Next Article in Journal
Enhancing Soil Resilience to Climate Change: Long-Term Effects of Organic Amendments on Soil Thermal and Physical Properties in Tea-Cultivated Ultisols
Previous Article in Journal
Integrated Noise Management Strategies in Industrial Environments: A Framework for Occupational Safety, Health, and Productivity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Chromium Remediation from Tannery Wastewater in Arequipa, Peru: Local Experiences and Prospects for Sustainable Solutions

by
Lino F. Morales-Paredes
1,
Pablo A. Garcia-Chevesich
2,3,*,
Giuliana Romero-Mariscal
4,
Armando Arenazas-Rodriguez
5,
Juana Ticona-Quea
1,
Teresa R. Tejada-Purizaca
6,
Gary Vanzin
2 and
Jonathan O. Sharp
7
1
Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04000, Peru
2
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
3
Intergubernamental Hydrological Programme, United Nations Educational, Scientific, and Cultural Organization (UNESCO), Montevideo 111000, Uruguay
4
Escuela de Ingeniería Ambiental, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04000, Peru
5
Departamento Académico de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04000, Peru
6
Escuela de Ingeniería de Industrias Alimentarias, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04000, Peru
7
Hydrologic Science and Engineering Program, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
*
Author to whom correspondence should be addressed.
Sustainability 2025, 17(3), 1183; https://doi.org/10.3390/su17031183
Submission received: 23 December 2024 / Revised: 30 January 2025 / Accepted: 30 January 2025 / Published: 1 February 2025
(This article belongs to the Section Environmental Sustainability and Applications)

Abstract

:
The release of tannery wastewater contributes to chromium (Cr) pollution globally. Herein, we conduct a novel consolidation of research from the Arequipa region of southern Peru that integrates university theses written in Spanish alongside peer-reviewed journal articles. The objective is to provide a place-based complement to existing research in English scientific journals focused on effective tools for Cr treatment from tannery wastewater. Our consolidation categorized a total of 75 publications (70 theses and five peer-reviewed) into five distinct strategies for Cr treatment: adsorption (twenty-three studies), phytoremediation (eighteen studies), bioremediation (thirteen studies), electrocoagulation (five studies), and other techniques (fifteen studies). This synthesis highlighted potentially promising approaches that could be sustainably tailored to regional resources and waste products. This includes sorptive materials derived from food waste such as native achiote peels (B. orellana) and avocado seeds (P. americana) either used directly or as a feedstock for biochar. Other technologies include phytoremediation using microalgae and resident vascular plants and microbial bioremediation that capitalizes on indigenous bacteria and fungi. Promise was also discerned in studies that incorporated a combination of abiotic and biotic mechanisms tailored toward the region, such as infiltration using selective and bioactive materials, wetlands, solar distillation, iron-based coagulation and flocculation, and bioreactors. These findings provide a sustainable complement to prior global investigations for effective attenuation strategies by adding novel materials and techniques that could be further explored to assess the viability of implementation at pilot and larger scales. These promising technologies and the ability to tailor sustainable treatments toward local resources highlight the opportunity to prioritize the treatment of tannery wastewater to ensure a cleaner environment by informing policy makers, academics, and industry on technologies that could be adopted for implementation in the region.

1. Introduction

Toxicity associated with chromium (Cr) contamination in surface waters is a global challenge [1]. While natural processes contribute to the presence of Cr in water bodies, anthropogenic activities are of particular concern. An example of industrial release is the leather tanning process [2], which relies heavily on Cr salts. When not properly treated, the discharge of tannery wastewater results in elevated levels of Cr in the receiving waters [3]. These point sources of contamination present meaningful opportunities for in-depth studies focused on the development and implementation of efficient Cr remediation and removal techniques. Mitigating the detrimental impact of tannery wastewater discharge on aquatic ecosystems requires a comprehensive exploration of innovative treatment methodologies.
The mobility and toxicological impact of Cr is influenced by the oxidation state. Although considered less toxic, short-term human exposure to trivalent chromium (Cr(III)) causes irritation of the eyes and respiratory tract [4]. It can also be oxidized to the more toxic hexavalent chromium (Cr(VI)) phase in the presence of organic matter under mildly acidic conditions. Exposure to Cr(VI) in humans has been associated with allergic dermal reactions; when inhaled, it causes respiratory complications, irritation, bleeding from the nose, and potentially lung cancer. Cr(VI) ingestion can cause ulcers, weakening of the immune system, damage to the kidneys and liver, and genetic mutations [5]. Chromium can also damage aquatic ecosystems and decrease soil fertility where analogous oxidative and DNA damage can increase mortality in Cr-sensitive microorganisms. Chromium also affects plant enzyme activity and photosynthesis, causing hindered growth and reduced yields [6], and bioaccumulates in animal tissues and organs [7].
Chromium pollution is widespread globally [8,9,10,11,12,13], with a prominence in Latin American countries [4,14,15,16,17,18,19]. The country of Peru is a clear example of documented anthropogenically sourced Cr contamination, with an unfortunate wealth of studies that have reported surface water pollution in rivers situated throughout the country (Table 1). Arequipa is the largest leather-producing territory in Peru [20]. In 2010, there were 96 tanning companies in the Arequipa Region, of which 67 were located at the Rio Seco Industrial Park (RSIP), in the Cerro Colorado District (Regional Ordinance 121). However, more than 400 companies (small, medium, and large) were listed and grouped into 60 associations in 2017, of which nearly 100 operated at RSIP by 2023, generating over 3000 jobs [21].
Both Moran [27] and Luque [28] reported some degree of Cr pollution in the Chili River, which crosses the city of Arequipa. In querying a potential source, Salazar-Pinto et al. [29] and Tejada-Meza et al. [33] analyzed samples in a tributary to the Chili River that transits through the RSIP. These source waters exceeded Peru’s maximum contaminant limits (MCLs) of 0.5 mg/L [34], which were established for surface water effluents from industrial sectors such as materials manufacturing, beverage industries, and tanneries. Similarly, Vilca and Gordillo [30] investigated Arequipa’s RSIP and the Aashuayco Ravine for a period of three months, finding Cr associated sediments that were well in excess of the 1000 mg/kg Peruvian MCL [35].
In April 2023, our research team observed RSIP effluent downstream of processing activities. This tributary to the Chili River (Figure 1) is a small unlined surface water course that changed colors over time (from green to brown, most likely a reflection of upstream industrial dumping), with an unpleasant smell. As reported by Tejada-Meza et al. [33], the average total Cr content in this effluent was above 10 mg/L, with a flow estimate of 31 L/s at the time of the visit. While lower than the values reported by Aboulhassan et al. [36] in wastewaters from Moroccan tanneries, this exceeded the Peruvian MCL of 0.5 mg/L for total Cr. While speciation was not documented in that analysis, the chromium MCL is further extended to 0.1 mg/L for Cr(VI) [34], leading to the conclusion that the discharge of inadequately treated tannery wastewater by companies in RSIP has exacerbated this environmental challenge and efforts to mitigate the Cr content of RSIP wastewater have been insufficient. Tejada-Meza et al.’s [33] recent findings on the adverse effects of RSIP’s tannery wastewaters on bioindicator species reinforce these concerns.
While international literature reviews on Cr contamination, its negative health and environmental impacts, and remediation strategies are available [13,37,38], understanding Cr contamination challenges and identifying technological and sustainable solutions requires an approach that integrates local knowledge, societal acceptance of solutions [39], and the unique power of place-based inquiries. This manuscript summarizes and contextualizes research on Cr remediation, particularly as it relates to wastewater produced at RSIP. The analysis draws on Peruvian undergraduate and graduate theses from local academic institutions in Arequipa, alongside topical peer-reviewed articles identified through Google Scholar, Scopus, and Web of Science. Special emphasis is placed on Spanish-language publications, which have received limited international visibility, creating an opportunity to increase global understanding of place-based approaches toward the treatment of Cr from tannery wastewaters and foster mechanisms for local adoption.

2. Cr Removal Techniques Evaluated in the Arequipa Region

Although several authors have published international articles on Cr-contaminated soils in Arequipa [39,40,41,42], domestic investigations into the treatment of more complex tannery wastewater are relevant to this regional challenge. For example, Zapana et al. [42] used a pilot-scale constructed wetland system to treat RSIP’s tannery wastewater. Treatment was achieved primarily through bioaccumulation in macrophytes I. cernua and N. aquaticum, achieving ~98% removal for this industrial wastewater. Another investigation, Herrera-Yari et al. [43], used a solar parabolic cylindrical concentrator on synthetic RSIP tannery effluents, reducing 173 mg/L Cr(VI) to ~26 mg/L Cr(VI) (i.e., 85%) to less toxic Cr(III) through photocatalytic degradation. Zapana-Huarache and colleagues [44] designed and tested the application of the filamentous fungus P. citrinum, which removed 80% of influent Cr(VI). Finally, Bejarano-Meza et al. [45] used magnetic iron-based nanoparticles synthesized with O. europea bone extract to remove nearly all detectable Cr(VI) from RSIP’s tannery effluents. In addition to these peer-reviewed research articles written in English, Roque et al. [46] (Spanish) used the native bacterium C. aquaticus to attenuate 89% of the total chromium (34.8 to 3.82 mg/L) in the RSIP tannery wastewater of which ~70% was and remained Cr(III) (24.2 to 2.66 mg/L).
Of the total number of publications found in this synthesis (75), 38 experiments focused on treating total Cr (CrT), 48 on Cr(VI), and 12 on Cr(III) (98 experiments in total, as some studies analyzed more than one Cr species). However, the peer-reviewed publications about Cr removal from tannery wastewater in Arequipa summarized above are derived mostly from English journals. There is however a wealth of additional knowledge contained within 70 Spanish-written graduate (9) or undergraduate (61) theses focusing on Cr removal in the Arequipa Region. A large portion of the theses came from the faculties of Chemistry and Chemical Engineering (21%) and Environmental Engineering (25%), followed by Biology (15%), Biotechnology (11%), and Pharmacy (8%). The published university theses related to Cr removal applied to wastewater from tanneries increased in number within the last decade with a potential lull during and after the COVID-19 pandemic (Figure 2). More recent 2023 and 2024 publications (four and one, respectively) are not formally tallied because their numbers do not reflect the reality of publications, due to issues of time lapse between thesis completion and availability in online repositories.
Numerous techniques to remove or remediate the residual Cr content of tannery wastewaters were found in this synthesis. These techniques were categorized into five main groups: adsorption, phytoremediation, bioremediation, electrocoagulation, and a catch-all collection of other methods. Notably, there was no consistent approach across studies regarding key parameters such as pH, temperature, or treatment time. As a result, direct comparisons of Cr removal efficiency and rates are challenging. Additionally, studies from Arequipa indicate that the acidity of treated tannery wastewater from RSIP can vary, likely due to a combination of upstream dumping practices combined with specific adjustments for treatment methods, which can alter pH levels to differing extents (Figure 3). Building on these findings, the following sections describe the progress made in Cr removal research in Arequipa across different methodological approaches.

2.1. Adsorption

A total of 23 publications focused on the application of different absorbents to remove Cr from tannery wastewaters were found in the Arequipa Region. In terms of adsorption techniques, various plant adsorbents (leaves, fruits, seeds, tubers, shells, etc.) with a variety of porous sizes ranging from 75 to 350 µm were found with the capacities to absorb Cr. The extent of removal ranged from a low of 12% (lemon pectin) to removal rendering Cr non-detectable (achiote peel, avocado seed, and pea pods). Promising results (at least 95% removal) were obtained using materials such as sawdust, Peruvian potatoes, corn crown, rice peel, and olive pits (see Table 2). Moreover, considering both treatment times and Cr elimination, adsorption is feasible for large-scale projects. The results suggest that large amounts of Cr can be removed in short periods. For local waste materials, there are further potential economic advantages with respect to material acquisition and transport. For example, Deza and Salinas [47] eliminated 99% of Cr(VI) in 30 min using olive seed, while Pacheco [48] and Herrera and Sosa [49] were able to remove the majority of Cr(VI) in the same amount of time using corn crown and potatoes, respectively. Achiote peels [50] seem to be particularly efficient, with rapid removal of detectable Cr(VI) in only 5 min, while avocado seeds [51] were used to eliminate detectable Cr(VI) in 15 min. The latter two materials represent sustainable options, where common local food waste materials could be applied in Arequipa. However, while the use of waste products could be economically compelling, the associated costs of transporting and the application of these materials are currently unknown. While other materials performed relatively well, they either took hours to reach an adsorption peak or did not specify treatment times; for example, Paz [52] removed total Cr (CrT) to BD in 16 h using pea pods.
Finally, it is worth noting that all these adsorption experiments were conducted under acidic conditions with a pH between 1.1 and 6), which is lower than what was found using other treatment methods, or than reported by other studies conducted with RSIP tannery effluents [31]). Figure 4 presents a synthesis of these regional studies. While these studies were not explicitly designed to explore the strength of these trends (e.g., sorption isotherms) and rather were conducted at different pH values for different studies, this synthesis supports a trend toward more effective sorption under acidic conditions. Hence, future investigations of promising materials should quantify pH optima with consideration of sorption isotherms, synergy with effluent pH, and/or costs associated with chemical pH adjustments to better understand application viability.

2.2. Phytoremediation

A total of 18 phytoremediation-associated studies were found for the Arequipa Region. Both microalgae (Table 3a) and vascular plants (Table 3b) showed a high propensity to remove Cr from polluted tannery wastewater. Promising examples included the microalgae D. quadricauda [67], Chlorella sp., and Espirulina sp. [68], and the vascular plants I. cernua and N. aquaticum [40,67]. Of these, I. cernua was particularly promising, with 98% removal of Cr(VI) in only 5 days [42]. While other species performed well, they took weeks or months to reach results, making them less attractive for further large-scale sustainable applications. Moreover, since only six phytoremediation-based studies found in this synthesis documented both Cr removal (%) and pH, no clear pattern was identified in terms of removal capacity and pH values (R2 = 0.14 for CrT). Furthermore, it is pertinent to note that the pH values tested, when available, correspond to neutral conditions, which may facilitate plant growth [69].

2.3. Bioremediation

A total of 13 studies focused on microbial bioremediation (fungi and bacteria) for the treatment of Cr species from tannery wastewaters were found in Arequipa (Table 4a,b). While mechanisms may also include bioaccumulation and sorption, microbial reduction of Cr(IV) to Cr(III), potentially in association of the respiration of other electron acceptors such as sulfate, seemed particularly promising. Loaiza [83] isolated and cultivated a sulfate-reducing bacterial consortium using a Cr2(SO4)3 solution followed by cultivation in a bioreactor containing RSIP tannery effluents, eliminating most detectable Cr(VI). Additional studies on bacterial potential for Cr removal (Table 4a) included C. aquaticus and Streptococcus sp. [84], and K. oxycata [85], with 94% (CrT) and 92% (Cr(VI)) removal (from solution), respectively. Similarly, 89% of Cr(VI) was removed using the bacterium P. mirabilis [86].
Near-complete removal of Cr was also obtained using a system approach that integrated fungi with adsorption-based technologies (Table 4b). Solis [90] treated RSIP’s tannery wastewater with the fungus Penicillium sp. (2.2 g/L) under completely mixed conditions to remove 96% of Cr(III). When further combined with the microalga Acutodesmus dismorphus, zeolite, and activated carbon, the system achieved 99% removal. Similarly, the application of the fungus A. niger by Aymara [88] and the combination of native fungi and activated charcoal by Quina [89] resulted in 97% CrT removal.
While overall reduction/removal was laudable, many of these bacteria- and fungi-based studies required extended treatment times to obtain efficient results, rendering them less attractive techniques for removing Cr species from tannery wastewater. The most promising results, when considering both removal extent and treatment time, were obtained using the bacterium P. mirabilis [86] or the fungus S. cerevisiae [91], which eliminated nearly 90% of Cr(VI) in 36 and 48 h, respectively. Unlike in the sorptive studies, a clear correlation between Cr removal species and pH was harder to discern because of the limited number of experiments documenting both variables and a presumed requisite of appropriate and likely circumneutral pH constraints for effective microbial growth.

