Raw and Calcined Eggshells as P-Reactive Materials in a Circular Economy Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eggshell Sourcing
2.2. Methods
2.3. Kinetic Models
2.4. Statistical Analysis
2.5. Reactive Eggshell Materials from the Perspective of a Circular Economy
3. Results
3.1. Non-Flow Condition Tests
3.2. Kinetic Model Results
3.3. Circular Economy Results
4. Discussion
4.1. Sorption Influence Parameters
4.2. Potential Limitations of and Recommendations for Using ESs
4.3. Circular Economy Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of The Regions, Closing the Loop—An EU Action Plan for the Circular Economy COM/2015/0614; European Commission: Brussels, Belgium, 2015.
- Jørgensen, S.; Pedersen, L.J.T. The Circular Rather than the Linear Economy. In RESTART Sustainable Business Model Innovation; Jørgensen, S., Pedersen, L.J.T., Eds.; Palgrave Studies in Sustainable Business in Association with Future Earth; Springer International Publishing: Cham, Switzerland, 2018; pp. 103–120. ISBN 978-3-319-91971-3. [Google Scholar]
- Lalley, J.; Han, C.; Li, X.; Dionysiou, D.D.; Nadagouda, M.N. Phosphate Adsorption Using Modified Iron Oxide-Based Sorbents in Lake Water: Kinetics, Equilibrium, and Column Tests. Chem. Eng. J. 2016, 284, 1386–1396. [Google Scholar] [CrossRef]
- Jupp, A.R.; Beijer, S.; Narain, G.C.; Schipper, W.; Slootweg, J.C. Phosphorus Recovery and Recycling—Closing the Loop. Chem. Soc. Rev. 2021, 50, 87–101. [Google Scholar] [CrossRef]
- Usman, M.O.; Aturagaba, G.; Ntale, M.; Nyakairu, G.W. A Review of Adsorption Techniques for Removal of Phosphates from Wastewater. Water Sci. Technol. 2022, 86, 3113–3132. [Google Scholar] [CrossRef] [PubMed]
- Stejskalová, L.; Ansorge, L.; Kučera, J.; Čejka, E. Role of Wastewater Treatment Plants in Pollution Reduction—Evaluated by Grey Water Footprint Indicator. Sci. Rev. Eng. Environ. Sci. (SREES) 2022, 31, 26–36. [Google Scholar] [CrossRef]
- van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus Flows and Balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef]
- European Commission. Consultative Communication on the Sustainable Use of Phosphorus. COM(2013) 517; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- van Kauwenbergh, S.J. World Phosphate Rock Reserves and Resources; IFDC: Muscle Shoals, AL, USA, 2010; ISBN 9780880901673. [Google Scholar]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. European Commission, Critical Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Akram, M.; Xu, X.; Gao, B.; Wang, S.; Khan, R.; Yue, Q.; Duan, P.; Dan, H.; Pan, J. Highly Efficient Removal of Phosphate from Aqueous Media by Pomegranate Peel Co-Doping with Ferric Chloride and Lanthanum Hydroxide Nanoparticles. J. Clean. Prod. 2021, 292, 125311. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Environment Agency: Copenhagen, Denmark, 2000.
