating Community Knowledge into Australian Rural Water Management. Ph.D. Thesis, University Of Tasmania, Hobart, TAS, Australia, 2019. [Google Scholar]
- Ross, H.; Baldwin, C. Water as a source of innovation in environmental policy and management. Australas. J. Environ. Manag. 2022, 29, 97–104. [Google Scholar] [CrossRef]
- Watson, N. IWRM in England: Bridging the gap between top-down and bottom-up implementation. Int. J. Water Resour. Dev. 2014, 30, 445–459. [Google Scholar] [CrossRef]
- Fritsch, O. Integrated and adaptive water resources management: Exploring public participation in the UK. Reg. Environ. Change 2017, 17, 1933–1944. [Google Scholar] [CrossRef]
- Bielsa, J.; Cazcarro, I. Implementing integrated water resources management in the Ebro River Basin: From theory to facts. Sustainability 2014, 7, 441–464. [Google Scholar] [CrossRef]
- Howell, C.L.; Cortado, A.P.; Ünver, O. Stakeholder Engagement and Perceptions on Water Governance and Water Management in Azerbaijan. Water 2023, 15, 2201. [Google Scholar] [CrossRef]
- Eaton, W.M.; Brasier, K.J.; Burbach, M.E.; Whitmer, W.; Engle, E.W.; Burnham, M.; Weigle, J. A conceptual framework for social, behavioral, and environmental change through stakeholder engagement in water resource management. Soc. Nat. Resour. 2021, 34, 1111–1132. [Google Scholar] [CrossRef]
- Sigel, K.; Hagemann, N.; Leidel, M.; Niemann, S.; Weigelt, C. Insights Regarding Transdisciplinarity and Knowledge Transfer Gained from Two Case Studies on Integrated Water Resources Management in Ukraine and Mongolia. Interdiscip. Sci. Rev. 2014, 39, 342–359. [Google Scholar] [CrossRef]
- Haigh, E.H.; Fox, H.; Davies-Coleman, H. Framework for local government to implement integrated water resource management linked to water service delivery. Water SA 2010, 36, 475–486. [Google Scholar] [CrossRef]
- Buchecker, M.; Fankhauser, M.; Gaus, R. Finding shared solutions in landscape or natural resource management through social learning: A quasi-experimental evaluation in an Alpine region. Landsc. Ecol. 2023, 38, 4117–4137. [Google Scholar] [CrossRef]
- Lukat, E.C.; Schoderer, M.; Salvador, S.C. When international blueprints hit local realities: Bricolage processes in implementing IWRM in South Africa, Mongolia and Peru. Water Altern. 2022, 15, 473–500. [Google Scholar]
- Huang, L.; Noreen, A.; Patmon, D.; Tanner, M. IWRM in the Caribbean: Analyzing Barriers to Implementation; University of Michigan: Ann Arbor, MI, USA, 2024. [Google Scholar]
- Torabi Haghighi, A.; Mazaheri, M.; Amiri, S.; Ghadimi, S.; Noori, R.; Oussalah, M.; Gohari, A.; Noury, M.; Hekmatzadeh, A.A.; Klöve, B. Water or mirage? Nightmare over dams and hydropower across Iran. Int. J. Water Resour. Dev. 2024, 40, 234–251. [Google Scholar] [CrossRef]
- Thapa, L.; Bhandari, R.C. A Review of Domestic Socio-economic Barriers on Hydroelectricity Trading in Nepal. Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci. 2022, 10, 1339. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Machula, S. Influence of climate changes on the state of water resources in Poland and their usage. Geosciences 2020, 10, 312. [Google Scholar] [CrossRef]
- Elfithri, R.; Mokhtar, M.B.; Zakaria, S. The need for awareness raising, advocacy, and capacity building in Integrated Water Resources Management toward sustainable development: A case study in Malaysia. World Water Policy 2019, 5, 43–54. [Google Scholar] [CrossRef]
- Ali, M.A.; Kamraju, M. The Role of Community Participation in Sustainable Integrated Water Resources Management: Challenges, Opportunities, and Current Perspectives. In Integrated Management of Water Resources in India: A Computational Approach: Optimizing for Sustainability and Planning; Springer: Geneva, Switzerland, 2024; pp. 325–344. [Google Scholar]
- Dukhovny, V.A.; Sokolov, V.I.; Ziganshina, D.R. Integrated water resources management in Central Asia, as a way of survival in conditions of water scarcity. Quat. Int. 2013, 311, 181–188. [Google Scholar] [CrossRef]
- Islam, M.; Kashem, S.; Momtaz, Z.; Hasan, M.M. An application of the participatory approach to develop an integrated water resources management (IWRM) system for the drought-affected region of Bangladesh. Heliyon 2023, 9, e14260. [Google Scholar] [CrossRef]
- Shunglu, R.; Köpke, S.; Kanoi, L.; Nissanka, T.S.; Withanachchi, C.R.; Gamage, D.U.; Withanachchi, S.S. Barriers in participative water Governance: A critical analysis of community development approaches. Water 2022, 14, 762. [Google Scholar] [CrossRef]
- Celej, P. Powódź 2024. Wody Polskie Szacują Swoje Straty na Miliardy Złotych, Dziennik Gazeta Prawna. 2024. Available online: https://www.gazetaprawna.pl/wiadomosci/kraj/artykuly/9609086,powodz-2024-wody-polskie-szacuja-swoje-straty-na-miliardy-zlotych.html (accessed on 6 January 2025).