2.4. Electrocoagulation

Five studies in the Arequipa Region evaluated electrocoagulation (see Table 5), in which the authors applied electrical current with voltages between 0 and 40 volts and intensities between 0 and 60 amps to treat different Cr species from tannery wastewaters. Most experiments obtained high removal yields in all Cr species, except for Alvarez and Vilca [94], who applied a graphite anode and nickel-covered metal cathode, resulting in low treatment capacity for CrT. However, the authors obtained their results in a shorter time (only five minutes), compared to the rest of the experiments. Laura and Salinas [95] removed Cr(III) to BD in 30 min and no clear effects from voltage, intensity, or time on pollutant removal capacity were detected. This limited number of studies was conducted across a range of acidic pH values, which made it difficult to discern if there were any patterns between Cr removal and pH.

2.5. Other Cr Removal Techniques

Fifteen additional studies implemented technologies that are less clearly linked into the above classifications (Table 6). In some cases, nature-inspired approaches, such as biofilters, infiltration strategies, and wetlands, likely operated with a synergy of biological and/or abiotic reduction, bioaccumulation, and sorption-based mechanisms. Particular highlights for Cr removal included solar distillation [99], magnetic iron nanoparticles [100], artificial wetlands [101], iron-based coagulation-incorporating polymers [102], and infiltration systems [30,103,104]. Similar to the study already mentioned by Almiron et al. [41], Huillca [78] used a wetland system colonized with the plant species E. montevidensis to remove Cr from polluted waters, with a bioaccumulation factor of 13.9 and 22.0 through aerial and root systems, respectively.
Considering only studies with sufficient additional information beyond removal extent, and besides the already mentioned peer-review studies done by Herrera-Yari et al. [43] and Bejarano-Meza et al. [45], particularly promising results were obtained using infiltration approaches. For example, Leguía and Puma [104] used a bio-sand filter to remove 99% of CrT in 46 min. Similarly, Rendón [103] used sodium bentonite filters to remove 94% of Cr(VI) in 30 min, while Paye and Gomez [105] attenuated CrT to below detection in eight hours using a mixture of zeolite and perlite. Unlike applied sorptive technologies, these studies tended toward increased efficiency at higher pH values (R2 = 0.20 and 0.94 for Cr(VI) and CrT, respectively), suggesting a potential interaction between multiple attenuation mechanisms.

3. Discussion

3.1. General Analysis

Several global reviews on how different techniques are used to treat CrT, Cr(III), and/or Cr(VI) from tannery wastewaters already exist [111,112,113,114,115,116]. When compared to these international efforts, the techniques applied in Arequipa to remove Cr species from tannery wastewaters feature place-based adaptations that could be applied sustainably in the region. The socioeconomic status of southern Peru favors practical treatment strategies for the removal of Cr from tannery wastewater that rely on inexpensive and easily available materials and techniques. Nanotechnology, for example, is a common method used to treat Cr from wastewater [113,117,118], but only two studies [100,110] used this technique in Arequipa. Similarly, authors have used chemical precipitation of Cr (VI) worldwide in tannery wastewater [119,120], but no Arequipa-specific studies were found using this method. However, Portada [121] demonstrated 74% Cr(III) removal from tannery wastewaters through chemical precipitation in only 30 min in Puno (southern Peru). Another common method not found is the use of dry (and presumably limited biological activity) microbial bacterial biomass for Cr adsorption, as achieved by Rizvi et al. [122] in India, who used desiccated biomass comprised of P. aeruginosa, B. subtilis, and A. chroococcum to remove Cr and other metals and highlighted 96% removal by B. subtilis. While not directly explored, this highlights a potential synergy in sorption with biological processes for live microbial cells. International studies provide a strong precedent for the need to further evaluate various treatment methods for tannery wastewaters, including coagulation and flocculation, electrochemical treatments such as electro-flotation and electro-oxidation (distinct from electrocoagulation presented herein), ion exchange, membrane filtration, electrodialysis, photocatalysis, and biological treatments (e.g., trickling filters and aerated lagoons) [111,112,113,114,115,116,117,118,119,120]. While these methods have been studied in various contexts, Arequipa presents a relevant test case for assessing their applicability to local tannery wastewater conditions.
A direct comparison is unfortunately hindered by the preference of Arequipa authors to express their results in terms of percent removal as opposed to benchmarks against material mass (e.g., mg/kg) and the establishment of adsorption isotherms, making it difficult to develop a global comparative analysis. Expressing results in material-relevant units that capture mass treatment capability, isotherms, and normalization or optimization of treatment conditions such as pH, temperature, and treatment times, as previously discussed by Garcia-Chevesich et al. [123], would facilitate benchmarking regional treatment strategies against the global literature to increase this contribution. Nevertheless, this compilation of place-based studies holds significant value. Rather, this unique place-based compilation of otherwise not visible research provides trajectories and opportunities that build on local understanding and acceptance of potential materials and technologies that could be appropriate for local solutions to this wastewater quality challenge.
Tanning industries (such as those operating in RSIP in Arequipa) generate effluents that can have highly variable pH values (between 2 and 9) due to the chemical processes involved in transforming animal hides into leather, which include the use of acids, bases, and other chemicals [124]. Analogous variability was confirmed in our place-based analysis across sites in the region. While Tejada-Meza et al. [33] reported that the pH of the RSIP’s tannery effluents was 8.2 ± 0.4 during their analysis window, this may not be constant because of the changing quality (color/smell) of the surface water effluent observed by our team during the field visit (see Section 1 for details), most likely a result of upstream dumping. The potential variability of tannery wastewater requires effluent-specific analysis of parameters, such as pH, ionic strength, organic and inorganic concentrations, temporal variability, and flow, to most effectively select and optimize treatment technologies (and potential multistage or adaptable approaches) that help achieve environmental discharge standards.

3.2. Promising Strategies for Cr Attenuation in Arequipa

3.2.1. Adsorption

Adsorption is a frequently applied technique in the treatment of Cr-contaminated water. In the specific case of treating Cr-contaminated tannery wastewater, adsorption is used to eliminate Cr ions by binding them to a solid adsorbent material [125]. Sorption applications that rely on water contact are straightforward is to implement and can be applied toward the removal of a diverse array of heavy metals, even at trace concentrations [126,127,128,129,130]. They can be further tailored toward specific metals with the capability for recovery, regeneration, and reuse, which can contribute to cost-effectiveness and provide a more environmentally benign alternative to chemical dosing [127,128,129,130,131]. However, as sorbents have a finite supply of active sites, analyses such as sorption isotherms should be quantified to understand attenuation capacity and then extended to explore the viability of pilot-scale applications with complex effluent matrices.
With these considerations as well as related investigations into cost-benefit and lifecycle analysis, adsorption materials could be applied to the region because they can be derived from locally abundant food waste products or be used as feedstocks for biochar, supporting broader sustainability themes. With the caveat of limited context to establish isotherms and equilibrium kinetics, the most promising adsorption results (>95% removal) were documented for plant materials (achiote peels, avocado seed, pea pods, sawdust, potatoes, corn crown and rice peel, and olive pits) that are present and, in most cases, waste products in the Arequipa Region of southern Peru (see Table 2 for details). Achiote peels [50] and avocado seeds [51] were particularly promising in terms of percent removal and time. This synergy of locally abundant waste materials and effective attenuation suggests an opportunity to further explore applications at scale to better ascertain potential sustainability.
As previously discussed in Section 3.1 and depicted in Figure 4, the results collectively suggest that more acidic waters tend to eliminate more Cr (in all forms) during sorption applications, agreeing with studies developed for wastewaters in other parts of the world [132]. Unfortunately, only one author [66] mentions surface treatment area (690 m2/g), while the rest simply report particle diameter (75–850 µm). Despite the limitations of the units previously discussed and in considering the available information (i.e., % removal most commonly), some results listed in Table 2 appear to be competitive with other Peruvian and international studies that have focused on testing different materials to remove Cr from tannery wastewaters using adsorption-based approaches. Studies within other regions of Peru identified adsorption onto materials such as wood ash [133], moringa seeds [134], Eucalyptus sp. leaves [135], and lemon peel [136] as efficient methods to remediate Cr in water.
Similarly, these Arequipa-centric results are analogous to results obtained in other countries. For example, similar to Mollinedo and Huanca [51] in Arequipa, Hernandez et al. [137] were able to achieve Cr(VI) removal to BD levels using avocado waste biomass in Bolivia, while Boeykens et al. [138] removed 80% of Cr(VI) using avocado seeds from polluted waters in Argentina. Bansal et al. [139] and Sivakumar [140] achieved 77% and 88% Cr(VI) removal, respectively, from polluted tannery wastewaters in India using rice husk, which compares favorably to the 95% Cr(VI) removed by Pacheco [48] in Arequipa using this material. Mass-normalized removal from Arequipa included 2.2 mg/g with sawdust [57] and 4.3 mg/g with banana peel [141].
As is true for many pollutants, activated carbon and related products such as waste-derived biochar (when originated from organic matter) are particularly appropriate for Cr attenuation. This could also limit the ancillary release of nutrients and soluble organics associated with otherwise unprocessed food waste. Fahim et al. [142] applied activated carbon to remove up to 99% Cr(III) from Egyptian tannery wastewater and Payel and Sarker [143] removed 99.8% of CrT from these toxic industrial fluids using banana flower stalk (rachis) biochar in Bangladesh. A study in Arequipa reported 52 mg/g achieved with biochar from rice husk [66]. This compares favorably to what Mohan et al. [144] achieved in India using low-cost biochar derived from agricultural waste materials and cloth-like deployment, with a 22 mg/g Cr(VI) removal capacity from tannery wastewaters. Moreover, Estrella [145] used a composite of activated carbon impregnated with multiwalled carbon nanotubes in Ecuador to remove 28 mg/g of the contaminant in 90 min.
Our local place-based synthesis identified adsorption materials not previously described in the Peruvian and international literature, such as Arequipan papaya seed, sancayo cacti peel, Peruvian potato varieties, and quinoa (see Table 2). Of these, the former two materials are considered agricultural waste, whereas the latter two have commercial value as agricultural products. The most promising materials identified in this synthesis (achiote peels and avocado seeds) add a local novel feedstock for Cr treatment from tannery wastewater as they are considered waste in Arequipa; although avocado seeds have been used to treat other types of polluted waters by Mahmoud et al. [146] in Egypt and Boeykens et al. [138] in Argentina, their application to tannery wastewaters is novel. Another effective waste product identified in this synthesis is olive seed. In building upon this theme, Malkoc et al. [147] removed 12.2 mg/g of Cr(VI) in Turkey using pomace (an industrial olive oil waste product which contains 59–74% olive seed and pulp); even more promising, El-Aassar et al. [148] removed 137.7 mg/g of Cr(VI) using a blend of olive seed waste, anthracite, and chitosan. Though shrimp carapace waste material has been studied for metal removal in India and Saudi Arabia [149,150], our synthesis adds locally abundant freshwater river shrimp (P. serratus) to this body of knowledge. Indeed, grounded shrimp skeleton was shown to be more effective at removing Cr species than commercial chitin/chitosan, as concluded by Fabbricino and Gallo [151] in Italy.
In addressing potential applications, it is recommended that the most efficient materials mentioned above, in synergy with local abundance as easily acquired waste products as well as considerations of novelty, be further investigated to explore their ability to remove Cr and other metals from tannery wastewaters at larger scales, their conversion and analysis of resultant biochar, and with considerations of transportation, implementation, and disposal costs and impacts. Similarly, other materials already tested for Cr removal (e.g., passionfruit by Campos-Flores et al. [152] in Trujillo, Peru, or clay pellets to increase adsorption in Cameroon [153]) or for the local treatment of other metals (see Garcia-Chevesich et al. [123] for details) should also be tested in Arequipa for Cr removal from tannery wastewaters. The place-based investigations would also benefit from exploration of emerging adsorbent-based techniques applied toward analogous wastewaters elsewhere, such as nanobiocomposite spheres [117] and polymer-based adsorbents (e.g., Chavez and Alpaca [102]). Finally, a technoeconomic and sustainability evaluation should complement the feasibility of using promising materials directly and as feedstocks for biochar to further explore their applicability toward larger-scale tannery wastewater treatment applications.

3.2.2. Phytoremediation

Phytoremediation is an eco-technological method based on the ability of algae or larger plants to adsorb, bioaccumulate, and/or degrade aqueous pollutants [154,155]. It offers the potential for an inexpensive method that does not rely on skilled labor for implementation [156]. The efficacy of Cr removal via phytoremediation depends on various factors including plant or algal species, the initial concentration of Cr in the treated water, environmental conditions, and the duration of exposure [155]. While phytoremediation presents a sustainable and economically favorable approach for the extraction of metals from contaminated waters, its application is constrained by slower treatment timeframes, limited capacity, liabilities with resultant bioaccumulation, and reliance on environmental conditions [157].
Based on percent removal, promising results from Arequipa (Table 3a,b) were achieved with I. cernua and N. aquaticum [72], and D. quadricauda [67], with further promise in other Peruvian regions that are using P. persica [158]. The international community has studied Typha spp. [159] in the USA, C. alternifolius, T. domingensis, P. karaka, and B. aethiopum [160], P. coccineum, B. mutica, and C. papyrus [161] in Ethiopia, and Trichoderma sp. [162] in India, with lesser efficiency for E. craassipes in Bangladesh [163].
While most Arequipan reports focused on percent removal, Flores [79] documented removal of 560 mg/kg using Tagetes sp. The locally cultivated microalga species D. quadricauda [67] was not previously documented in the international literature for this application, as summarized in the literature review on microalgal applications toward contaminant remediation by Jácome-Pilco et al. [164]. The Arequipa studies identified other vascular plant species not previously studied for Cr removal from tannery wastewaters, including Buddleja sp., I. cernua, N. aquaticum, H. macrophylla, C. murale, E. montevidensis, B. salicifolia, T. integrifolia, C. ruizianus, and I. cernua. However, as previously discussed, the species that seems to be the most promising and should be further explored is I. cernua, a native species from southern Peru that is novel in the field of Cr removal from tannery wastewater. In embracing a theme of utilizing a combination of different mechanisms and technologies, I. cernua could be incorporated in constructed wetland-based treatment systems as reported by Morales-Paredes et al. [165]. However, the implementation of larger-scale phytoremediation-based treatment systems in Arequipa is accompanied by environmental and practical constraints such as the need to harvest and dispose of plants that bioaccumulate this toxic metal. Furthermore, Arequipa has an arid climate, which could constrain water availability. However, recent climate change and anthropogenic projections [166] suggest that surface water resource availability is expected to increase in the region and hence could mitigate this concern.