- Sarker, P.; Liu, X.; Rahaman, M.S.; Maruo, M. Eggshell Waste as a Promising Adsorbent for Phosphorus Recovery from Wastewater: A Review. Water Biol. Secur. 2024, 4, 100319. [Google Scholar] [CrossRef]
- Bus, A.; Karczmarczyk, A.; Baryła, A. Calcined Eggshell as a P Reactive Media Filter-Batch Tests and Column Sorption Experiment. Water Air Soil. Pollut. 2019, 230, 20. [Google Scholar] [CrossRef] [PubMed]
- Köse, T.E.; Kıvanç, B. Adsorption of Phosphate from Aqueous Solutions Using Calcined Waste Eggshell. Chem. Eng. J. 2011, 178, 34–39. [Google Scholar] [CrossRef]
- Santos, A.F.; Arim, A.L.; Lopes, D.V.; Gando-Ferreira, L.M.; Quina, M.J. Recovery of Phosphate from Aqueous Solutions Using Calcined Eggshell as an Eco-Friendly Adsorbent. J. Environ. Manag. 2019, 238, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-Y.; Sethupathi, S.; Leong, K.-H.; Ahmad, T. Mechanism and Kinetics of Low Concentration Total Phosphorus and Reactive Phosphate Recovery from Aquaculture Wastewater via Calcined Eggshells. Water Air Soil. Pollut. 2022, 233, 445. [Google Scholar] [CrossRef]
- Xu, C.; Liu, R.; Tang, Q.; Hou, Y.; Chen, L.; Wang, Q. Adsorption Removal of Phosphate from Rural Domestic Sewage by Ca-Modified Biochar Derived from Waste Eggshell and Sawdust. Water 2023, 15, 3087. [Google Scholar] [CrossRef]
- Lee, M.; Tsai, W.-S.; Chen, S.-T. Reusing Shell Waste as a Soil Conditioner Alternative? A Comparative Study of Eggshell and Oyster Shell Using a Life Cycle Assessment Approach. J. Clean. Prod. 2020, 265, 121845. [Google Scholar] [CrossRef]
- Abdullah, N.H.; Adnan, N.A.; Mohd Rashidi, N.F.N.; Yaacob, M.S.S.; Abdul Salim, N.A. Comparing the Adsorption Isotherms and Kinetics of Phosphate Adsorption on Various Waste Shells as Adsorbent. Water Pract. Technol. 2022, 17, 974–985. [Google Scholar] [CrossRef]
- Liu, X.; Shen, F.; Qi, X. Adsorption Recovery of Phosphate from Aqueous Solution by CaO-Biochar Composites Prepared from Eggshell and Rice Straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Tat Wai, K.; O’Sullivan, A.D.; Bello-Mendoza, R. Nitrogen and Phosphorus Removal from Wastewater Using Calcareous Waste Shells—A Systematic Literature Review. Environments 2024, 11, 119. [Google Scholar] [CrossRef]
- Acevedo-Macias, A.; Rangel-Mendez, J.R.; Chazaro-Ruiz, L.F.; Ávalos-Borja, M.; Alfaro-De la Torre, M.C.; Nieto-Delgado, C. Tailoring CaCO3 Microstructure to Improve Trace Phosphate Removal from Water. J. Water Process Eng. 2023, 56, 104400. [Google Scholar] [CrossRef]
- Manovic, V.; Charland, J.P.; Blamey, J.; Fennell, P.S.; Lu, D.Y.; Anthony, E.J. Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles. Fuel 2009, 88, 1893–1900. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.; Choi, J.-H.; Ryoo, K.S. Evaluation of Natural and Calcined Eggshell as Adsorbent for Phosphorous Removal from Water. Bull. Korean Chem. Soc. 2020, 41, 650–656. [Google Scholar] [CrossRef]
