Antialgal Effects of Nonanoic and Palmitic Acids on Microcystis aeruginosa and the Underlying Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of M. Aeruginosa
2.2. The Effects of Nonanoic and Palmitic Acids on the Growth of M. Aeruginosa
2.3. Acute Toxicity of Nonanoic and Palmitic Acids for Danio Rerio and Daphnia Magna
2.4. Environmental Factors Influencing the Antialgal Activity of Fatty Acids
2.5. Determination of Extracellular Organic Matter and Photosynthesis of M. Aeruginosa
2.6. Oxidative Stress Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Inhibition of M. Aeruginosa by Nonanoic Acid and Palmitic Acid
3.2. Acute Toxicity of Nonanoic Acid and Palmitic Acid for D. Rerio and D. Magna
3.3. Impact of Environmental Factors on the Antialgal Activity of Nonanoic Acid
3.4. Effect of Fatty Acids on the Release of Extracellular Organic Matter from M. Aeruginosa
3.5. Changes in Photosynthesis of M. Aeruginosa Cells with Fatty Acid Addition
3.6. Effect of Fatty Acids on the Antioxidant Enzyme System of M. Aeruginosa Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glibert, P.M.; Al-Azri, A.; Icarus Allen, J.; Bouwman, A.F.; Beusen, A.H.W.; Burford, M.A.; Harrison, P.J.; Zhou, M. Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In Global Ecology and Oceanography of Harmful Algal Blooms; Glibert, P.M., Berdalet, E., Burford, M.A., Pitcher, G.C., Zhou, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 229–259. [Google Scholar]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of us freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Merder, J.; Harris, T.; Zhao, G.; Stasinopoulos, D.M.; Rigby, R.A.; Michalak, A.M. Geographic redistribution of microcystin hotspots in response to climate warming. Nat. Water 2023, 1, 844–854. [Google Scholar] [CrossRef]
- Drobac Backović, D.; Tokodi, N. Blue revolution turning green? A global concern of cyanobacteria and cyanotoxins in freshwater aquaculture: A literature review. J. Environ. Manag. 2024, 360, 121115. [Google Scholar] [CrossRef]
- Pal, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic control of harmful algal blooms (HABs): A brief review. J. Environ. Manag. 2020, 268, 110687. [Google Scholar] [CrossRef]
- Plaas, H.E.; Paerl, H.W. Toxic cyanobacteria: A growing threat to water and air quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Shahmohamadloo, R.S.; Poirier, D.G.; Ortiz Almirall, X.; Bhavsar, S.P.; Sibley, P.K. Assessing the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates. Ecotoxicol. Environ. Saf. 2020, 188, 109945. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Tan, Y.; Wang, L.; Xiang, M.; Zhou, Z.; Chen, J.-a.; Wang, J.; Zhang, R.; Tian, Y.; Luo, J.; et al. Association of serum microcystin levels with neurobehavior of school-age children in rural area of Southwest China: A cross-sectional study. Ecotoxicol. Environ. Saf. 2021, 212, 111990. [Google Scholar] [CrossRef]
- Paerl, H.W.; Hall, N.S.; Calandrino, E.S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011, 409, 1739–1745. [Google Scholar] [CrossRef] [PubMed]
- Schandry, N.; Becker, C. Allelopathic plants: Models for studying plant-interkingdom interactions. Trends Plant Sci. 2020, 25, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Li, B.H.; Yin, Y.J.; Kang, L.F.; Feng, L.; Liu, Y.Z.; Du, Z.W.; Tian, Y.J.; Zhang, L.Q. A review: Application of allelochemicals in water ecological restoration--algal inhibition. Chemosphere 2021, 267, 128869. [Google Scholar] [PubMed]