3.2.3. Bioremediation

Bioremediation employs live microorganisms (including bacteria or fungi) to attenuate metal contaminants from polluted waters through mechanisms such as redox cycling, precipitation, indirect complexation (e.g., with associated iron oxyhydroxides), and bioaccumulation [167,168]. Microorganisms are pivotal in bioremediation as they leverage contaminants as a resource for energy or nutrients [169] or through fortuitous biotransformation reactions that are more cometabolic in nature with less obvious benefit to metabolic processes [170,171]. Of particular relevance to bioremediation is the reduction of Cr(VI) to Cr(III) to limit mobility and toxicity [172] (see details in Section 1). Investigations focusing on enzymatic processes are of great interest for chromate bioremediation, as they represent detoxification processes in inherently Cr-resistant microorganisms [173].
The utilization of nature-based solutions that incorporate bioremediation for the treatment of pollutants such as Cr offers an efficient and sustainable alternative. Bioremediation can be more cost-effective than engineered applications, such as chemical precipitation or membrane filtration, with lower material, operational, and waste costs [174,175]. Despite these benefits, bioremediation can harbor kinetic limitations, potentially requiring weeks or even months and larger physical treatment footprints when contrasted with some of the more rapid technologies explored herein and elsewhere [176]. Extended treatment durations may diminish the efficiency of systems designed for large-scale or continuous-flow operations, particularly in contexts necessitating larger flows and swift remediation. This issue is particularly pronounced in scenarios involving industrial effluents from RSIP, where prompt interventions are essential to avert further contamination [177]. Moreover, these processes necessitate additional resources such as energy, nutrients, and other substrates, thereby escalating operational costs and constraining the scalability of these systems [166,178]. Microbial or fungal colonies may also be adversely impacted by environmental stressors, the environmental variability of introduced tannery wastewaters, and the depletion of metabolic resources during prolonged operations, consequently undermining long-term efficacy and the system resilience [176]. Bioremediation can also yield toxic or more mobile by-products, potentially exacerbating pollution or adversely affecting ecosystems [178]. Moreover, the accumulation of heavy metals in resultant biomass can necessitate effective removal or disposal strategies [174]. Temporal complexities further necessitate system optimization and continuous monitoring to maintain stability and effectiveness in treatment processes [179,180]. These are all surmountable considerations that should be kept in mind to optimize bioremediation systems and tailor them toward local conditions to ensure that overall sustainability metrics are achieved.
Promising results within the Arequipa-specific literature to remove Cr species through bioremediation (Table 4a,b) came from the use of unspecified sulfate-reducing bacteria [83], the fungi Penicillium sp. [90] and A. niger [88], and the combination of filamentous fungi with activated charcoal [89]. These results entailing greater than 97% attenuation of Cr species from tannery wastewater can be compared with other Peruvian and international research. At the national level, similar results were obtained using A. niger [181] and Pseudomona sp. [123,182]. Internationally speaking, similar results were obtained using A. niger in Mexico [183] and Pseudomona sp. in Ecuador [184], and E. coli and Pseudomonas sp. in Argentina [185] and China [186]. The Arequipan author Aymara [88] attained 48 mg/g of Cr removal with A. niger, while Chen et al. [187] exceeded this capacity by applying a hydroxyl-functionalized magnetic fungal nanocomposite in China. In addition, sulfate-reducing bacteria (SRB) have been applied more widely to remove challenging heavy metals through the formation of metal sulfides, with a powerful precedent in treating mining-impacted waters [188,189,190]. Besides Cr, Cu, and Zn, Lloyd et al. [191] used SRB to eliminate Tc(VII), Cr(VI), Se(IV), and Te(IV) from polluted solutions. The implementation of sulfate reduction and other bioremediation strategies likely necessitates the construction and maintenance of an actively managed or passive bioreactor [189,190], while phytoplankton can work with less infrastructure demand to treat Cr-contaminated tannery wastewater in the Arequipa Region. A bioremediation application would have to consider footprint, flow constraints, and potential fouling for optimal removal to be effective.
Furthermore, though some microorganisms used in Arequipa to remove Cr species from tannery wastewater are not found in the international literature, the results revealed that the bacterium P. mirabilis [86] and the fungus S. cerevisiae [91] were particularly promising for further exploration into treatment-relevant investigations that address long-term viability and large-scale applications. Though the former species has been applied to remove Cr from polluted waters [192], we are not aware of its application toward tannery wastewaters outside of these Arequipa-specific studies. S. cerevisiae, as documented by Benazir et al. [193] in Indian tannery effluents, attained similar results to those obtained in Arequipa and improved overall treatment through mixed consortia, which is an approach that should be explored in southern Peru.

3.2.4. Electrocoagulation

Electrocoagulation has been applied in industrial wastewater treatment facilities for discharge or recycling. This technique entails applying an electric current to the water, prompting the coagulation and precipitation of suspended and dissolved contaminants [194]. Most of the surveyed experiments employing electrocoagulation resulted in nearly complete Cr removal (Table 5). A highlight was led by Laura and Salinas [95], who applied aluminum electrodes (locally the most common method) to remove all Cr species to below detection limits from tannery wastewater in only 30 min. Juarez and Osorio [97] achieved similar results using iron anodes and aluminum cathodes. However, lower Cr removal was documented by Alvarez and Vilca [94] using a graphite anode and nickel-covered metal cathodes, while near complete Cr removal was achieved in other Peruvian regions applying aluminum cathodes/anodes pairs [195,196,197,198,199], as well as copper cathodes and lead anodes [195]. Among competitive international results, Gao et al. [200] and Aoudj et al. [201] combined electrocoagulation and electroflotation to remove Cr in Hong Kong and Algeria, respectively, both decreasing Cr concentrations below national standards.
Electrocoagulation presents several advantages for metal extraction from contaminated waters, notably high efficiency, and rapid removal [202]. The technology requires readily available electrical equipment and minimal chemical additives [202]. It is capable of treating a wide variety of water types and pollutants [202], thereby making it suitable for diverse industrial wastewaters such as RSIP effluents. However, electrocoagulation requires disproportionately high energy inputs when contrasted with other engineered treatment technologies, can be less efficient in highly saline or acidic waters, produces a waste sludge that necessitates dewatering and potentially hazardous disposal, and electrodes rapidly corrode, with a need for frequent replacement [203]. Hence, despite the promise of nearly complete removal in relatively short periods of time, electrocoagulation is expensive compared to other approaches due to infrastructure, energy, and other operational costs [204]. Therefore, analysis to evaluate the economic feasibility of this technique for pilot and large-scale treatment of tannery wastewater in Arequipa may best be used as a benchmark when exploring potentially more sustainable treatment technologies such as those outlined prior to this section.

3.2.5. Other Cr Removal Techniques

The high solar radiation present in Arequipa lends promise toward solar distillation, which uses solar energy to evaporate water from a polluted source to be later condensed into a clean container. However, much like membrane-based exclusion, evaporative applications result in a concentrated waste stream that necessitates further treatment or disposal and could present a barrier to sustainable implementation [205]. In addition to extensive removal as documented by Herrera-Yari et al. [43] (Table 6), Anahua and Pacheco [99] were able to eliminate CrT to BD using solar distillation. However, those implementations took days to weeks, which provides a temporal constraint for adoption. While treatment time is a potential barrier to implementation, novel strategies such as the utilization of materials with high thermal absorption capacity (e.g., black copper, carbon-based nanomaterials, specialized coatings) can accelerate the evaporation process. Further gains can be achieved by optimizing the evaporation surface area, incorporating simple and portable photothermal evaporation structures [206], or possible integration with other technologies explored herein.
Promising Arequipa results were also obtained using infiltration-type strategies in geomedia such as biosand filters (99% of CrT in 46 min), sodium bentonite filters (94% Cr(VI) in 30 min), and zeolite with perlite (CrT to BD in eight hours), as listed in Table 6. This is consistent with the findings of others; for example, Kocaman et al. [207] used biosand filters (among other treatments) to eliminate 0.19 ppm of Cr from industrial wastewaters in Turkey, and Ruiz [100] eliminated CrT to BD using magnetite nanoparticles.
The application of constructed wetlands (as also documented by Arizábal [106] in Arequipa) can bring a series of environmental and social benefits to this arid region while also helping to address the alarming reduction in and need for protection of wetland ecosystems in Peru, as recently reported by Romero-Mariscal et al. [208]. In our synthesis, Lima [101] removed 99% of Cr using constructed wetlands in Arequipa; this is analogous but superior to the 85% removal obtained by Kong et al. [209] in constructed wetlands in China. Similarly, Rojas [107] used diatoms in wetlands to obtain an impressive 125 mg/g Cr removal in Arequipa. Wetlands also provide a synergy in promising phytoremediation technologies, as highlighted earlier, along with additional biogeochemical processes that could reduce and bind soluble Cr in sediments. However, while wetlands show promise to remove Cr, further studies are needed to understand the fate and bioavailability of Cr complexes and species once sequestered in wetland systems and how to best manage sequestration to limit long-term environmental liabilities.

4. Conclusions and Recommendations

As Cr pollution from tannery wastewater is a problem in the Arequipa Region of southern Peru, this place-based synthesis represents an important contribution to the state of the art on how to remove this dangerous metal from contaminated waters, with the purpose of having a cleaner environment and a more sustainable leather production. In this literature review, a total of 75 (70 theses and five peer-reviewed, most of them in Spanish) studies evaluating different techniques to remove Cr species from polluted tannery wastewaters were found for the Arequipa Region. The main technical approaches evaluated were adsorption (twenty-three studies), phytoremediation (eighteen studies), microbial bioremediation (thirteen studies), electrocoagulation (five studies), and a broader catch-all category, often combining multiple attenuation mechanisms, which did not cleanly fall into those other categories (fifteen studies).
Numerous studies identified in this synthesis were able to remove the majority of detectable Cr from polluted tannery wastewater. Moreover, efficient techniques explored in the region were identified and were consistent with findings elsewhere using similar materials. Promising place-based solutions included adsorption materials originated from local food waste, such as native achiote peels (B. orellana) and avocado seeds (P. americana). The use of agricultural waste, such as unprocessed adsorbents or via conversion to biochar, emerged more broadly as a promising approach for large-scale applications in the region due to local availability and rapid treatment times. However, with only 23 studies, and considering the long list of widely available local organic waste materials found by Garcia-Chevesich et al. [123], further exploration into this category toward its applicability in removing Cr from tannery wastewaters could yield further insights. Importantly, these subsequent studies should incorporate the variables needed to understand the adsorption isotherms to enable system predictions and optimization, as well as explore the costs and carbon footprints associated with their adoption.
Other locally promising technologies included phytoremediation using certain microalgae and vascular plants, and bioremediation using bacteria and fungi. At scale, bioremediation applications could be implemented using more holistic strategies that capitalize on both biotic and abiotic mechanisms such as constructed wetlands and sulfate-reducing bioreactors. Additionally, a variety of infiltration strategies employing applicable geomedia and solar distillation in this arid and sunlight-intense region could offer favorable benefits for local applications. These could be enhanced with focused investigations and benchmarks against proven technologies to help develop sustainable and locally tailored technologies to more effectively treat this point source of pollution in Arequipa. In exploring these potential technologies, additional analyses should quantify overall sustainability metrics such as cost, availability, transportation, social benefits, carbon footprint, and feasibility at larger scales.
Future investigations should also focus on collaborative efforts between research institutions and the private sector to achieve common treatment goals while also combining treatment approaches (e.g., using I. cernua in constructed wetlands or hybrid approaches that integrate engineered and nature-based solutions). Equally important is to highlight the need to explore the application of proven and emerging treatment technologies not tested in the region, such as chemical precipitation, ion exchange, membrane filtration, trickling filters, and nanocomposite spheres. Moreover, investigations need to better discern attenuation mechanisms, develop process-specific understanding (e.g., sorption isotherms), provide critical comparisons of effectiveness against proven technology benchmarks, and provide cost-benefit and lifecycle analyses to help prioritize feasible solutions.
Despite an abundance of societal interest and documented efforts from local scientists to remove Cr from tannery wastewaters at RSIP, it is evident that those or other initiatives have not been adopted to address ongoing, industry-sourced Cr pollution in Arequipa. This synthesis could provide inspiration for the further exploration and adoption of sustainable approaches that could be used by local authorities, policy makers, and the private sector as they develop mitigation strategies for tannery wastewater treatment that better protect human and environmental health.

Author Contributions

Conceptualization, L.F.M.-P. and P.A.G.-C.; methodology, L.F.M.-P. and P.A.G.-C.; validation, G.R.-M., A.A.-R. and J.T.-Q.; formal analysis, L.F.M.-P., P.A.G.-C., G.R.-M., A.A.-R., J.T.-Q., G.V. and J.O.S.; investigation, L.F.M.-P., G.R.-M., A.A.-R. and J.T.-Q.; resources, L.F.M.-P. and J.O.S.; data curation, L.F.M.-P., G.R.-M., A.A.-R. and J.T.-Q.; writing—original draft preparation, L.F.M.-P., P.A.G.-C., G.R.-M., A.A.-R., J.T.-Q., T.R.T.-P., G.V. and J.O.S.; writing—review and editing, G.V. and J.O.S.; visualization, L.F.M.-P.; supervision, P.A.G.-C., G.V. and J.O.S.; project administration, L.F.M.-P. and J.O.S.; funding acquisition, L.F.M.-P. and J.O.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Center for Mining Sustainability (Phase 3, “Cleaner water in Arequipa using sillar and diatoms: an applied research and education plan”), a joint venture between Colorado School of Mines (USA) and National University of San Agustin (Peru).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Acknowledgments