- Abdullah, N.H.; Hasan, H.; Razani, M.A.D.; Muhammad;Hassan, H.; Yaacob, M.S.S.N.; Salim, N.A.A.; Fulazzaky, M.A.; Yi, C.Z.; Yuan, N.S. Phosphorus Removal from Aqueous Solution by Using Calcined Waste Chicken Eggshell: Kinetic and Isotherm Model. Biointerface Res. Appl. Chem. 2022, 13, 129. [Google Scholar] [CrossRef]
- Fritzen, R.R.; Benetti, A.D. Phosphorus Removal in Domestic Wastewater Treatment Plant by Calcined Eggshell. Water Sci. Technol. 2021, 84, 995–1010. [Google Scholar] [CrossRef]
- Park, J.-H.; Choi, A.-Y.; Lee, S.-L.; Lee, J.-H.; Rho, J.-S.; Kim, S.-H.; Seo, D.-C. Removal of Phosphates Using Eggshells and Calcined Eggshells in High Phosphate Solutions. Appl. Biol. Chem. 2022, 65, 75. [Google Scholar] [CrossRef]
- Lee, J.-I.; Kim, J.-M.; Yoo, S.-C.; Jho, E.H.; Lee, C.-G.; Park, S.-J. Restoring Phosphorus from Water to Soil: Using Calcined Eggshells for P Adsorption and Subsequent Application of the Adsorbent as a P Fertilizer. Chemosphere 2022, 287, 132267. [Google Scholar] [CrossRef]
- Francis, A.A.; Abdel Rahman, M.K. The Environmental Sustainability of Calcined Calcium Phosphates Production from the Milling of Eggshell Wastes and Phosphoric Acid. J. Clean. Prod. 2016, 137, 1432–1438. [Google Scholar] [CrossRef]
- Tan, S.-Y.; Sethupathi, S.; Leong, K.-H.; Ahmad, T. Total Phosphorus and Reactive Phosphate Removal from Aquaculture Wastewater Using Calcined Eggshell. IOP Conf. Ser. Earth Environ. Sci. 2021, 945, 012019. [Google Scholar] [CrossRef]
- Chraibi, S.; Moussout, H.; Boukhlifi, F.; Ahlafi, H.; Alami, M. Utilization of Calcined Eggshell Waste as an Adsorbent for the Removal of Phenol from Aqueous Solution. J. Encapsulation Adsorpt. Sci. 2016, 6, 132–146. [Google Scholar] [CrossRef]
- Vollaro, M.; Galioto, F.; Viaggi, D. The Circular Economy and Agriculture: New Opportunities for Re-Using Phosphorus as Fertilizer. Bio-Based Appl. Econ. 2016, 5, 267–285. [Google Scholar] [CrossRef]
- Ribeiro, I.C.A.; Teodoro, J.C.; Guilherme, L.R.G.; Melo, L.C.A. Hydroxyl-Eggshell: A Novel Eggshell Byproduct Highly Effective to Recover Phosphorus from Aqueous Solutions. J. Clean. Prod. 2020, 274, 123042. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Benelli, P.; Amante, E.R. A Literature Review on Adding Value to Solid Residues: Egg Shells. J. Clean. Prod. 2013, 46, 42–47. [Google Scholar] [CrossRef]
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and Prospects of Different Adsorbents for Phosphorus Uptake and Recovery from Water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Sun, C.; Cao, H.; Huang, C.; Wang, P.; Yin, J.; Liu, H.; Tian, H.; Xu, H.; Zhu, J.; Liu, Z. Eggshell Based Biochar for Highly Efficient Adsorption and Recovery of Phosphorus from Aqueous Solution: Kinetics, Mechanism and Potential as Phosphorus Fertilizer. Bioresour. Technol. 2022, 362, 127851. [Google Scholar] [CrossRef] [PubMed]
- Statista. Global Egg Production from 1990 to 2022. Available online: https://www.statista.com/statistics/263972/egg-production-worldwide-since-1990/ (accessed on 10 November 2024).