- Zaman, B.D.; Ford, M.B.; Zagt, T.K. Stakeholders’ Participation in Monitoring & Evaluation (M&E) and Performance of Water Supply Projects in Australia: Evidence from Cotter Dam. J. Entrep. Proj. Manag. 2023, 7, 1–11. [Google Scholar]
- Delozier, J.L.; Burbach, M.E. Boundary spanning: Its role in trust development between stakeholders in integrated water resource management. Curr. Res. Environ. Sustain. 2021, 3, 100027. [Google Scholar] [CrossRef]
- Al-Saidi, M. Conflicts and security in integrated water resources management. Environ. Sci. Policy 2013, 73, 38–44. [Google Scholar] [CrossRef]
- Shams, A.K.; Muhammad, N.S. Toward sustainable water resources management: Critical assessment on the implementation of integrated water resources management and water–energy–food nexus in Afghanistan. Water Policy 2022, 24, 1–18. [Google Scholar] [CrossRef]
- Roestamy, M.; Fulazzaky, M.A. A review of the water resources management for the Brantas River basin: Challenges in the transition to an integrated water resources management. Environ. Dev. Sustain. 2022, 24, 11514–11529. [Google Scholar] [CrossRef]
Białka River Basin Area | Widawa River Basin Area | Nysa Kłodzka River Basin Area | ||||
---|---|---|---|---|---|---|
Unit | [km2] | [%] | [km2] | [%] | [km2] | [%] |
Artificial surfaces | 5.9 | 2.6 | 159.4 | 9.2 | 274.3 | 6.0 |
Agricultural areas | 54.1 | 24.0 | 1163.8 | 66.8 | 2629.4 | 57.7 |
Meadows | 6.5 | 2.9 | ||||
Forests | 131.0 | 58.1 | 413.1 | 23.7 | 1595.9 | 35.0 |
Bare rocks | 24.8 | 11.0 | 0.2 | 0.005 | ||
Wetlands | 3.6 | 0.1 | ||||
Water bodies | 3.1 | 1.4 | 5.1 | 0.3 | 50.1 | 1.1 |
TOTAL | 225 | 100 | 1741 | 100 | 4553 | 100 |
River | Period | Min | P10% | Mdn | M | P90% | Max | σ | cv |
---|---|---|---|---|---|---|---|---|---|
m3/s | |||||||||
Nysa Kłodzka | 1991–2023 | 3.9 | 10.8 | 24.8 | 31.9 | 55.8 | 1180.0 | 35.41 | 111% |
Białka | 1995–2023 | 0.9 | 2.0 | 4.9 | 7.6 | 14.8 | 216.0 | 9.86 | 130% |
Widawa | 1997–2023 | 0.1 | 1.1 | 4.0 | 5.4 | 11.3 | 53.1 | 4.99 | 92% |
Issue Area | Sources |
---|---|
Drought Threat | [28] |
Energy Development | [14,18,29,30] |
Stakeholder Role | [22,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] |
Integrated Water Resources Management | [20,47,48,49] |
Survey Study in the Białka River Basin Area | Survey Study in the Widawa River Basin Area | Survey Study in the Nysa Kłodzka River Basin Area | |
---|---|---|---|
Year of conducting the survey | 2021 | 2023 | 2022 |
The number of questions considered in the analysis | 15 | 24 | 12 |
Information about stakeholders | Residents of the catchment area, people running business activities and working in the catchment area, employees of non-governmental organizations, public administration employees | Residents of the catchment area, representatives of government administration, entrepreneurs, employees of nongovernmental organizations | Officials of local government units in the catchment area |
Main issues covered by the questions | Flood, decrease in water quality in the river, changes in water quantity | Barriers to the water management system in an agricultural basin | Water management efficiency, drought |
Hydrological Drought Risk Level | Agricultural Drought Risk Level (in Agricultural and Forest Areas) | Hydrogeological Drought Risk Level | Drought Risk Assessment According to DECP | |
---|---|---|---|---|
Białka River basin area | extreme/strong | weak | moderate | strong/moderate |
Widawa River basin area | weak | weak | extreme | strong/extreme |
Nysa Kłodzka River basin area | strong | weak | moderate/strong | moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryła, M.; Zdralewicz, I.; Lejcuś, I.; Kraj, K.; Dumieński, G.; Tokarczyk, T.; Walczykiewicz, T. Integrated Water Resources Management for Implementing Sustainable Energy Development—Challenges and Perspectives in Poland. Sustainability 2025, 17, 1169. https://doi.org/10.3390/su17031169
Bryła M, Zdralewicz I, Lejcuś I, Kraj K, Dumieński G, Tokarczyk T, Walczykiewicz T. Integrated Water Resources Management for Implementing Sustainable Energy Development—Challenges and Perspectives in Poland. Sustainability. 2025; 17(3):1169. https://doi.org/10.3390/su17031169
Chicago/Turabian StyleBryła, Monika, Iwona Zdralewicz, Iwona Lejcuś, Katarzyna Kraj, Grzegorz Dumieński, Tamara Tokarczyk, and Tomasz Walczykiewicz. 2025. "Integrated Water Resources Management for Implementing Sustainable Energy Development—Challenges and Perspectives in Poland" Sustainability 17, no. 3: 1169. https://doi.org/10.3390/su17031169
APA StyleBryła, M., Zdralewicz, I., Lejcuś, I., Kraj, K., Dumieński, G., Tokarczyk, T., & Walczykiewicz, T. (2025). Integrated Water Resources Management for Implementing Sustainable Energy Development—Challenges and Perspectives in Poland. Sustainability, 17(3), 1169. https://doi.org/10.3390/su17031169