The authors thank the graduate and undergraduate students from Arequipa for their outstanding and valuable work toward the decontamination of the RSIP’s tannery effluents and the development of this place-based synthesis.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Jarvis, P.J. Heavy Metal Pollution: An Annotated Bibliography (1976–1980); Norwich, Geo-Books Avudainayagam; Geo Abstracts: Norwich, UK, 1983. [Google Scholar]
  2. Arti; Mehra, R. Analysis of heavy metals and toxicity level in the tannery effluent and the environs. Environ. Monit. Assess. 2023, 195, 554. [Google Scholar] [CrossRef] [PubMed]
  3. Ghezzi, L.; Mugnaioli, E.; Perchiazzi, N.; Duce, C.; Pelosi, C.; Zamponi, E.; Pollastri, S.; Campanella, B.; Onor, M.; Abdellatief, M.; et al. Hexavalent chromium release over time from a pyrolyzed Cr-bearing tannery sludge. Sci. Rep. 2023, 13, 16283. [Google Scholar] [CrossRef]
  4. Chávez, A. Descripción de la nocividad del cromo proveniente de la industria curtiembre y de las posibles formas de removerlo. Rev. Ing. Univ. Medellín 2010, 9, 41–49. [Google Scholar]
  5. Montoya, N.P.M.; Aguilar Casas, P.; Wandurraga, C.C. Plomo, cromo III y cromo VI y sus efectos sobre la salud humana. Revista Ciencia y Tecnología para la Salud Visual y Ocular 2010, 8, 77–88. [Google Scholar]
  6. Ao, M.; Chen, X.; Deng, T.; Sun, S.; Tang, Y.; Morel, J.L.; Qiu, R.; Wang, S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. J. Hazard. Mater. 2022, 424, 127233. [Google Scholar] [CrossRef] [PubMed]
  7. Tejada-Purizaca, T.R.; Garcia-Chevesich, P.A.; Ticona-Quea, J.; Martínez, G.; Martínez, K.; Morales-Paredes, L.; Romero-Mariscal, G.; Arenazas-Rodríguez, A.; Vanzin, G.; Sharp, J.O.; et al. Heavy Metal Bioaccumulation in Peruvian Food and Medicinal Products. Foods 2024, 13, 762. [Google Scholar] [CrossRef] [PubMed]
  8. Yanuar, A.T.; Ilmi, N.; Amin, A.A.; Pramudia, Z.; Susanti, Y.A.D.; Salamah, L.N.; Kurniawan, A. Analysis of biofilms as a biomonitoring agent for Cr(VI) pollution in Cokro River, Malang Regency. AIP Conf. Proc. 2021, 2353, 030102. [Google Scholar] [CrossRef]
  9. He, X.; Chen, G.; Fang, Z.; Liang, W.; Li, B.; Tang, J.; Sun, Y.; Qin, L. Source identification of chromium in the sediments of the Xiaoqing River and Laizhou Bay: A chromium stable isotope perspective. Environ. Pollut. 2020, 264, 114686. [Google Scholar] [CrossRef]
  10. Majnoni, F.; Alipour, H.; Hassanpour, M.; Banagar, G.; Ajorlo, M. Assessment of Cd, Cr and Pb Pollution in Sediment and Water of Gheshlagh River, Iran, in September 2013. Iran. J. Toxicol. 2015, 9, 1264–1270. [Google Scholar]
  11. Filgueiras, A.; Lavilla, I.; Bendicho, C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: A case study. Sci. Total Environ. 2004, 330, 115–129. [Google Scholar] [CrossRef]
  12. Arauzo, M.; Rivera, M.; Valladolid, M.; Noren, C.; Cedenilla, O. Contaminación por cromo en el agua intersticial, en el agua del cauce y en los sedimentos del río Jarama. Limnetica 2003, 22, 85–98. [Google Scholar] [CrossRef]
  13. Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef] [PubMed]
  14. Medina, M.A. Determinación de Cromo Hexavalente en Descargas de Aguas Residuales de una Curtiembre, Ubicada en el Sector de Izamba, Mediante Espectrofotometría de Absorción Atómica. Bachelor’s Thesis, Pontificia Universidad Católica del Ecuador, Facultad de Ciencias Exactas y Naturales, Quito, Ecuador, 2010; 100p. [Google Scholar]
  15. Ceballos, E.; Margalef-Martí, R.; Carrey, R.; Frei, R.; Otero, N.; Soler, A.; Ayora, C. Characterisation of the natural attenuation of chromium contamination in the presence of nitrate using isotopic methods. A case study from the Matanza-Riachuelo River basin, Argentina. Sci. Total Environ. 2020, 699, 134331. [Google Scholar] [CrossRef]
  16. González, A.; Palma, M.G.; Ziegler, K.; González, E.; Álvarez, M.A. Contamination and risk assessment of heavy metals in bottom sediments from Lake Valencia, Venezuela. E3S Web Conf. 2013, 1, 16001. [Google Scholar] [CrossRef]
  17. Janssens de Bisthoven, L.; Gerhardt, A.; Maldonado, M. Behavioral Bioassay with a Local Tadpole (Pleuroderma cinereum) from River Rocha, Bolivia, in River Water Spiked with Chromium 6. Bull. Environ. Contam. Toxicol. 2004, 72, 422–428. [Google Scholar] [CrossRef]
  18. Tapia, J.; Vargas-Chacoff, L.; Bertrán, C.; Carrasco, G.; Torres, F.; Pinto, R.; Urzúa, S.; Valderrama, A.; Letelier, L. Study of the content of cadmium, chromium and lead in bivalve molluscs of the Pacific Ocean (Maule Region, Chile). Food Chem. 2010, 121, 666–671. [Google Scholar] [CrossRef]
  19. Matamet, F.R.; Bonotto, D. Evaluation of the chromium contamination at Ribeirão dos Bagres, Franca (SP), Brazil, by the 210Pb method. Appl. Radiat. Isot. 2013, 82, 359–369. [Google Scholar] [CrossRef] [PubMed]
  20. Chipana Tuma, G.; Maldonado Adco, Y.; Maita Villegas, J.C.; Soto Rendom, K.; Durand Caceres, C.C. Curtiembres en Arequipa Desde el 2010 al 2017. Bachelor’s Thesis, Universidad Tecnológica del Perú, Arequipa, Peru, 2017. [Google Scholar]
  21. El Buho. Empresarios del Cuero del Parque Industrial Denuncian Excesiva Fiscalización de OEFA. 2023. Available online: https://elbuho.pe/2023/09/empresarios-del-cuero-del-parque-industrial-denuncian-excesiva-fiscalizacion-e-incumplimiento-compromisos-del-gra/ (accessed on 11 July 2024).
  22. Sánchez-Araujo, V.G.; Chávez-Araujo, E.R.; Palomino-Pastrana, P.A.; Alvarez-Ticllasuca, A. Presencia de metales pesados del río Ichu en zonas adyacentes al distrito de Huancavelica, Perú. Polo Del Conoc. 2021, 6, 3–13. [Google Scholar]
  23. Quispealaya, L.; Acharte, L.M.; Enríquez, A.; Asto Jeny, M. Contaminación con metales pesados en sedimentos y truchas en los ríos Opamayo y Sicra, Huancavelica-Perú. Revista de Investigación Científica Siglo XXI 2021, 1, 68–78. [Google Scholar] [CrossRef]
  24. Mejía Burgos, O. Contaminación de Agua por Metales Producto de la Actividad Minera Metálica en el Río Zaña, Chiclayo-Lambayeque. Bachelor’s Thesis, Universidad de Lambayeque, Lambayeque, Peru, 2016. [Google Scholar]
  25. Nima Maza, R.L. Determinación Grado de Contaminación por Metales Pesados Generados por la Actividad Minera Artesanal; para Evaluar la Calidad del Agua del Río Quiroz Sector San Sebastián-Pampa Larga–Suyo-Piura. Master’s Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 2020. [Google Scholar]
  26. Alvarez Arteaga, R.J. Evaluación de Metales Pesados en Agua del Río Ramis Sector Crucero—San Anton y Su Interpretación en Software; Repositorio UNA 2018; UNAP-Institucional: Geneva, Switzerland, 2018. [Google Scholar]
  27. Moran Medina, K.L. Comportamiento de la Concentración de Metales Pesados y Su Influencia en la Calidad del Agua, Parte Baja del Río Chili Arequipa 2017–2019. Master’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2021. [Google Scholar]
  28. Luque Zurita, D.S. Determinación de la Remanencia de Contaminación por Cromo en el Río Chili, Arequipa–Perú. Ph.D. Thesis, Universidad Nacional de San Agustín, Arequipa, Peru, 2020. [Google Scholar]
  29. Salazar Pinto, B. Estudio de la contaminación por cromo (Cr) en el río Chili y Parque Industrial Río Seco (PIRS), Arequipa, Perú. 2015–2016. Veritas 2017, 16, 43–46. [Google Scholar]
  30. Vilca Castro, F.; Gordillo Vilca, Y.B. Retención de Metales Pesados en Suelos y su Impacto Ambiental: Caso Aguas Residuales–Parque Industrial Río Seco. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2016. [Google Scholar]
  31. Quispe Yana, R. Concentración de metales pesados: Cromo, cadmio y plomo en los sedimentos superficiales en el río Coata, Perú. Rev. Boliv. Química 2019, 36, 83–90. [Google Scholar]
  32. Calsin Choque, M.D. Evaluación de la Concentración de Cromo, Cadmio y Plomo en Sedimentos Superficiales en el rio Apurímac de la Provincia de Caylloma–Arequipa. Bachelor’s Thesis, Universidad Nacional Del Altiplano, Puno, Peru, 2020. [Google Scholar]
  33. Tejada-Meza, K.; Arenazas-Rodríguez, A.; Garcia-Chevesich, P.A.; Flores-Farfan, C.; Morales-Paredes, L.; Romero-Mariscal, G.; Ticona-Quea, J.; Vanzin, G.; Sharp, J.O. Acute Ecotoxicity Potential of Untreated Tannery Wastewater Release in Arequipa, Southern Peru. Sustainability 2023, 15, 15240. [Google Scholar] [CrossRef]
  34. DS 010-2023-MINAM. [Ministerio del Medio Ambiente] Aprueban los Límites Máximos Permisibles para Efluentes de las Actividades de Curtido y Adobo de Cuero, Así Como Adobo y Teñido de Pieles. Available online: https://www.gob.pe/institucion/minam/normas-legales/4561259-010-2023-minam (accessed on 22 January 2025).
  35. DS011-2017-MINAM [Ministerio del Medio Ambiente] Aprueban Estándares de Calidad Ambiental (ECA) para Suelo. Available online: https://www.minam.gob.pe/disposiciones/decreto-supremo-n-011-2017-minam/ (accessed on 22 January 2025).
  36. Aboulhassan, M.; Souabi, S.; Yaacoubi, A.; Zaim, N.; Bouthir, F.Z. Tannery effluents characterization and impacts on the marine environment. Revue des Sciences de L’eau 2008, 21, 463–473. [Google Scholar] [CrossRef]
  37. Vaiopoulou, E.; Gikas, P. Regulations for chromium emissions to the aquatic environment in Europe and elsewhere. Chemosphere 2020, 254, 126876. [Google Scholar] [CrossRef]
  38. Hossain, A.M.; Mamun, M.M.; Rahman, M.M.; Islam, M.S.; Kabir, M.A.; Kazi, M.A.I.; Elahi, S.F. Chromium (Cr) Contamination of Poultry from Use of Tannery-based Cr-contaminated Feed Ingredients. Public Health Environ. Risks 2017, 14, 19–28. [Google Scholar]
  39. Quispe Aquino, R.; Malone, A.; Smith, N.M.; García Zúñiga, F.F. Perceptions and realities of mercury contamination in a Peruvian artisanal and small-scale gold mining (ASGM) community. Environ. Res. 2022, 214, 114092. [Google Scholar] [CrossRef] [PubMed]
  40. Huerta Alata, M.; Alvarez-Risco, A.; Torres, L.S.; Moran, K.; Pilares, D.; Carling, G.; Paredes, B.; Del-Aguila-Arcentales, S.; Yáñez, J.A. Evaluation of Environmental Contamination by Toxic Elements in Agricultural Soils and Their Health Risks in the City of Arequipa, Peru. Sustainability 2023, 15, 3829. [Google Scholar] [CrossRef]
  41. Almirón, J.; Arosquipa-Pachari, K.R.; Huillcañahui-Taco, C.; Huarsaya-Huillca, J.A.; Mamani-Quispe, J.; Ortiz-Valdivia, Y.; Velasco, F.; Tupayachy-Quispe, D. Evaluation of the Bioaccumulation Capacity of Buddleja Species in Soils Contaminated with Total Chromium in Tannery Effluents in Arequipa (Peru). Sustainability 2023, 15, 6641. [Google Scholar] [CrossRef]
  42. Zapana, J.S.P.; Arán, D.S.; Bocardo, E.F.; Harguinteguy, C.A. Treatment of tannery wastewater in a pilot scale hybrid constructed wetland system in Arequipa, Peru. Int. J. Environ. Sci. Technol. 2020, 17, 4419–4430. [Google Scholar] [CrossRef]
  43. Herrera-Yari, C.; Bejarano-Meza, M.; Díaz-Galdos, M.; Ramos-Quispe, T.; Villalba-Condori, K. Determination of the parameters for photocatalytic degradation from Chromium hexavalent to Chromium trivalent in a solar parabolic cylindrical concentrator in a simulated sample from tanning. Environ. Technol. Innov. 2021, 21, 101299. [Google Scholar] [CrossRef]
  44. Zapana-Huarache, S.V.; Romero-Sánchez, C.K.; Gonza, A.P.D.; Torres-Huaco, F.D.; Rivera, A.M.L. Design and testing of a cost-efficient bioremediation system for tannery effluents using native chromium-resistant filamentous fungi. Int. J. Environ. Sci. Technol. 2020, 17, 3825–3834. [Google Scholar] [CrossRef]
  45. Bejarano-Meza, M.; Deza-Carrasco, F.E.; Salinas-Herrera, S.; Flores-Calla, S.; Jimenez-Pacheco, H.G. Evaluation of Cr(VI) Removal from Tanning Effluents Using Magnetic Nanoparticles of Fe3O4 Synthesized with Olea europaea Bone Extract. Molecules 2024, 29, 534. [Google Scholar] [CrossRef] [PubMed]
  46. Roque, R.F.; Prado, D.; Ruiz de Somocurcio, F. Biodepuración de aguas residuales industriales contaminadas con cromo III y VI utilizando microflora nativa aislada y caracterizada provenientes del Parque Industrial Rio Seco (PIRS) de la ciudad de Arequipa. In Proceedings of the Memoria Segundo Encuentro de Investigadores Ambientales, Arequipa, Peru, 3–5 July 2013. [Google Scholar]
  47. Deza Carrasco, F.E.; Salinas Herrera, S.C. Evaluación del Porcentaje de Remoción de CR (VI) Proveniente de Efluentes de Curtido Empleando Nanopartículas de Magnetita (Fe3O4) Sintetizadas con Extracto de Hueso de Olea Europaea. Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2022. [Google Scholar]
  48. Pacheco Portugal, J.D. Evaluación el Proceso de Biosorción de Cr (VI) Usando Residuos Agroindustriales de la Región Arequipa Cascarilla de Arroz y Chala de Maíz. Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2019. [Google Scholar]
  49. Herrera Guillén, A.F.; Sosa Pulcha, S.E. Evaluación y Comparación de la Biosorción de Cr (VI) Usando Cáscaras de Cuatro Variedades de Papa (Solanum tuberosum). Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2018. [Google Scholar]
  50. Martinez Ocsa, S.K.; Quispe Roa, Y.M. Estudio Cinético de la Remoción de Cr+6 de Aguas Usando Cáscara de Achiote. Bachelor’s Thesis, Universidad Privada Autónoma del Sur, Arequipa, Peru, 2020. [Google Scholar]
  51. Mollinedo Chávez, A.M.; Huanca Quispe, A. Adsorción de Cromo Hexavalente de Lechos Acuáticos Utilizando Biomasa de Pepa de Palta (Persea americana mill). Bachelor’s Thesis, Universidad María Auxiliadora, Arequipa, Peru, 2021. [Google Scholar]
  52. Paz Corrales, O.A. Biorremoción de Cromo Total en Los Efluentes de Curtiembres, Empleando Vainas de Arvejas Pisum sativum L. Para Obtener Agua Categoría 3D2DS 004-2017 MINAM. en Arequipa. Ph.D. Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2020. [Google Scholar]
  53. Laura Ticona, V.E. Estudio de la Determinación de la Actividad Floculante en Aguas Provenientes del Río Chili Conteniendo As, Pb y Cr Tratados con Pectina Obtenidos a Partir de la Cáscara de Naranja, Limón y Mandarina. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2018. [Google Scholar]
  54. Córdova Pantigoso, A.M.; Medina Delgado, M.O. Biorremoción Con Semilla de Papaya Arequipeña (Vasconcellea pubescens) para Cromo Total en Efluentes de Curtiembres, Arequipa. Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2019. [Google Scholar]
  55. Rosas, Y.E. Caracterización y Remoción de Cromo (III) de Aguas Residuales de Curtiembres del Parque Industrial de Rio Seco Utilizando Hueso de Olivo (Olea europea) Procesado Como Biosorbente. Bachelor’s Thesis, Tesis Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Ingeniería Química, Arequipa, Peru, 2019; 10p. [Google Scholar]
  56. Delgado Requena, A.F. Evaluación del Efecto del Quitosano Sobre Las Concentraciones de Cromo y Los Parámetros Fisicoquímicos en Efluentes de Curtiembre. Bachelor’s Thesis, Tesis Universidad Católica de Santa María, Arequipa, Peru, 2021. [Google Scholar]
  57. Cárdenas, S.; Ortega, J. Modelamiento y Simulación de una Columna de Adsorción de Lecho Fijo para la Remoción de Cr (VI) de Soluciones Acuosas Utilizando Aserrín Como Adsorbente. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2015. [Google Scholar]
  58. Apaza Amanqui, J.A.; Toribio Villanueva, I. Alternativa de Remoción de Cromo Hexavalente de Soluciones Acuosas Usando Epicarpio de Café. Bachelor’s Thesis, Universidad Privada Autónoma del Sur, Arequipa, Peru, 2019. [Google Scholar]
  59. Cañazaca Davila, C.M.; Ccama Larico, W.E.Y. Biosíntesis de Nanopartículas de Hierro Cero Valente (nzvi) Usando Hojas de Eucalipto (Eucalyptus sp.) Para la Remoción de Cromo Hexavalente. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2017. [Google Scholar]
  60. Cabrera Navinta, G.M.; Calderon Llanqui, K. Evaluación de la Remoción de Cromo (VI) Con Biomasa Modificada de Residuos de Trigo (Triticum aestivum) en Aguas Residuales Provenientes de Las Zonas del Parque Industrial del Rio Seco y Uchumayo. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2019. [Google Scholar]