- Zhang, W.H.; Hu, G.J.; He, W.; Zhou, L.F.; Wu, X.G.; Ding, H.J. Allelopathic effects of emergent macrophyte, Acorus calamus L. on Microcystis aeruginosa Kuetzing and Chlorella pyrenoidosa Chick. Allelopath. J. 2009, 24, 157–168. [Google Scholar]
- Nakai, S.; Asaoka, S.; Okuda, T.; Nishijima, W. Growth inhibition of Microcystis aeruginosa by allelopathic compounds originally isolated from myriophyllum spicatum: Temperature and light effects and evidence of possible major mechanisms. J. Chem. Eng. Jpn. 2014, 47, 488–493. [Google Scholar] [CrossRef]
- Zhu, X.; Dao, G.; Tao, Y.; Zhan, X.; Hu, H. A review on control of harmful algal blooms by plant-derived allelochemicals. J. Hazard. Mater. 2021, 401, 123403. [Google Scholar] [CrossRef] [PubMed]
- Ceballos-Laita, L.; Marcuello, C.; Lostao, A.; Calvo-Begueria, L.; Velazquez-Campoy, A.; Teresa Bes, M.; Fillat, M.F.; Peleato, M.-L. Microcystin-lr binds iron, and iron promotes self-assembly. Environ. Sci. Technol. 2017, 51, 4841–4850. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Yuhana, N.Y.; Saleh, N.M.; Shaikh, Z. Synthesis and application of fatty acid-modified chitosan for heavy metal remediation from waste water. Carbohydr. Polym. Technol. Appl. 2024, 7, 100516. [Google Scholar] [CrossRef]
- Gao, Y.N.; Liu, B.Y.; Ge, F.J.; He, Y.; Lu, Z.Y.; Zhou, Q.H.; Zhang, Y.Y.; Wu, Z.B. Joint effects of allelochemical nonanoic acid, N-phenyl-1-naphtylamine and caffeic acid on the growth of Microcystis aeruginosa. Allelopath. J. 2015, 35, 249–257. [Google Scholar]
- Wang, H.; Xi, B.; Cheng, S.; Wang, Y.; Zhang, L. Phenolic and fatty acids from pomegranate peel and seeds: Extraction, identification and determination of their anti-algal activity. Fresenius Environ. Bull. 2015, 24, 3921–3925. [Google Scholar]
- Talebi, S.M.; Darbandi, N.; Naziri, F.; Matsyura, A. Seed morphometry and fatty acid profile in oilseed and non-oilseed sunflower cultivars. Biochem. Syst. Ecol. 2024, 113, 104805. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Xie, L.; Muhoza, B.; Liu, Q.; Song, S.Q. Generation of olfactory compounds in cat food attractants: Chicken liver-derived protein hydrolysates and their contribution to enhancing palatability. J. Agric. Food Chem. 2024, 72, 15906–15919. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y. Study on the Removal of Microcystis aeruginosa by HTCC Combined River Sand and Its Combination with Allelochemicals. Master’s Thesis, Chongqing University, Chongqing, China, 2017. [Google Scholar]
- OECD. Test No. 203: Fish, Acute Toxicity Test; OECD (Organisation for Economic Co-operation and Development): Paris, France, 2019. [Google Scholar]
- OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test; OECD (Organisation for Economic Co-operation and Development): Paris, France, 2004. [Google Scholar]
- Perveen, S.; Mushtaq, M.N.; Yousaf, M.; Sarwar, N. Allelopathic hormesis and potent allelochemicals from multipurpose tree Moringa oleifera leaf extract. Plant Biosyst. 2021, 155, 154–158. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, Y.; Wei, S.; Yu, X. Isolation of allelochemicals from rhododendron capitatum and their allelopathy on three erennial herbaceous plants. Plants 2024, 13, 2585. [Google Scholar] [CrossRef]
- Huang, Y.P.; Pan, H.Y.; Liu, H.G.; Xi, Y.; Ren, D. Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values. Toxicon 2019, 169, 103–108. [Google Scholar] [CrossRef]
- Imai, H.; Chang, K.-H.; Kusaba, M.; Nakano, S.-i. Temperature-dependent dominance of Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J. Plankton Res. 2009, 31, 171–178. [Google Scholar] [CrossRef]