- Bhagavatheswaran, E.S.; Das, A.; Rastin, H.; Saeidi, H.; Jafari, S.H.; Vahabi, H.; Najafi, F.; Khonakdar, H.A.; Formela, K.; Jouyandeh, M.; et al. The Taste of Waste: The Edge of Eggshell Over Calcium Carbonate in Acrylonitrile Butadiene Rubber. J. Polym. Environ. 2019, 27, 2478–2489. [Google Scholar] [CrossRef]
- Ferraz, E.; Gamelas, J.A.F.; Coroado, J.; Monteiro, C.; Rocha, F. Eggshell Waste to Produce Building Lime: Calcium Oxide Reactivity, Industrial, Environmental and Economic Implications. Mater. Struct. 2018, 51, 115. [Google Scholar] [CrossRef]
- Bus, A.; Karczmarczyk, A. P-Binding Mineral Materials to Enhance Phosphate Removal Using Nature-Based Solutions in Urban Areas. Desalination Water Treat. 2020, 205, 198–207. [Google Scholar] [CrossRef]
- Johansson, L. Industrial By-Products and Natural Substrata as Phosphorus Sorbents. Environ. Technol. 1999, 20, 309–316. [Google Scholar] [CrossRef]
- Guo, Z.; Li, J.; Guo, Z.; Guo, Q.; Zhu, B. Phosphorus Removal from Aqueous Solution in Parent and Aluminum-Modified Eggshells: Thermodynamics and Kinetics, Adsorption Mechanism, and Diffusion Process. Env. Sci. Pollut. Res. 2017, 24, 14525–14536. [Google Scholar] [CrossRef] [PubMed]
- Gubernat, S.; Masłoń, A.; Czarnota, J.; Koszelnik, P.; Chutkowski, M.; Tupaj, M.; Gumieniak, J.; Kramek, A.; Galek, T. Removal of Phosphorus with the Use of Marl and Travertine and Their Thermally Modified Forms—Factors Affecting the Sorption Capacity of Materials and the Kinetics of the Sorption Process. Materials 2023, 16, 1225. [Google Scholar] [CrossRef]
- Roseth, R. Shell Sand: A New Filter Medium for Constructed Wetlands and Wastewater Treatment. J. Environ. Sci. Health Part A 2000, 35, 1335–1355. [Google Scholar] [CrossRef]
- Molle, P.; Liénard, A.; Grasmick, A.; Iwema, A.; Kabbabi, A. Apatite as an Interesting Seed to Remove Phosphorus from Wastewater in Constructed Wetlands. Water Sci. Technol. 2005, 51, 193–203. [Google Scholar] [CrossRef]
- Abdoli, S.; Asgari Lajayer, B.; Dehghanian, Z.; Bagheri, N.; Vafaei, A.H.; Chamani, M.; Rani, S.; Lin, Z.; Shu, W.; Price, G.W. A Review of the Efficiency of Phosphorus Removal and Recovery from Wastewater by Physicochemical and Biological Processes: Challenges and Opportunities. Water 2024, 16, 2507. [Google Scholar] [CrossRef]
- Kapagiannidis, A.G.; Zafiriadis, I.; Aivasidis, A. Biotechnological Methods for Nutrient Removal from Wastewater with Emphasis on the Denitrifying Phosphorus Removal Process; Elsevier: Amsterdam, The Netherlands, 2011; pp. 341–351. [Google Scholar]
- Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation, Solving Methods and Applications. Chemosphere 2022, 309, 136732. [Google Scholar] [CrossRef]
- Battaz, S.; Djazi, F.; Allal, H.; Trabelsi, I.; Abdellah, Z.; Benrabaa, R.; Hamzaoui, A.H. Phosphorus Recovery as Struvite from Wastewater by Using Seawater, Brine and Natural Brine. Desalination Water Treat. 2024, 317, 100082. [Google Scholar] [CrossRef]
- Senetra, A.; Pawlewicz, K.; Pawlewicz, A. The Dynamics of Changes and Spatial Differences in the Synthetic Indicator for Evaluating Environmental Performance in Poland: Current State. Int. J. Environ. Res. Public Health 2019, 16, 4490. [Google Scholar] [CrossRef] [PubMed]