  61. Condori Ramos, P.M.; Pumacayo Gutiérrez, M.A. Evaluación de la Remediación de Aguas Contaminadas Con Cromo Empleando una Columna de Lecho Fijo con Biomasa de Cáscara de Papa “Solanum tuberosum”. Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2019. [Google Scholar]
  62. Dávila Martínez, T.A.; Sanchez Peña, N.E.; Ordoñez Erazo, D.A.; Benitez Benitez, R. Evaluación de residuos agroindustriales como biofiltros: Remoción de cr (vi) en efluentes de curtiembres sintéticos. Biotecnología en el Sector Agropecuario y Agroindustrial 2017, 15, 49–58. [Google Scholar] [CrossRef]
  63. Aguaro Quispe, J.G.; Onofre Huaracha, E.E. Investigación para Controlar en las Aguas Residuales Industriales la Contaminación Con Cromo, Usando Cascara de Huevo Calcinado, en Soluciones Sintéticas y Posterior Aplicación a las Aguas Contaminadas Reales. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2018. [Google Scholar]
  64. Banda Choquihuillca, A.P.; Coaguila Coaguila, J.G. Evaluación de la Capacidad de Biorremoción de Cromo Hexavalente (Cr+6) en Aguas Contaminadas Utilizando Residuos de Cáscara de Sancayo (Corryocactus brevistylus). Bachelor’s Thesis, Universidad Privada Autónoma del Sur, Arequipa, Peru, 2022. [Google Scholar]
  65. Ramirez, A. Evaluación del Proceso de Biosorción de la Inflorescencia del Chenopodium quinoa (Quinua) para la Remoción de Cromo (VI). Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2018. [Google Scholar]
  66. Manrique Pino, P.L. Optimización de la Producción de Carbón Activado a Partir de Cascarilla de Arroz y Su Uso en la Adsorción de Cromo (VI). Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2014. [Google Scholar]
  67. Paredes Arenazas, W.G. Determinación de la Bioabsorción de Cromo VI de Efluentes del Parque Industrial de Rio Seco (PIRS) Mediante la Microalga Desmodesmus quadricauda. Bachelor’s Thesis, Universidad Católica Santa María, Arequipa, Peru, 2021. [Google Scholar]
  68. Sumalave Cutire, C.L. Biosorción de Cromo de Efluentes de la Industria Textil Mediante el Uso de Microalgas en la Ciudad de Arequipa. Bachelor’s Thesis, Universidad Cesar Vallejo, Lima, Peru, 2022. [Google Scholar]
  69. Kaiwen, G.; Zisong, X.; Yuze, H.; Qi, S.; Yue, W.; Yanhui, C.; Jiechen, W.; Wei, L.; Huihui, Z. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signal. Behav. 2020, 15, 1832373. [Google Scholar] [CrossRef]
  70. Moscoso Zevallos, M.E. Biorremediación de Efluentes de Curtiembre del Parque Industrial de Río Seco, Arequipa, Utilizando Microalgas Acutodesmus dimorphus y Arthrospira platensis. Master’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2019. [Google Scholar]
  71. Gonzales León, S.C. Evaluación de la Capacidad de Fitorremediación de Eichhornia crassipes (JACINTO DE AGUA) en Efluentes Con Cromo de una Industria Curtidora del Parque Industrial Río Seco, Arequipa; Universidad Católica de Santa María: Arequipa, Peru, 2023. [Google Scholar]
  72. Pineda Zapana, J.S. Evaluación del Potencial de Fitorremediación de Isolepis cernua y Nasturtium aquaticum para el Tratamiento Secundario de Efluentes de Curtiembre del Parque Industrial Rio Seco en Arequipa. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2019. [Google Scholar]
  73. Ccarhuarupay Medrano, R.J.; Checcya Salhua, J.A.; Salhua Apfata, M. Microorganismos Eficaces y Fitorremediación en Humedales Mixtos Artificiales para el Tratamiento de Aguas Residuales de Curtiembre del Parque Industrial Río Seco; Universidad Continental: Arequipa, Peru, 2023. [Google Scholar]
  74. Alarcón Lipa, A.X. Análisis de la Capacidad Fitorremediadora de la Hortensia (Hydrangea macrophylla) en Suelo Con Cromo Total del PIRS; UNSA Press: Arequipa, Peru, 2021. [Google Scholar]
  75. Masco Miró, P.R.; Ugarte Huamani, J.A. Implementación de Humedales de Flujo Superficial para el Tratamiento Secundario por Biorremediación Con Eichhornia Crassipes y Microorganismos Eficaces (EM) de Aguas Residuales de Curtiembre; UNSA Press: Arequipa, Peru, 2022. [Google Scholar]
  76. Cruzatt Dueñas, A.; Carmona Quelopana, F.D. Eficiencia del Sistema Mixto por Fitorremediación y Biorremediación para el Tratamiento de Aguas Residuales de las Curtiembres de Río Seco-Arequipa; UNSA Press: Arequipa, Peru, 2023. [Google Scholar]
  77. Araoz Zegarra, J.M. Bioacumulación de Metales Pesados Cromo (Cr), Cadmio (Cd) y Plomo (Pb) en la Planta de Higos (Ficus carica) en el Distrito de Uchumayo, Arequipa; UNSA Press: Arequipa, Peru, 2021. [Google Scholar]
  78. Huillca Mayta, D.A. Evaluación de la Capacidad Fitorremediadora de Cromo a Diferentes Concentraciones por Eleocharis montevidensis, Empleando Sistemas de Humedales Artificiales. 2021. Available online: https://hdl.handle.net/20.500.12692/74810 (accessed on 3 October 2024).
  79. Flores Cornejo, J.M. Propuesta de Simulación de Remoción Parcial de Cromo en Suelos Contaminados Utilizando Como Fitorremediador el Tagete SP Marigold. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2018. [Google Scholar]
  80. Nuñez Alberca, M.D.L.A. Cuantificación de Metales Pesados Cobre (Cu), Cadmio (Cd) y Cromo (Cr) en Alfalfa (Medicago sativa Var. California) en el Pueblo Tradicional de Congata. 2019. Available online: http://repositorio.unsa.edu.pe/handle/UNSA/9072 (accessed on 3 October 2024).
  81. Diaz Valencia, Y. Fitoextracción de Cromo en Plantas de Chenopodium murale, Baccharis salicifolia, Eleocharis montevidensis y Tessaria integrifolia y su Relacion Con la Respuesta Fisiológica y Bioquímica; Universidad Nacional de San Agustín de Arequipa: Arequipa, Peru, 2019. [Google Scholar]
  82. Delgado Osorio, M.K. Efecto del Cobre (cu) y Cromo (cr) Sobre el Contenido de malondialdehido, Prolina y Enzimas Antioxidantes en Estacas de Croton ruizianus müll. arg. para Su Bioprospección en Fitorremediación; Universidad Nacional de San Agustín de Arequipa: Arequipa, Peru, 2021. [Google Scholar]
  83. Loaiza Alejandro, R.E. Biorremediación de Sulfatos, Sulfuros y Cromo en un Reactor de Biopelícula por Lotes de Secuenciación Anaeróbica (ASBBR) Empacado Con Bacterias Sulfato Reductoras. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2022. [Google Scholar]
  84. Prado Salinas, D.G.; Ruiz de Somocurcio Chavez Quiroz, F. Factibilidad de Biosorción de Cromo (III y VI) en Aguas Residuales Industriales-ARI’S Contaminadas Utilizando Microflora Nativa Aislada y Caracterizada en Su Hábitat Proveniente del Parque Industrial Rio Seco-PIRS. Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2004. [Google Scholar]
  85. Cáceres Silva, G.V. Aislamiento, Caracterización e Identificación del Consorcio Microbiano Con Potencial Degradativo de Cromo. Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2019. [Google Scholar]
  86. Chambi Mamani, C. Aislamiento e Identificación de Cepas Bacterianas Aisladas de Sitios Contaminados Con Efluentes de Curtiduría y Su Capacidad para Reducir CR (VI). Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2021. [Google Scholar]
  87. Choi Cuenca, Y.E. Biorremoción de Material Particulado Mediante Bacterias en un Biofiltro Cerrado en el Acabado del Curtido de Pieles del Parque Industrial de Río Seco. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2021. [Google Scholar]
  88. Aymara Uscamayta, C.G. Biorremoción de Metales Ecotóxicos Mediante Cepas Fúngicas Nativas Aisladas de Efluentes Industriales en un Sistema de Biorreactores en Serie de Agitación Continua. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2018. [Google Scholar]
  89. Quina Luz, B. Tratamiento de Efluentes de Curtiembres Utilizando Hongos Nativos Filamentosos y Carbón Activado para la Remoción de Cromo Total. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2019. [Google Scholar]
  90. Solis Pareja, C. Estrategias Basadas en Producción Más Limpia y Biorremediación para Mitigar Los Impactos Ambientales Negativos Generados Por Los Efluentes Industriales de las Curtiembres del Parque Industrial de Río Seco. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2020. [Google Scholar]
  91. Fernandez Chiara, J.G.; Guzman Ponce, K.S. Bioadsorción de Cromo (VI) con Saccharomyces cerevisiae Inmovilizada, Como Residuo de la Elaboración de la Cerveza, para Su Aplicación en Biorremediación de Aguas Contaminadas de la Industria del Curtido. Bachelor’s Thesis, Universidad Católica de Santa María, Arequipa, Peru, 2019. [Google Scholar]
  92. Calla Mayhua, Y. Evaluación de la Tolerancia de Cromo VI y Colorantes Sintéticos a Escala de Laboratorio Mediante Cepas Fúngicas Aisladas en las Curtiembres del Parque Industrial de Río Seco (PIRS). Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2022. [Google Scholar]
  93. Zapana Huarache, S.V. Biorremediación de Efluentes de Curtiembres Mediante Hongos Aislados del Parque Industrial de Rio Seco (PIRS), en Condiciones de Biorreactor Tipo AIRLIFT. Bachelor’s Thesis, Universidad Nacional de San Agustin de Arequipa, Arequipa, Peru, 2018. [Google Scholar]
  94. Alvarez Samayani, D.A.; Vilca Vilca, K.H. Recuperación Electrolítica de Cromo a Partir de la Viruta Residual de Cuero Procedente de Las Curtiembres del Parque Industrial Río Seco. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2021. [Google Scholar]
  95. Laura Benavides, S.L.; Salinas Rondon, J.O. Eficiencia en la Remoción del Contenido de Cromo III por Electrocoagulación en Las Aguas Residuales de Curtiembre del Parque Industrial de Río Seco. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2020. [Google Scholar]
  96. Challco Hihui, A.V. Electrocoagulación Acoplada a un Sistema de Microfiltración Membrana/Adsorbente en el Tratamiento de Efluentes Residuales Provenientes del Curtido de Pieles en Una Industria de Curtido del Parque Industrial Río Seco. Master’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2022. [Google Scholar]
  97. Juarez Calderon, C.A.; Osorio Casquina, G.V. Determinación de los Parámetros Electroquímicos Óptimos para la Remoción de Cromo (III) y DQO en Aguas de Curtido a Traves del Proceso de Electrocoagulación en un Reactor de Recirculación. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2019. [Google Scholar]
  98. Aguilar Ruelas, B.; Soto Miranda, A.E. Eficiencia y Rentabilidad de la Aplicación del Tratamiento por Electrocoagulación para la Reducción del Cromo Hexavalente en Las Aguas Residuales de Curtiembre. Bachelor’s Thesis, Universidad Cesar Vallejo, Lima, Peru, 2021. [Google Scholar]
  99. Anahua Apaza, Z.J.; Pacheco Gonzáles, W.Y. Sistema de Destilación Por Concentración Solar para la Remoción del Cr+6 de Los Efluentes de Curtiembres en Arequipa, Río Seco. Bachelor’s Thesis, Universidad Cesar Vallejo, Lima, Peru, 2021. [Google Scholar]
  100. Ruiz Marcelo, M. Eficiencia de Nanopartículas de Magnetita en la Reducción del Cromo Hexavalente a Cromo Trivalente en el Suelo del Parque Industrial de Río Seco (PIRS), Cerro Colorado–Arequipa. Bachelor’s Thesis, Universidad Cesar Vallejo, Lima, Peru, 2018. [Google Scholar]
  101. Lima Coasaca, R. Efecto del Tiempo de Retención hidrÁulico (TRH) Sobre un Sistema de Humedales Artificiales (Flujo Subsuperficial+ Flujo Superficial) Plantados Con Scirpus americanus, Elecharis montevidensis e Hydrocotyle bonariensis para Tratamiento de Efluentes Brutos. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2021. [Google Scholar]
  102. Chávez Segura, L.M.; Alpaca Rodríguez, Y.A. Acción Coagulante–Floculante del Cloruro Férrico y el Polímero Aniónico Floerger An 910, en el Tratamiento Químico del Agua Residual de la Laguna de Estabilización del Parque Industrial Río Seco (Pirs). Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2014. [Google Scholar]
  103. Rendón Velarde, R.B. Adsorción y Desorción de Cromo (VI) en un Medio Adsorbente (Bentonita), Aplicando un Proceso Zero Waste. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2020. [Google Scholar]
  104. Leguía, J.; Puma, P. Diseño de Filtros de Bioarena para Remover Metales Pesados (As, Cd, Cr, Pb y Fe) en Aguas de Uso Doméstico. Bachelor’s Thesis, Universidad Nacional de San Agustín, Arequipa, Peru, 2016. [Google Scholar]
  105. Paye Masco, B.I.; Gómez Castañeda, B. Estudio Comparativo de Adsorción de Cromo de Efluente de Curtiembre del Parque Industrial Río Seco, Arequipa Mediante dos Materiales Adsorbentes Obtenidos a Partir de Precursores Naturales (Perlita Expandida y Zeolita Agrícola). Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru, 2021. [Google Scholar]
  106. Arizábal Tejada, V.K. Implementación de Humedales Artificiales para Mejorar la Calidad de Las Aguas Residuales Pre-Tratadas de la Industria del Curtido de Cuero en el Parque Industrial Rio Seco. Bachelor’s Thesis, Universidad Católica Santa María, Arequipa, Peru, 2018. [Google Scholar]
  107. Rojas Tamata, K. Remoción de arsénico (V) y Cromo (VI) Presente en Lechos Acuáticos Mediante el Uso de Tierra de Diatomeas Recubierta con Sales de Hierro. Master’s Thesis, Universidad Católica Santa María, Arequipa, Peru, 2016. [Google Scholar]
  108. Monroy Piérola, C.R. Niveles de Metales Pesados Cromo, Arsénico, Plomo y Mercurio en Cefalotorax de Cryphiops caementarius (Camarón) en Los Ríos Ocoña, Majes y Tambo. Bachelor’s Thesis, Universidad Católica Santa María, Arequipa, Peru, 2018. [Google Scholar]
  109. Ojeda Castro, C.C. Adsorción de Cromo (VI) en Efluente Simulado de Curtiembre Con Resina de Intercambio Iónico para la Reducción de Riesgo quíMico. Bachelor’s Thesis, Universidad Tecnológica del Perú, Arequipa, Peru, 2023. [Google Scholar]
  110. Tejada Dongo, P. Síntesis Por Método Anternativo “Verde” de Nanopartículas de Cu a Traves de Extracto Acuoso de Subproductos Industriales de Vitis vinifera L.(Uva) y Su Inmovilización en Memebranas de PVC y Determinacipon de Su Capacidad para la Adsorción de Cr (VI). Ph.D. Dissertation, Universidad Católica de Santa María, Arequipa, Peru, 2017. [Google Scholar]
  111. Alam, E.S.; Nur-E-Alam, M.; Mia, M.A.S.; Ahmad, F.; Rahman, M.M. An overview of chromium removal techniques from tannery effluent. Appl. Water Sci. 2020, 10, 205. [Google Scholar] [CrossRef]
  112. Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water Air Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
  113. Mitra, S.; Sarkar, A.; Sen, S. Removal of chromium from industrial effluents using nanotechnology: A review. Nanotechnol. Environ. Eng. 2017, 2, 11. [Google Scholar] [CrossRef]
  114. Kumar, V.; Dwivedi, S.K. A review on accessible techniques for removal of hexavalent chromium and divalent nickel from industrial wastewater: Recent research and future outlook. J. Clean. Prod. 2021, 295, 126229. [Google Scholar] [CrossRef]
  115. GracePavithra, K.; Jaikumar, V.; Kumar, P.S.; Sundar, R.P. A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J. Clean. Prod. 2019, 228, 580–593. [Google Scholar] [CrossRef]
  116. Grag, E.K.; Tripathi, M.; Srinath, T. Strategies for chromium bioremediation of tannery effluent. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; Volume 217, pp. 75–140. [Google Scholar] [CrossRef]
  117. Njimou, J.R.; Njike, R.M.T.; Kepdieu, J.M.; Djangang, C.N.; Talla, A.; Elambo, N.G.; Fritsky, J.W.; Maicaneanu, S.A.; Rosso, D. Eco-friendly chitin-MnO2-alginate nanobiocomposite spheres for enhanced heavy metal removal from wastewater: Inorganic chemistry communications. Inorg. Chem. Commun. 2025, 172, 113719. [Google Scholar] [CrossRef]
  118. Xing, X.; Alharbi, N.S.; Ren, X.; Chen, C. A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. J. Environ. Chem. Eng. 2022, 10, 107325. [Google Scholar] [CrossRef]
  119. Ramakrishnaiah, C.R.; Prathima, B. Hexavalent chromium removal from industrial watsewater by chemical precipitation method. Int. J. Eng. Res. Appl. 2012, 2, 599–603. [Google Scholar]
  120. Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
  121. Portada Mamani, A. Tratamiento de las Aguas Residuales del Proceso de Curtido en Pieles Por Procesos Físico-Químico de la Curtiembre de la Facultad de Ingeniería Química de la Universidad Nacional del Altiplano. Bachelor’s Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2016. [Google Scholar]