- Azad, S.A.; Shaleh, S.R.M.; Soon, T.K. Biotechnology, Temporal and spatial distribution of nutrients and habs at coastal water of kota belud, sabah. Adv. Biosci. Biotechnol. 2016, 07, 233–242. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zheng, C.Y.; He, M.; Wu, A.P.; Nie, L.W. Inhibition on algae of fatty acids and the structure-effect relationship. China Environ. Sci. 2009, 29, 274–279. [Google Scholar]
- Zhang, T.; Wang, X.C. Release and microbial degradation of dissolved organic matter (DOM) from the macroalgae Ulva prolifera. Mar. Pollut. Bull. 2017, 125, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.M.; Brenner, R.R. Fatty acids synthesized from hexadecane by Pseudomonas aeruginosa. J. Bacteriol. 1966, 91, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; He, Y.; Li, F.; Zhang, H.; Chen, A.; Luo, S.; Gu, J.-D. Growth inhibition and possible mechanism of oleamide against the toxin-producing cyanobacterium Microcystis aeruginosa NIES-843. Ecotoxicology 2016, 25, 225–233. [Google Scholar] [CrossRef]
- Zhang, T.T.; He, M.; Wu, A.P.; Nie, L.W. Allelopathic effects of submerged macrophyte Chara vulgaris on toxic Microcystis aeruginosa. Allelopath. J. 2009, 23, 391–401. [Google Scholar]
- Zhao, H.Q.; Zhang, R.F.; Yan, X.Y.; Fan, K.L. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.T.; Wu, L.Y.; Yao, H.D.; Zhao, L.N. Catalase-like nanozymes: Classification, catalytic mechanisms, and their applications. Small 2022, 18, 2203400. [Google Scholar] [CrossRef] [PubMed]
- Chada, S.; Sutton, R.B.; Ekmekcioglu, S.; Ellerhorst, J.; Mumm, J.B.; Leitner, W.W.; Yang, H.Y.; Sahin, A.A.; Hunt, K.K.; Fuson, K.L.; et al. MDA-7/IL-24 is a unique cytokine-tumor suppressor in the IL-10 Family. Int. Immunopharmacol. 2004, 4, 649–667. [Google Scholar] [CrossRef] [PubMed]
Co-Reagents | 16d Measured EC50 (mg/L) | Expected EC50 (mg/L) | Ratio | Keplinger Reviews |
---|---|---|---|---|
Nonanoic acid + Palmitic acid | 78.54 | 42.58 | 0.54 | antagonistic |
Tested Organisms | Fatty Acids | LC50 (mg/L) | Safe Concentration (mg/L) | ||
---|---|---|---|---|---|
24 h | 48 h | 96 h (D. rerio)/72h (D. magna) | |||
D. rerio | Nonanoic acid | 57.52 | 27.43 | 17.43 | 1.87 |
Palmitic acid | 1176.08 | 1066.12 | 975.51 | 263.30 | |
D. magna | Nonanoic acid | 51.76 | 26.52 | 21.43 | 2.21 |
Palmitic acid | 1245.14 | 1124.21 | 1024.54 | 278.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, N.; Tan, Y.; Xiao, X.; Gao, Y.; Zheng, K.; Qian, W.; Zhang, Y.; Zhao, Y. Antialgal Effects of Nonanoic and Palmitic Acids on Microcystis aeruginosa and the Underlying Mechanisms. Sustainability 2025, 17, 1207. https://doi.org/10.3390/su17031207
Hu N, Tan Y, Xiao X, Gao Y, Zheng K, Qian W, Zhang Y, Zhao Y. Antialgal Effects of Nonanoic and Palmitic Acids on Microcystis aeruginosa and the Underlying Mechanisms. Sustainability. 2025; 17(3):1207. https://doi.org/10.3390/su17031207
Chicago/Turabian StyleHu, Ning, Yaowen Tan, Xian Xiao, Yuexiang Gao, Kaikai Zheng, Wenhan Qian, Yimin Zhang, and Yuan Zhao. 2025. "Antialgal Effects of Nonanoic and Palmitic Acids on Microcystis aeruginosa and the Underlying Mechanisms" Sustainability 17, no. 3: 1207. https://doi.org/10.3390/su17031207
APA StyleHu, N., Tan, Y., Xiao, X., Gao, Y., Zheng, K., Qian, W., Zhang, Y., & Zhao, Y. (2025). Antialgal Effects of Nonanoic and Palmitic Acids on Microcystis aeruginosa and the Underlying Mechanisms. Sustainability, 17(3), 1207. https://doi.org/10.3390/su17031207