- Dumieński, G.; Mruklik, A.; Tiukało, A.; Bedryj, M. The Comparative Analysis of the Adaptability Level of Municipalities in the Nysa Kłodzka Sub-Basin to Flood Hazard. Sustainability 2020, 12, 3003. [Google Scholar] [CrossRef]
- Wieczorek, P.; Frejtag-Mika, E. Data normalization and linear ordering of the European Union countries analysed with regard to the level of ICT usage in enterprises (in Polish). Soc. Inequalities Econ. Growth 2021, 65, 74–89. [Google Scholar] [CrossRef]
- Koch, F.A.; Oldham, W.K. Oxidation-Reduction Potential—A Tool for Monitoring, Control and Optimization of Biological Nutrient Removal Systems. Water Sci. Technol. 1985, 17, 259–281. [Google Scholar] [CrossRef]
- Bańkowska-Sobczak, A.; Pryputniewicz-Flis, D.; Burska, D.; Idźkowski, J.; Kozłowicz, Ł.; Brenk, G. Non-Invasive Immobilisation and Removal of Phosphate from Lakes Using Submerged Laminates with Calcite—Preliminary Results. Water Air Soil. Pollut. 2022, 233, 178. [Google Scholar] [CrossRef]
- Hong, S.-H.; Ndingwan, A.M.; Yoo, S.-C.; Lee, C.-G.; Park, S.-J. Use of Calcined Sepiolite in Removing Phosphate from Water and Returning Phosphate to Soil as Phosphorus Fertilizer. J. Environ. Manag. 2020, 270, 110817. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Li, M.; Zhang, L.; Luo, Y.; Zhao, D.; Yuan, M.; Zhang, K.; Wang, F. Oyster Shell Modified Tobacco Straw Biochar: Efficient Phosphate Adsorption at Wide Range of pH Values. Int. J. Environ. Res. Public Health 2022, 19, 7227. [Google Scholar] [CrossRef] [PubMed]
- Thirumalini, S.; Joseph, K. Correlation between Electrical Conductivity and Total Dissolved Solids in Natural Waters. Malays. J. Sci. 2009, 28, 55–61. [Google Scholar] [CrossRef]
- Rusydi, A.F. Correlation between Conductivity and Total Dissolved Solid in Various Type of Water: A Review. IOP Conf. Ser.: Earth Environ. Sci. 2018, 118, 012019. [Google Scholar] [CrossRef]
- Pratt, C.; Shilton, A.; Pratt, S.; Haverkamp, R.G.; Elmetri, I. Effects of Redox Potential and pH Changes on Phosphorus Retention by Melter Slag Filters Treating Wastewater. Environ. Sci. Technol. 2007, 41, 6585–6590. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Y.; Chen, N.; Piao, H.; Sun, D.; Ratnaweera, H.; Maletskyi, Z.; Bi, X. Characterization of Oxidation-Reduction Potential Variations in Biological Wastewater Treatment Processes: A Study from Mechanism to Application. Processes 2022, 10, 2607. [Google Scholar] [CrossRef]
- Hasani, N.; Selimi, T.; Mele, A.; Thaçi, V.; Halili, J.; Berisha, A.; Sadiku, M. Theoretical, Equilibrium, Kinetics and Thermodynamic Investigations of Methylene Blue Adsorption onto Lignite Coal. Molecules 2022, 27, 1856. [Google Scholar] [CrossRef]
- Quina, M.J.; Soares, M.A.R.; Quinta-Ferreira, R. Applications of Industrial Eggshell as a Valuable Anthropogenic Resource. Resour. Conserv. Recycl. 2017, 123, 176–186. [Google Scholar] [CrossRef]
- Ngayakamo, B.; Onwualu, A.P. Recent Advances in Green Processing Technologies for Valorisation of Eggshell Waste for Sustainable Construction Materials. Heliyon 2022, 8, e09649. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.; Yousaf, M.; Shehzad, A.; Inam-Ur-Raheem, M.; Khan, M.K.I.; Khan, M.R.; Ahmad, N.; Abdullah;Aadil, R.M. Channelling Eggshell Waste to Valuable and Utilizable Products: A Comprehensive Review. Trends Food Sci. Technol. 2020, 106, 78–90. [Google Scholar] [CrossRef]
- Pelletier, N.; Ibarburu, M.; Xin, H. A Carbon Footprint Analysis of Egg Production and Processing Supply Chains in the Midwestern United States. J. Clean. Prod. 2013, 54, 108–114. [Google Scholar] [CrossRef]
- Goulding, K.W.T. Soil Acidification and the Importance of Liming Agricultural Soils with Particular Reference to the United Kingdom. Soil. Use Manag. 2016, 32, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Babalola, B.M.; Wilson, L.D. Valorization of Eggshell as Renewable Materials for Sustainable Biocomposite Adsorbents—An Overview. J. Compos. Sci. 2024, 8, 414. [Google Scholar] [CrossRef]
- Chou, M.-Y.; Lee, T.-A.; Lin, Y.-S.; Hsu, S.-Y.; Wang, M.-F.; Li, P.-H.; Huang, P.-H.; Lu, W.-C.; Ho, J.-H. On the Removal Efficiency of Copper Ions in Wastewater Using Calcined Waste Eggshells as Natural Adsorbents. Sci. Rep. 2023, 13, 437. [Google Scholar] [CrossRef] [PubMed]
- Chuakham, S.; Putkham, A.I.; Chaiyachet, Y.; Saengprajak, A.; Banlue, K.; Tanpaiboonkul, N.; Putkham, A. Scalable Production of Bio-Calcium Oxide via Thermal Decomposition of Solid—Hatchery Waste in a Laboratory-Scale Rotary Kiln. Sci. Rep. 2025, 15, 865. [Google Scholar] [CrossRef] [PubMed]
- Tsalis, T.; Stefanakis, A.I.; Nikolaou, I. A Framework to Evaluate the Social Life Cycle Impact of Products under the Circular Economy Thinking. Sustainability 2022, 14, 2196. [Google Scholar] [CrossRef]
- Berry, B.; Farber, B.; Rios, F.C.; Haedicke, M.A.; Chakraborty, S.; Lowden, S.S.; Bilec, M.M.; Isenhour, C. Just by Design: Exploring Justice as a Multidimensional Concept in US Circular Economy Discourse. Local Environ. 2022, 27, 1225–1241. [Google Scholar] [CrossRef]
- Bartoszczuk, P. Circular Economy and Its Restriction. Econ. Environ. 2023, 86, 469–482. [Google Scholar] [CrossRef]
P-Reactive Material | Sorption [mg/g] | Specification | Reference |
---|---|---|---|
Limestone | 4.95 1 | CaO—29.3%; 10 g/L; 1–1000 mg/L; pH = 8.8 | [41] |
Opoka | 0.1 2 | CaCO3—50%; 20 mg/L; 5–25 mg/L; pH = 8.5 | [42] |
Calcined opoka | 100.26 1 | CaO—23.86%; 10 g/L; 1–1000 mg/L; pH = 10.8 | [41] |
Raw eggshells | 0.57 1 | 10g/L; 1–15 mg/L; pH = 10 | [43] |
Calcined eggshells | 72.87 1 | CaO—96%; 10 g/L; 6–978 mg/L; pH = 12.5 | [14] |
26 1 | Ca—26.1%; 40 g/L; 0–150 mg/L; pH = 12 | [27] | |
39.0 3 | 0.1g/L; 10–600mg/L; pH = 11 | [16] | |
Marl | 43.89 1 | CaO—14.62%; 20 g/L; 1.95–1610 mg/L | [44] |
Calcined marl | 80.44 1 | CaO—30.66%; 20 g/L; 1.95–1610 mg/L | [44] |
Travertine | 140.48 4 | CaO—35.84%; 20 g/L; 1.95–1610 mg/L | [44] |
Calcined travertine | 282.34 5 | CaO—33.98%; 20 g/L; 1.95–1610 mg/L | [44] |
Shell sand | 3.50 2 | CaO—40%; 3 g/75 mL; 5–1000 mg/L | [45] |
Apatite | 4.7 1 | Ca—37%; 40 g/L; 0–500 mg/L; pH = 7.0 | [46] |
Eggshells | CaCO3 | CaO | MgO | SO3 | S | P2O5 | Cl | Al2O3 | Fe2O3 | Fe |
---|---|---|---|---|---|---|---|---|---|---|
R-ESs | 97.08 | - | 0.85 | 0.76 | - | 0.18 | 0.1 | 0.055 | 0.02 | - |
C-ESs | - | 95.0 | 2.13 | - | 0.165 | 0.724 | 0.131 | 0.694 | - | 0.027 |
P-PO4 [mg/L] | BOD [mgO2/L] | pH [−] | TS [mg/L] | EC [µS/cm] | TDS [ppm] | ORP [mV] | Turbidity [NTU] | Color [PtCo] |
---|---|---|---|---|---|---|---|---|
17.3 | 25 | 6.41 | 24 | 1190 | 595 | 224 | 10.0 | 302 |
Benefits and Limitations of Implementation; xi | Reference Value | Normalization |
---|---|---|
Material availability | +++ | Stimulant |
Technological treatment (grinding, calcination) | + | Destimulant |
Impact on the environment (pH, CO2) | + | Destimulant |
P-removal efficiency (sorption) | +++ | Stimulant |
Connection durability (adsorption, precipitation) | +++ | Stimulant |
Economic importance (technology vs. P removal) | +++ | Stimulant |
Social acceptance of technology | +++ | Stimulant |
Toxicity to the environment | + | Destimulant |
Reuse as a fertilizer | +++ | Stimulant |
Variable | R-ESs | C-ESs | ||||||
---|---|---|---|---|---|---|---|---|
pH | ORP | EC | P-PO4 | pH | ORP | EC | P-PO4 | |
pH | 1.000000 | 0.928571 * | 1.00000 | −0.854381 * | 1.000000 | −0.261905 | −0.738095 * | −0.380952 |
ORP | 1.000000 | 0.928571 * | −0.904762 * | 1.000000 | 0.071429 | 0.071429 | ||
EC | 1.000000 | −0.833333 * | 1.000000 | 0.738095 * | ||||
P-PO4 | 1.000000 | 1.000000 |
Specification | R-ESs | C-ESs |
---|---|---|
Pseudo-first-order kinetic model (PFO) | ||
k1 (min−1) qe (mg/g) | 0.001663 0.946797 | 0.861739 1.719434 |
R2 (−) | 0.8410 | 0.9986 |
Pseudo-first-order kinetic model (PFO) | ||
k2 (g/mg·min) | 0.002052 | 6.625683 |
qe (mg/g) | 1.081489 | 1.722558 |
R2 (−) | 0.8617 | 0.9995 |
Elovich | ||
α | 0.009608 | 1∙1018 |
β | 5.586314 | 29.07358 |
R2 (−) | 0.9201 | 0.8878 |
Intraparticle diffusion kinetic model | ||
kd (mg/g·min 0.5) | 0.016895 | 0.000489 |
C (mg/g) | 0.11496 | 1.707202 |
R2 (−) | 0.9674 | 0.9990 |
Benefits and Limitations of ES Implementation | R-ESs | C-ESs | ||
---|---|---|---|---|
xi | Xi | xi | Xi | |
Material availability | +++ | +++ | ||
Technological treatment (grinding, calcination) | + | + | ||
Impact on the environment (pH, CO2) | + | + | ||
P-removal efficiency (sorption) | ++ | ++ | ||
Connection durability (adsorption, precipitation) | ++ | ++ | ||
Economic importance (technology vs. P removal) | +++ | +++ | ||
Social acceptance of technology | +++ | +++ | ||
Toxicity to the environment | + | + | ||
Reuse as a fertilizer | +++ | 1.0 | +++ | 1.0 |
Q | 0.89 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bus, A.; Budzanowska, K.; Karczmarczyk, A.; Baryła, A. Raw and Calcined Eggshells as P-Reactive Materials in a Circular Economy Approach. Sustainability 2025, 17, 1191. https://doi.org/10.3390/su17031191
Bus A, Budzanowska K, Karczmarczyk A, Baryła A. Raw and Calcined Eggshells as P-Reactive Materials in a Circular Economy Approach. Sustainability. 2025; 17(3):1191. https://doi.org/10.3390/su17031191
Chicago/Turabian StyleBus, Agnieszka, Kamila Budzanowska, Agnieszka Karczmarczyk, and Anna Baryła. 2025. "Raw and Calcined Eggshells as P-Reactive Materials in a Circular Economy Approach" Sustainability 17, no. 3: 1191. https://doi.org/10.3390/su17031191
APA StyleBus, A., Budzanowska, K., Karczmarczyk, A., & Baryła, A. (2025). Raw and Calcined Eggshells as P-Reactive Materials in a Circular Economy Approach. Sustainability, 17(3), 1191. https://doi.org/10.3390/su17031191