  122. Rizvi, A.; Ahmed, B.; Zaidi, A.; Khan, M.S. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: An efficient metal clean-up strategy. Environ. Monit Assess. 2020, 192, 801. [Google Scholar] [CrossRef] [PubMed]
  123. Garcia-Chevesich, P.; García, V.; Martínez, G.; Zea, J.; Ticona, J.; Alejo, F.; Vanneste, J.; Acker, S.; Vanzin, G.; Malone, A.; et al. Inexpensive organic materials and their applications towards heavy metal attenuation in waters from southern Peru. Water 2020, 12, 2948. [Google Scholar] [CrossRef]
  124. Bhardwaj, A.; Kumar, S.; Singh, D. Tannery effluent treatment and its environmental impact: A review of current practices and emerging technologies. Water Qual. Res. J. 2023, 58, 128–152. [Google Scholar] [CrossRef]
  125. Rana, V.; Ghosh, D.; Maiti, S.K. Chapter 11—Removal of heavy metals from coke-plant effluents by using wetlands. In New Trends in Removal of Heavy Metals from Industrial Wastewater; Shah, M.P., Couto, S.R., Kumar, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 263–299. [Google Scholar] [CrossRef]
  126. Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.-H.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
  127. Habineza, A.; Zhai, J.; Ntakirutimana, T.; Qiu, F.P.; Li, X.; Wang, Q. Heavy metal removal from wastewaters by agricultural waste low-cost adsorbents: Hindrances of adsorption technology to the large scale industrial application—A review. Desalin. Water Treat 2017, 78, 192–214. [Google Scholar] [CrossRef]
  128. Ali, I.; Gupta, V. Advances in water treatment by adsorption technology. Nat. Protoc. 2006, 1, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
  129. Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
  130. Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
  131. Younas, F.; Mustafa, A.; Farooqi, Z.U.R.; Wang, X.; Younas, S.; Mohy-Ud-Din, W.; Hameed, M.A.; Abrar, M.M.; Maitlo, A.A.; Noreen, S.; et al. Current and emerging adsorbent technologies for wastewater treatment: Trends, limitations, and environmental implications. Water 2021, 13, 215. [Google Scholar] [CrossRef]
  132. Anah, L.; Astrini, N. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulose-based hydrogel as adsorbent: IOP conference series. Earth Environ. Sci. 2017, 60, 12010. [Google Scholar] [CrossRef]
  133. Fernández Paquillo, K.R.; Tambohuacso Javier, M.C. Diseño Preliminar de un Proceso para la Remoción de Cromo (iii) de Efluentes de Curtiembres, Por Adsorción en Ceniza de Leña en la Ciudad de Sicuani. 2017. Available online: http://hdl.handle.net/20.500.12918/2719 (accessed on 3 March 2024).
  134. Olivera Huacasi, M. Remoción de Cromo VI de Aguas Residuales de Curtiembres Utilizando el Polvo de la Semilla de Moringa Oleífera Como Coagulante Natural en la Región Puno. Bachelor’s Thesis, Universidad Peruana la Unión, Puno, Peru, 2018. [Google Scholar]
  135. Miranda Zea, N.S. Biosorción de Cromo Cr (VI) de Soluciones Acuosas Por la Biomasa Residual de Hojas de Eucalipto (Globulus labill). Ph.D. Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2017. [Google Scholar]
  136. Paredes Quispe, M.M.; Valle Alvarado, M.W. Evaluación de la Capacidad de Adsorción de la Cáscara de Limón (Citrus limón (L.) Burm. F.) para la Remoción de Cromo (VI) de Aguas Residuales de la Empresa “Textilera–Hualhuas”. Bachelor’s Thesis, Universidad Nacional del Centro del Perú, Huancayo, Peru, 2020. [Google Scholar]
  137. Hernández López, V.; Nájera Pérez, M.G.; Cárdenas González, J.E.; Martínez Juárez, V.M.; Acosta Rodríguez, I. Utilidad de la Cáscara de Aguacate (Persea americana) para La Eliminación De Cromo (Vi) De Aguas Contaminadas. Laboratorio de Micología Experimental. Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. Transversalidad Científica Y Tecnológica Mex. 2020, 4, 1–8. [Google Scholar]
  138. Boeykens, S.P.; Redondo, N.; Obeso, R.A.; Caracciolo, N.; Vázquez, C. Chromium and lead adsorption by avocado seed biomass study through the use of Total Reflection X-Ray Fluorescence analysis. Appl. Radiat. Isot. 2019, 153, 108809. [Google Scholar] [CrossRef]
  139. Bansal, M.; Garg, U.; Singh, D.; Garg, V.K. Removal of Cr(VI) from aqueous solutions using pre-consumer processing agricultural waste: A case study of rice husk. J. Hazard. Mater. 2009, 162, 312–320. [Google Scholar] [CrossRef] [PubMed]
  140. Sivakumar, D. Hexavalent chromium removal in a tannery industry wastewater using rice husk silica. Glob J. Environ. Sci. Manag. 2015, 1, 27–40. [Google Scholar]
  141. Pari Luque, Y.P. Biosorción del Cromo Hexavalente en Soluciones Acuosas Utilizando Biomasa de Cáscara de Plátano (Musa acuminata Colla). Master’s Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2020. [Google Scholar]
  142. Fahim, N.F.; Barsoum, B.N.; Eid, A.E.; Khalil, M.S. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste. J. Hazard. Mater. 2006, 136, 303–309. [Google Scholar] [CrossRef] [PubMed]
  143. Payel, S.; Sarker, M. Banana rachis charcoal to remove chromium from tannery wastewater. In Proceedings of the 4th International Conference on Civil Engineering for Sustainable Development, KUET, Khulna, Bangladesh, 9–11 February 2018; Volume 1, pp. 1–8. [Google Scholar]
  144. Mohan, D.; Singh, K.P.; Singh, V.K. Removal of Cr(VI) from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind. Eng. Chem. Res. 2005, 44, 1027–1042. [Google Scholar] [CrossRef]
  145. Estrella Granja, J.F. Estudio de la Remoción de Cromo y Zinc de Aguas Sintéticas Empleando Carbón Activado Impregnado Con Nanotubos de Carbono. Bachelor’s Thesis, Escuela Politécnica Nacional, Quito, Ecuador, 2019. [Google Scholar]
  146. Mahmoud, M.E.; El-Said, G.F.; Ibrahim, G.A.A.; Elnashar, A.A.S. Effective removal of hexavalent chromium from water by sustainable nano-scaled waste avocado seeds: Adsorption isotherm, thermodynamics, kinetics, and error function. Biomass Conv. Bioref. 2024, 14, 14725–14743. [Google Scholar] [CrossRef]
  147. Malkoc, E.; Nuhoglu, Y.; Dundar, M. Adsorption of chromium(VI) on pomace—An olive oil industry waste: Batch and column studies. J. Hazard. Mater. 2006, 138, 142–151. [Google Scholar] [CrossRef] [PubMed]
  148. El-Aassar, M.R.; Mohamed, F.M.; Alsohaimi, I.H.; Khalifa, R.E. Fabrication of novel valorized ecofriendly olive seed residue/anthracite/chitosan composite for removal of Cr (VI): Kinetics, isotherms and thermodynamics modeling. Cellulose 2021, 28, 7165–7183. [Google Scholar] [CrossRef]
  149. Arulkumar, M.; Thirumalai, K.; Sathishkumar, P.; Palvannan, T. Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon. Chem. Eng. J. 2012, 185–186, 178–186. [Google Scholar] [CrossRef]
  150. Elwakeel, K.Z.; Al-Bogami, A.S.; Elgarahy, A.M. Efficient retention of Chromate from industrial wastewater onto a green magnetic polymer based on shrimp peels. J. Polym. Environ. 2018, 26, 2018–2029. [Google Scholar] [CrossRef]
  151. Fabbricino, M.; Gallo, R. Chromium removal from tannery wastewater using ground shrimp shells. Desalination Water Treat. 2010, 23, 194–198. [Google Scholar] [CrossRef]
  152. Campos-Flores, G.; Gurreonero-Fernández, J.; Vejarano, R. Passion-fruit shell biomass as adsorbent material to remove chromium III from contaminated aqueous mediums: IOP conference series. Mater. Sci. Eng. 2019, 620, 12110. [Google Scholar] [CrossRef]
  153. Nko’o Ebio, G.; Adjia, H.Z.; Njimou, J.R.; Waffo, L.C.M.; Noumi, G.B. Mineralogical and Physicochemical Characterization of Natural and Heat-Treated Kaélé Clay Pellets for Pollutant Removal from Tannery Wastewater in Cameroon. ChemistrySelect 2025, 10, e202404298. [Google Scholar] [CrossRef]
  154. Kafle, A.; Timilsina, A.; Gautam, K.; Adhikari, A.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
  155. Corami, A. Phytoremediation and contaminants. In Phytoremediation; Management of environmental, contaminants, Newman, L., Eds.; Springer: Cham, Switzerland, 2023; Volume 7, pp. 15–48. [Google Scholar] [CrossRef]
  156. Naveed, S.; Oladoye, P.O.; Alli, Y.A. Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustain. Chem. Environ. 2023, 2, 100018. [Google Scholar] [CrossRef]
  157. Mudgal, V.; Raninga, M.; Patel, D.; Ankoliya, D.; Mudgal, A. A review on Phytoremediation: Sustainable method for removal of heavy metals. Mater. Today Proc. 2023, 77, 201–208. [Google Scholar] [CrossRef]
  158. Flores Rodríguez, W.H. Cinética de la Biosorción de Cromo Hexavalente en Solución Acuosa Por Biomasa de Hueso de Prunus Pérsica (Durazno). Bachelor’s Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2014. [Google Scholar]
  159. Dotro, G.; Palazolo, P.; Larsen, D. Chromium fate in constructed wetlands treating tannery wastewaters. Water Environ. Res. 2009, 81, 617–625. [Google Scholar] [CrossRef]
  160. Tadesse, A.T.; Seyoum, L.A. Evaluation of selected wetland plants for removal of chromium from tannery wastewater in constructed wetlands, Ethiopia. Afr. J. Environ. Sci. Technol. 2015, 9, 420–427. [Google Scholar] [CrossRef]
  161. Kassaye, G.; Gabbiye, N.; Alemu, A. Phytoremediation of chromium from tannery wastewater using local plant species. Water Pr. Technol. 2017, 12, 894–901. [Google Scholar] [CrossRef]
  162. Vankar, P.S.; Bajpai, D. Phyto-remediation of chrome-VI of tannery effluent by Trichoderma species. Desalination 2008, 222, 255–262. [Google Scholar] [CrossRef]
  163. Chakrabarty, T.; Afrin, R.; Mia, Y.; Hossen, Z. Phytoremediation of chromium and some chemical parameters from tannery effluent by using water. Res. Agric. Livest. Fish. 2017, 4, 151–156. [Google Scholar] [CrossRef]
  164. Jácome-Pilco, C.; Ballesteros, C.; Rea, E.; Rea Cayambe, L.M. Microalgas en el tratamiento de aguas residuales generadas en industrias de curtiembres. Ciencia y Tecnología 2021, 14, 47–55. [Google Scholar] [CrossRef]
  165. Morales, L.; Garcia-Chevesich, P.A.; Romero, G.; Arenazas, A.; Ticona, J.; Pizarro, R. (Eds.) Uso de Humedales Artificiales para la Limpieza de Aguas Superficiales en América Latina y el Caribe; Cátedra UNESCO Hidrología de Superficie, Editorial Universitaria: Arequipa, Perú, 2023; 161p. [Google Scholar]
  166. Quiroz, J.; Garcia-Chevesich, P.A.; Martínez, G.; Martínez, K.; Tejada, T.; McCray, J.E. Water Resources Evaluation and Sustainability Considering Climate Change and Future Anthropic Demands in the Arequipa Region of Southern Peru. Sustainability 2023, 15, 16270. [Google Scholar] [CrossRef]
  167. Yang, Z.; Acker, S.M.; Brady, A.R.; Arenazas, A.; Morales, L.; Ticona, J.; Romero, G.; Vanzin, G.F.; Ranville, J.F.; Sharp, J.O. Heavy metal removal by the photosynthetic microbial biomat found within shallow unit process open water constructed wetlands. Sci. Total Environ. 2023, 876, 162478. [Google Scholar] [CrossRef]
  168. Sharp, J.O.; Schofield, E.J.; Lezama, J.; Ulrich, K.; Veeramani, H.; Junier, P.; Roquier, C.; Suvorova, E.I.; Webb, S.; Tebo, B.; et al. Uranium speciation and stability after reductive immobilization in sediments. Geochim. Cosmochim. Acta 2011, 75, 6497–6510. [Google Scholar] [CrossRef]
  169. Saeed, M.U.; Hussain, N.; Sumrin, A.; Shahbaz, A.; Noor, S.; Bilal, M.; Aleya, L.; Iqbal, H.M.N. Microbial bioremediation strategies with wastewater treatment potentialities–A review. Sci. Total Environ. 2022, 818, 151754. [Google Scholar] [CrossRef]
  170. Vega, M.P.A.; Scholes, R.C.; Brady, A.R.; Daly, R.A.; Narrowe, A.B.; Vanzin, G.F.; Wrighton, K.C.; Sedlak, D.L.; Sharp, J.O. Methane-oxidizing activity enhances sulfamethoxazole biotransformation in a benthic constructed wetland biomat. Environ. Sci. Technol. 2023, 57, 7240. [Google Scholar] [CrossRef] [PubMed]
  171. Homme, C.; Sharp, J.O. Differential microbial transformation of nitrosamines by an inducible propane monooxygenase. Environ. Sci. Technol. 2013, 47, 7388–7395. [Google Scholar] [CrossRef]
  172. Zhang, H.-K.; Lu, H.; Wang, J.; Zhou, J.-T.; Sui, M. Cr(VI) Reduction and Cr(III) Immobilization by Acinetobacter sp. HK 1 with the Assistance of a Novel Quinone/Graphene Oxide Composite. Environ. Sci. Technol. 2014, 48, 12876–12885. [Google Scholar] [CrossRef] [PubMed]
  173. Ramírez-Díaz, M.I.; Díaz-Pérez, C.; Vargas, E.; Riveros-Rosas, H.; Campos-García, J.; Cervantes, C. Mechanisms of bacterial resistance to chromium compounds. Biometals 2008, 21, 321–332. [Google Scholar] [CrossRef]
  174. Ahmad, A.; Wani, M.Y.; Lone, I.H. Advances in microbial and fungal remediation of heavy metals: Strategies for environmental sustainability. J. Environ. Manag. 2022, 312, 114689. [Google Scholar] [CrossRef]
  175. Njimou, J.R.; Fai, V.; Sieugaing, M.T.; Nguenamadje, D.; Godwin, J.; Genola, O.B.; Noumi, G.B.; Tripathy, B.C. Hydrothermal synthesis of a nickel-oxide-infused orange peel nanobiocomposite for enhanced heavy metal removal from mining wastewater. Hybrid Adv. 2025, 9, 100392. [Google Scholar] [CrossRef]
  176. Kumar, P.; Singh, S.; Singh, R.; Sharma, R. Optimization and challenges in microbial remediation of heavy metal-contaminated sites: A review. Chemosphere 2023, 311, 137058. [Google Scholar]
  177. Hassan, M.; Ali, F.; Saeed, A. Bioremediation of chromium-contaminated wastewater using bacteria and fungi: A critical review. Environ. Technol. Innov. 2022, 28, 102474. [Google Scholar]
  178. Wang, J.; Chen, C.; Li, Y. Current trends and future prospects in bioremediation of chromium-contaminated environments. J. Hazard. Mater. 2021, 402, 123456. [Google Scholar]
  179. Singh, R.P.; Pandey, S.K.; Gupta, P. Influence of wastewater composition on microbial activity and variability in bioremediation processes. Appl. Microbiol. Biotechnol. 2020, 104, 3873–3891. [Google Scholar]
  180. Awasthi, S.K.; Wang, M.; Chen, H.; Ren, X. Microbial bioremediation of industrial effluents: Recent advancements and future perspectives. Environ. Res. 2022, 207, 112029. [Google Scholar]
  181. Gomez Delgado, N.M.; Sánchez Cuesta, T.C. Revisión de Eficiencia de Hongos Ligninolíticos en la Biodegradación y Adsorción de Los Metales Pesados en Aguas Residuales Textiles. Bachelor’s Thesis, Universidad Peruana Unión, Lima, Peru, 2020. [Google Scholar]
  182. Reyes Rengifo, G.L.L. Eficiencia Reductora de Pseudomonas sp. en Concentraciones de Cromo Hexavalente; Universidad Nacional de Trujillo: Trujillo, Peru, 2020. [Google Scholar]
  183. Rivera-Martínez, E.; Cárdenas-González, J.F.; Martínez-Juárez, V.M.; Acosta-Rodríguez, I. Remoción de cromo (VI) por una cepa de Aspergillus niger resistente a cromato. Información Tecnológica 2015, 26, 13–20. [Google Scholar] [CrossRef]
  184. Guevara Garzón, B.O. Aislamiento e Identificación de Bacterias Remediadoras de Cromo Presentes en el Agua Residual de Textiles. Ph.D. Thesis, Pontificia Universidad Católica del Ecuador, Ibarra, Ecuador, 2018. [Google Scholar]
  185. Panigatti, M.C.; Griffa, C.; Boglione, R.; Gentinetta, F.; Cassina, D. Uso de Escherichia coli para biorremediación de efluentes contaminados por cromo (VI). Avances en Ciencias e Ingeniería 2012, 3, 11–24. [Google Scholar]
  186. Su, Y.; Sun, S.; Liu, Q.; Zhao, C.; Li, L.; Chen, S.; Chen, H.; Wang, Y.; Tang, F. Characterization of the simultaneous degradation of pyrene and removal of Cr(VI) by a bacteria consortium YH. Sci. Total Environ. 2022, 853, 158388. [Google Scholar] [CrossRef] [PubMed]
  187. Chen, R.; Cheng, Y.; Wang, P.; Liu, Z.; Wang, Y.; Wang, Y. High efficient removal and mineralization of Cr(VI) from water by functionalized magnetic fungus nanocomposites. J. Cent. South Univ. 2020, 27, 1503–1514. [Google Scholar] [CrossRef]
  188. Drennan, D.M.; Almstrand, R.; Lee, I.; Landkamer, L.; Figueroa, L.; Sharp, J.O. Organoheterotrophic bacterial abundance associates with zinc removal in lignocellulose-based sulfate-reducing systems. Environ. Sci. Technol. 2016, 50, 378–387. [Google Scholar] [CrossRef]
  189. Drennan, D.M.; Almstrand, R.; Ladderud, J.; Lee, I.; Landkamer, L.; Figueroa, L.; Sharp, J.O. Spatial effects of inorganic ligand availability and localized microbial community structure on mitigation of mining influenced water in sulfate-reducing bioreactors. Water Res. 2017, 115, 50–59. [Google Scholar] [CrossRef]
  190. Drennan, D.M.; Almstrand, R.; Lee, I.; Landkamer, L.; Figueroa, L.; Sharp, J.O. Pilot-scale columns equipped with aqueous and solid-phase sampling ports enable geochemical and molecular microbial investigations of anoxic biological processes. Bio-Protocol 2017, 7, e2083. [Google Scholar] [CrossRef] [PubMed]
  191. Lloyd, J.R.; Mabbett, A.N.; Williams, D.R.; Macaskie, L.E.; Perez, A.B.; Pibernat, R.A. Metal reduction by sulphate-reducing bacteria; physiological diversity and metal specificity. Hydrometallurgy 2001, 59, 327–337. [Google Scholar] [CrossRef]
  192. Huang, S.-W.; Chen, X.; Wang, D.-D.; Jia, H.-L.; Wu, L. Bio-reduction and synchronous removal of hexavalent chromium from aqueous solutions using novel microbial cell/algal-derived biochar particles: Turning an environmental problem into an opportunity. Bioresour. Technol. 2020, 309, 123304. [Google Scholar] [CrossRef] [PubMed]
  193. Benazir, J.F.; Suganthi, R.; Rajvel, D.; Pooja, M.P.; Mathithumilan, B. Bioremediation of chromium in tannery effluent by microbial consortia. Afr. J. Biotechnol. 2010, 9, 3140–3143. [Google Scholar]
  194. Bazrafshan, E.; Mohammadi, L.; Ansari-Moghaddam, A.; Mahvi, A.H. Heavy metals removal from aqueous environments by electrocoagulation process– a systematic review. J. Environ. Health Sci. Eng. 2015, 13, 74. [Google Scholar] [CrossRef] [PubMed]
  195. Perales Vílchez, J.C. Influencia del Proceso de Electrocoagulación en la Remoción de Cromo Hexavalente (Cr+6) en Soluciones Acuosas a Nivel de Laboratorio en la Universidad Continental. Bachelor’s Thesis, Universidad Continental, Huancayo, Peru, 2019. [Google Scholar]
  196. Mendocilla Murillos, C.E. Influencia del pH y el Tiempo en la Remoción de Cromo Hexavalente Presente en Soluciones Acuosas Utilizando la Electrocoagulación. Bachelor’s Thesis, Universidad Cesar Vallejo, Trujillo, Peru, 2018. [Google Scholar]
  197. Quispe Huanca, O. Recuperación Electrolítica de Cromo (III) de Efluentes de Curtido de Pieles de Animales. Bachelor’s Thesis, Universidad Nacional del Altiplano, Puno, Peru, 2017. [Google Scholar]
  198. Mayta, R.; Mayta, J. Remoción de cromo y demanda química de oxígeno de aguas residuales de curtiembre por electrocoagulación. Revista de la Sociedad Química del Perú 2017, 83, 331–340. [Google Scholar] [CrossRef]
  199. Aguilar-Ascón, E.; Marrufo-Saldaña, L.; Neyra-Ascón, W. Reduction of total chromium levels from raw tannery wastewater via electrocoagulation using response surface methodology. J. Ecol. Eng. 2019, 20, 217–224. [Google Scholar] [CrossRef]
  200. Gao, P.; Chen, X.; Shen, F.; Chen, G. Removal of chromium(VI) from wastewater by combined electrocoagulation–electroflotation without a filter. Sep. Purif. Technol. 2005, 43, 117–123. [Google Scholar] [CrossRef]
  201. Aoudj, S.; Khelifa, A.; Drouiche, N.; Belkada, R.; Miroud, D. Simultaneous removal of chromium(VI) and fluoride by electrocoagulation–electroflotation: Application of a hybrid Fe-Al anode. Chem. Eng. J. 2015, 267, 153–162. [Google Scholar] [CrossRef]
  202. Ruiz, Á.A. La electrocoagulación: Una alternativa para el tratamiento de aguas residuales. Revista Lasallista de investigación 2005, 2, 49–56. [Google Scholar]
  203. Guerrero, R.A.P.; Santacruz, D.J.A. La electrocoagulación, una alternativa para el tratamiento de aguas residuales en el departamento de Nariño. Boletín Inf. CEI 2019, 6, 84–87. [Google Scholar]
  204. Mazumder, A.; Chowdhury, Z.; Sen, D.; Bhattacharjee, C. Electric field assisted membrane separation for oily wastewater with a novel and cost-effective electrocoagulation and electroflotation enhanced membrane module (ECEFMM). Chem. Eng. Process. -Process Intensif. 2020, 151, 107918. [Google Scholar] [CrossRef]
  205. Brito, E.C.T.; Díaz, C.E.B.; Córdoba, L.I.Á.; Hernández, P.B.; Casados, D.A.S. Evaluation of the efficiency of water treatment by a solar heating and distillation system. Environ. Chall. 2023, 11, 100691. [Google Scholar] [CrossRef]
  206. Wu, S.L.; Chen, H.; Wang, H.L.; Chen, X.; Yang, H.C.; Darling, S.B. Solar-driven evaporators for water treatment: Challenges and opportunities. Environ. Sci. Water Res. Technol. 2021, 7, 24–39. [Google Scholar] [CrossRef]
  207. Kocaman, A.; Savaş, B.F.; İşler Ceyhan, D. Removal efficacy of toxic metals in leachate through micro-organisms isolated from the natural environment. BioResources 2023, 18, 5476–5493. [Google Scholar] [CrossRef]
  208. Romero-Mariscal, G.; Garcia-Chevesich, P.A.; Morales-Paredes, L.; Arenazas-Rodriguez, A.; Ticona-Quea, J.; Vanzin, G.; Sharp, J.O. Peruvian wetlands: National survey, diagnosis, and further steps toward their protection. Sustainability 2023, 15, 8255. [Google Scholar] [CrossRef]
  209. Kong, F.; Zhang, Y.; Wang, H.; Tang, J.; Li, Y.; Wang, S. Removal of Cr(VI) from wastewater by artificial zeolite spheres loaded with nano Fe–Al bimetallic oxide in constructed wetland. Chemosphere 2020, 257, 127224. [Google Scholar] [CrossRef]
Figure 1. View of surface water flow (31 L/s) impaired by RSIP wastewater effluent. This tributary undergoes insufficient treatment and subsequently enters the Chili River. Photo taken in April 2023 by and featuring paper authors.
Figure 1. View of surface water flow (31 L/s) impaired by RSIP wastewater effluent. This tributary undergoes insufficient treatment and subsequently enters the Chili River. Photo taken in April 2023 by and featuring paper authors.
Sustainability 17 01183 g001
Figure 2. Temporal evolution of the number publications (peer-reviewed and theses) related to Cr treatment conducted in the Arequipa Region of southern Peru. Though four publications for 2023 and one for 2024 were identified, a terminus of 2022 was selected to account for a time lapse between thesis completion and availability in online repositories.
Figure 2. Temporal evolution of the number publications (peer-reviewed and theses) related to Cr treatment conducted in the Arequipa Region of southern Peru. Though four publications for 2023 and one for 2024 were identified, a terminus of 2022 was selected to account for a time lapse between thesis completion and availability in online repositories.
Sustainability 17 01183 g002
Figure 3. pH values documented at experiments done in Arequipa, showing that, in general, the acidity of treated tannery wastewaters is not constant in all treatment approaches evaluated.
Figure 3. pH values documented at experiments done in Arequipa, showing that, in general, the acidity of treated tannery wastewaters is not constant in all treatment approaches evaluated.
Sustainability 17 01183 g003
Figure 4. Synthesis of results of Cr species removal from aqueous solution as a function of pH as compiled from adsorption-based studies herein. This analysis demonstrates that more effective attenuation generally relates to lower pH conditions for CrT (R2 = 0.99), Cr(VI) (R2 = 0.50), and Cr(III) (R2 = 0.99), agreeing with the existing literature.
Figure 4. Synthesis of results of Cr species removal from aqueous solution as a function of pH as compiled from adsorption-based studies herein. This analysis demonstrates that more effective attenuation generally relates to lower pH conditions for CrT (R2 = 0.99), Cr(VI) (R2 = 0.50), and Cr(III) (R2 = 0.99), agreeing with the existing literature.
Sustainability 17 01183 g004
Table 1. Examples of total Cr-related studies in water and sediments from different Peruvian rivers (BD: Below detection).
Table 1. Examples of total Cr-related studies in water and sediments from different Peruvian rivers (BD: Below detection).
RiverAdministrative RegionCr ConcentrationSource
Water (mg/L)Sediments (mg/kg)
IchuHuancavelica0.02 [22]
Opamayo and SicraHuancavelica0.05 [23]
ZañaLambayequeBD [24]
QuirozPiura1.3 [25]
RamisPuno0.008 [26]
ChiliArequipa0.004 [27]
ChiliArequipaBD [28]
RSIP effluentsArequipa4.3–7.7 [29]
AñashuaycoArequipa 3750–9220[30]
CoataPuno 4–28[31]
ApurimacCaylloma and Arequipa 1–3[32]
RSIP effluentsArequipa 10.4[33]
Table 2. Locally derived and inexpensive materials/waste tested for Cr adsorption capacity from tannery wastewaters in Arequipa, southern Peru.
Table 2. Locally derived and inexpensive materials/waste tested for Cr adsorption capacity from tannery wastewaters in Arequipa, southern Peru.
AdsorbentSpeciesRemovalpHT (°C)Time (min.)Particle SizeSource
(%)(mg/g)
Pea pods (Pisum sativum) *CrTBDNA1.1RT960NA[52]
Orange pectine (Citrus × sinensis) *CrT18NA5RT15180–250 µm[53]
Lemon pectine (Citrus limon) *CrT12NA5RT15180–250 µm[53]
Arequipan papaya seed (Vasconcellea pubescens) *Cr(III)80NA325NANA[54]
Olive seed (Olea europaea) *Cr(III)68NA4RT9250 µm[55]
Shrimp skeleton (Palaemon serratus) *Cr(III)52NA519NANA[56]
Achiote peel (Bixa orellana) *Cr(VI)BDNA2RT575–150 μm[50]
Avocado seed (Persea americana) *Cr(VI)BDNA2NA1575–150 μm[51]
Olive seed (Olea europaea) *Cr(VI)99NA2RT3070–160 nm[47]
Potato varieties (Solanum tuberosum Var. Canchan, Unica, Peruanita, and Perricholi)Cr(VI)96NA22530150–850 µm[49]
Sawdust *Cr(VI)952.2NA601800.35 mm[57]
Corn crown (Zea mays) and rice husk (Oryza sativa) *Cr(VI)95NA2RT30Less than 0.42 mm[48]
Coffee seed’s endocarp (Coffea arabica) *Cr(VI)94NA2RT12075–150 μm[58]
Metallic iron nanoparticles using Eucalyptus sp. Leaves *Cr(VI)93NA3 to 5RT60180 nm[59]
Wheat (Triticum sp.)Cr(VI)86NA245180200 µm and 125 µm[60]
Potato peel (Solanum tuberosum) *Cr(VI)86NA2NA50<250 mm[61]
Arequipan papaya seed (Vasconcellea pubescens) *Cr(VI)78NA225NANA[54]
Olive fruit (Olea europaea)Cr(VI)78NA2 to 6RTNA250 µm[62]
Egg shells *Cr(VI)73NA5RT15NA[63]
Sancayo peel (Corryocactus brevistylus) *Cr(VI)59NA33030NA[64]
Quinoa (Chenopodium quinoa)Cr(VI)55NA“Acid”20NA450–250 µm[65]
Shrimp skeleton (Palaemon serratus) *Cr(VI)46NA519NANA[56]
Activated charcoal from rice husk (Oryza sativa) *Cr(VI)NA53220240Surface area 690 m2/g[66]
(*) Waste products. NA, not available; BD, below detection; RT, room temperature.
Table 3. (a) Phytoremediation survey of different microalgal species as applied toward polluted tannery wastewaters in Arequipa, southern Peru. (b) Phytoremediation survey of different vascular plant species as applied toward polluted tannery wastewaters in Arequipa, southern Peru.
Table 3. (a) Phytoremediation survey of different microalgal species as applied toward polluted tannery wastewaters in Arequipa, southern Peru. (b) Phytoremediation survey of different vascular plant species as applied toward polluted tannery wastewaters in Arequipa, southern Peru.
(a)
SpeciesCr SpeciesCr RemovalpHTime (Days)Incubator TypeSource
(%)(Other Units)
Chlorella sp.CrT96NANA10Inoculum[68]
Espirulina sp.CrT95NANA10Inoculum[68]
Acutodesmus dimorphusCrT75NA>7.515Batch[70]
Arthrospira platensisCrT33NA>7.515Batch[70]
Desmodesmus quadricaudaCr (VI)941.7 mg/LNA9Flow through[67]
(b)
SpeciesCr SpeciesCr RemovalpHTime (Days)Source
(%)(Other Units)
Eichhornia crassipes rootCrT99NANA25[71]
Isolepis cernua and Nasturtium aquaticumCrT99NA770[72]
Eichhornia crassipes leaves and stemsCrT94NANA25[71]
Eichhornia crassipes and Lemna minutaCrT92NA732[73]
Hydrangea macrophyllaCrT88NANA90[74]
Eichhornia crassipesCrT49NANA45[75]
Buddleja sp.CrT41NANA90[41]
Eichhornia crassipesCrT35NA745[76]
Ficus carica (fruits)CrTNA0.1 mg/kgNA180[77]
Eleocharis montevidensis (stem)CrTNA17.4 mg/kgNA15[78]
Tagetes sp.CrTNA560 mg/kg7.3–8.660[79]
Ficus carica (estate)CrTNA3.1 mg/kgNA180[77]
Medicago sativaCrTNA0.8 mg/kgNA90[80]
Eleocharis montevidensis (leave)CrTNA22.7 mg/kgNA15[78]
Eleocharis montevidensis (root)CrTNA504 mg/kgNA15[78]
Eleocharis montevidensisCr(III)2341.2 µg/gpsNA20[81]
Baccharis salicifoliaCr(III)1227.1 µg/gpsNA20[81]
Tessaria integrifoliaCr(III)718.9 µg/gpsNA20[81]
Chenopodium muraleCr(III)527.1 µg/gpsNA20[81]
Croton ruizianusCr(III)NA17.3 mg/kgNA34[82]
Isolepis cernua and Nasturtium aquaticumCr(VI)98NANA5[42] *
Eichhornia crassipes and Lemna gibbaCr(VI)93NA732[73]
NA: Not available. (*): Peer-reviewed.
Table 4. (a) Bioremediation with live bacteria from polluted tannery wastewaters in Arequipa, southern Peru. (b) Bioremediation with fungi from polluted tannery wastewaters in Arequipa, southern Peru.
Table 4. (a) Bioremediation with live bacteria from polluted tannery wastewaters in Arequipa, southern Peru. (b) Bioremediation with fungi from polluted tannery wastewaters in Arequipa, southern Peru.
(a)
SpeciesCr SpeciesCr RemovalpHTemp. (°C)Time (Days)Source
(%)(Other Units)
Corynebacterium aquaticusCrT94NANA325[84]
Streptococcus sp.CrT94NANA325[84]
Corynebacterium aquaticusCrT89NA7.3253.2[46] *
Pseudomonas sp.CrTNA1040 mg/LNANA24[87]
Corynebacterium aquaticusCr(III)89NA7.3253.2[46] *
Sulfate-Reducing Bacteria Cr(VI)BDNA7.7RT11[83]
Klebsiella oxycataCr(VI)92NANART10[85]
Proteus mirabilisCr(VI)89NANART1.5[86]
Bacillus subtilisCr(VI)74NANART10[85]
Streptococcus spp.Cr(VI)68NANA325[84]
Escherichia coliCr(VI)63NANART10[85]
Bacillus pumilusCr(VI)46NANART1.5[86]
Streptococcus sp.Cr(VI)44NANA323[84]
Corynebacterium aquaticusCr(VI)40NANA323[84]
Enterobacter cloacaeCr(VI)37NANART10[85]
Halomonas campaniensisCr(VI)37NANART1.5[86]
Pseudomona aeruginosaCr(VI)22NANART10[85]
Pseudomonas sp.Cr(VI)NA<0.005 mg/LNANA24[87]
(b)
SpeciesCr SpeciesCr RemovalpHTemp. (°C)Time (Days)Source
(%)(Other Units)
Aspergillus nigerCrT9748 mg/gNART21[88]
Filamentous fungi and activated charcoalCrT97NA4RT16[89]
Filamentous fungiCrT83NA4RT16[89]
Penicillium sp.Cr(III)96NANANA10[90]
Saccharomyces cerevisiaeCr(VI)87NANA372[91]
Fusarium petroliphylumCr(VI)87NA4.3RT16[92]
Penicillium citrinumCr(VI)80NA4.5–5.2RT21[93]
Penicillium citrinumCr(VI)80NANART5[44] *
Trichoderma virideCr(VI)20NANART5[44] *
NA, not available; BD, below detection; RT, room temperature; (*), peer-reviewed.
Table 5. Electrocoagulation to treat polluted tannery wastewaters in Arequipa, southern Peru.
Table 5. Electrocoagulation to treat polluted tannery wastewaters in Arequipa, southern Peru.
Cr SpeciesCr Removal (%)Optimum ConditionspHVoltage (V)Intensity (A)Time (min.)Source
CrT99Aluminum electrodes3.2NA0.09544[96]
CrT23Graphite anode and nickel-covered metal cathode2935[94]
Cr(III)BDIron anodes and aluminum cathodes53–200–6090[97]
Cr(III)BDAluminum electrodes40–120–5030[96]
Cr(VI)99Aluminum electrodes5.9401445[98]
NA, not available; BD, below detection.
Table 6. Other techniques to treat polluted tannery wastewaters in Arequipa, southern Peru.
Table 6. Other techniques to treat polluted tannery wastewaters in Arequipa, southern Peru.
Cr SpeciesTreatmentCr RemovalpHTimeSource
(%)(Other Units)
CrTZeolite and perliteBDNA“Basic”8 h[105]
CrTBio-sand filter99NA8–946 min[104]
CrTArtificial wetlands with S. americanus, E. montevidensis, and H. bonariensis99NA7–96 days[101]
CrTConstructed wetlands with Eleocharis palustris962.5 g/kgNANA[106]
CrTSandy-loam soil filterNA9220 mg/kg6.9–7.2NA[30]
CrTDiatoms coated with FeCl3NA125 mg/g64.5 h[107]
CrTShrimp cephalothorax biofilter (C. caementarius)NA0.7–0.9 mg/kgAcidNA[108]
Cr(VI)Solar distillationBDNANA3 days[99]
Cr(VI)Magnetite nanoparticlesBDNANA3 weeks[100]
Cr(VI)Magnetic iron-based nanoparticles100NA230 min[45] *
Cr(VI)Polymer (Floerger AN 910) and FeCl3 coagulant96NA6NA[102]
Cr(VI)Sodium bentonite filters94NA430 min[103]
Cr(VI)Ionic exchange resins930.15 mg/L330 min[47]
Cr(VI)Ionic exchange resins93NA3–530 min[109]
Cr(VI)Cu nanoparticles and copper oxide NA15 mg/L2NA[110]
Cr(VI)Photovoltaic reduction UV/TiO285NA3.84 h[43] *
NA: Not available. BD: Below detection. (*): Peer-reviewed.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Morales-Paredes, L.F.; Garcia-Chevesich, P.A.; Romero-Mariscal, G.; Arenazas-Rodriguez, A.; Ticona-Quea, J.; Tejada-Purizaca, T.R.; Vanzin, G.; Sharp, J.O. Chromium Remediation from Tannery Wastewater in Arequipa, Peru: Local Experiences and Prospects for Sustainable Solutions. Sustainability 2025, 17, 1183. https://doi.org/10.3390/su17031183

AMA Style

Morales-Paredes LF, Garcia-Chevesich PA, Romero-Mariscal G, Arenazas-Rodriguez A, Ticona-Quea J, Tejada-Purizaca TR, Vanzin G, Sharp JO. Chromium Remediation from Tannery Wastewater in Arequipa, Peru: Local Experiences and Prospects for Sustainable Solutions. Sustainability. 2025; 17(3):1183. https://doi.org/10.3390/su17031183

Chicago/Turabian Style

Morales-Paredes, Lino F., Pablo A. Garcia-Chevesich, Giuliana Romero-Mariscal, Armando Arenazas-Rodriguez, Juana Ticona-Quea, Teresa R. Tejada-Purizaca, Gary Vanzin, and Jonathan O. Sharp. 2025. "Chromium Remediation from Tannery Wastewater in Arequipa, Peru: Local Experiences and Prospects for Sustainable Solutions" Sustainability 17, no. 3: 1183. https://doi.org/10.3390/su17031183

APA Style

Morales-Paredes, L. F., Garcia-Chevesich, P. A., Romero-Mariscal, G., Arenazas-Rodriguez, A., Ticona-Quea, J., Tejada-Purizaca, T. R., Vanzin, G., & Sharp, J. O. (2025). Chromium Remediation from Tannery Wastewater in Arequipa, Peru: Local Experiences and Prospects for Sustainable Solutions. Sustainability, 17(3), 1183. https://doi.org/10.3390/su17031183

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop