Estimating Soil Carbon Sequestration Potential in Portuguese Agricultural Soils Through Land-Management and Land-Use Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.3. Processing
2.4. IPCC Tier 1 Application
2.5. Uncertainty of Estimates and Monte Carlo Simulations
2.6. Determination of Maximum National Potentials
2.7. Testing the Adequacy of IPCC Tier 1
3. Results
3.1. IPCC Tier 1
3.2. Uncertainty of Estimates
3.3. Maximum National Potentials
3.4. IPCC Tier 1 Adequacy
4. Discussion
4.1. Comparison with the Literature
Transition | (tC ha−1 yr−1) | Range MC a (tC ha−1 yr−1) | Literature (tC ha−1 yr−1) | Reference |
---|---|---|---|---|
M1A | 0.07 | [0.00–0.40] | 0.14, 0.40, 0.46, 0.45 | [41] 1, [37] 2, [38] 3, [42] 4 |
M1B | 0.12 | [0.00–0.88] | 0.40, 0.46, 0.45 | [37] 2, [38] 3, [42] 4 |
M2 | 0.07 | [−0.17–0.62] | 0.18, +5.9% | [12] 5, [43] 6 |
M3A | 0.82 | [0.11–3.23] | 0.54 | [39] 7 |
M3B | 1.05 | [0.10–5.85] | 0.54 | |
M4A | 0.24 | [−0.31–1.33] | <0.38 | [15] |
M4B | 0.20 | [−0.47–2.61] | ||
M5A | 0.84 | [0.03–1.95] | 1.78 | [44] 8 |
M5B | 0.39 | [0.35–3.14] | 0.71 | |
T1A | 0.05 | [−0.59–1.49] | +16.6%, +20%, 0.56, −0.50 | [45] 9, [23] 10, [39] 11, [12] 5 |
T1B, | 0.05 | [−0.67–2.01] | +16.6%, +20%, −0.73 | [12,23,45] |
T2A | −0.06 | [−0.47–0.49] | 0.45 | [40] 12 |
T2B | −0.08 | [−2.9–0.46] |
4.2. Assumptions and Limitations
4.3. Potential Extensions of This Work and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Cropland | ||||||||
Land Use (FLU) | Tillage (FMG) | Input (FI) | ||||||
Long-Term Cultivated | Perennial | Set Aside (<20 yrs) | Full | Reduced | No-Till | Low | Medium | HWOM |
Area that has been converted from native conditions and continuously managed for predominantly annual crops for over 50 yrs. | Long-term perennial tree crops such as fruit and nut trees, coffee and cacao. | Represents temporary set aside of annual cropland (e.g., conservation reserves). | Substantial soil disturbance with full inversion and/or frequent (within a year) tillage operations. | Primary and/or secondary tillage but with reduced soil disturbance. | Direct seeding without primary tillage, with only minimal soil disturbance in the seeding zone. | Low residue return occurs when there is removal of residues and frequent bare fallowing. | Representative of annual cropping with cereals where all crop residues are returned to the field. | Represents significantly greater crop residue inputs due to additional practices, such as the production of high residue yielding crops and the use of green manures, cover crops, improved vegetated fallows and irrigation. |
Pastures | ||||||||
Land use (FLU) | Management (FMG) | Input(FI) | ||||||
All | Non-degraded | Severely degraded | Improved grassland | High | ||||
All permanent grassland is assigned a land-use factor of 1. | Represents non-degraded and sustainably managed grassland but without significant management. | Implies major long-term loss of productivity and vegetation cover due to severe mechanical damage to the vegetation and/or severe soil erosion. | Represents grassland that is sustainably managed with moderate grazing pressure and that receives at least one improvement (e.g., fertilization, species improvement, irrigation). | Applies to improved grassland where one or more additional management inputs/improvements has been used. |
Transition | C1/HAC | W1/HAC | W1/POD | W1/SAN | W2/HAC | W2/LAC | W2/POD | W2/SAN | |
---|---|---|---|---|---|---|---|---|---|
M1A | dSOC | 0.26 | 0.22 | - | 0.13 | 0.04 | 0.03 | 0.08 | 0.02 |
Range MC | [0.12–0.39] | [0.13–0.32] | - | [0.06–0.19] | [0.01–0.06] | [0.01–0.05] | [0.01–0.15] | [0.00–0.03] | |
M1B | dSOC | 0.285 | 0.245 | 0.55 | 0.14 | 0.04 | 0.03 | 0.08 | 0.02 |
Range MC | [0.14–0.45] | [0.14–0.37] | [0.28–0.88] | [0.07–0.21] | [0.01–0.07] | [0.12–0.39] | [0.12–0.39] | [0.12–0.39] | |
M2 | dSOC | 0.31 | 0.25 | - | 0.14 | 0.035 | 0.03 | 0.08 | 0.02 |
Range MC | [−0.17–0.73] | [−0.13–0.59] | - | [−0.08–0.37] | [0.23–0.23] | [−0.18–0.25] | [−0.57–0.77] | [−0.08–0.14] | |
M3A | dSOC | 2.29 | 1.84 | - | 1.035 | 0.605 | 0.48 | 1.30 | 0.26 |
Range MC | [1.43–3.22] | [1.20–2.56] | - | [0.64–1.50] | [0.37–0.86] | [0.28–0.71] | [0.68–2.01] | [0.12–0.43] | |
M3B | dSOC | 1.98 | 1.6 | 3.57 | 0.9 | 0.57 | 0.45 | 1.225 | 0.24 |
Range MC | [1.04–2.92] | [0.88–2.32] | [1.72–5.76] | [0.46–1.37] | [0.28–0.85] | [0.23–0.70] | [0.57–2.00] | [0.09–0.43] | |
M4A | dSOC | 0.50 | 0.45 | - | 0.25 | 0.19 | 0.15 | 0.41 | 0.08 |
Range MC | [−0.32–1.41] | [−0.20–1.09] | - | [−0.11–0.64] | [−0.13–0.53] | [−0.10–0.43] | [−0.27–1.22] | [−0.06–0.25] | |
M4B | dSOC | 0.50 | 0.45 | 1.00 | 0.25 | 0.19 | 0.15 | 0.41 | 0.08 |
Range MC | [−0.30–1.39] | [−0.21–1.18] | [−0.46–2.76] | [−0.12–0.69] | [−0.14–0.54] | [−0.11–0.43] | [−0.27–1.19] | [−0.06–0.25] | |
M5A | dSOC | 1.07 | 0.85 | - | 0.48 | 0.32 | 0.25 | 0.68 | 0.13 |
Range MC | [0.33–1.86] | [0.26–1.47] | [0.15–0.83] | [0.10–0.54] | [0.08–0.45] | [0.21–1.26] | [0.04–0.27] | ||
M5B | dSOC | 2.29 | 1.81 | - | 1.02 | 0.68 | 0.54 | 1.46 | 0.29 |
Range MC | [1.52–3.07] | [1.21–2.46] | - | [0.60–1.47] | [0.45–0.92] | [0.34–0.75] | [0.87–2.24] | [0.13–0.47] | |
T1A | dSOC | 0.53 | 0.48 | - | 0.27 | −0.02 | −0.02 | −0.05 | −0.01 |
Range MC | [−0.24–1.46] | [−0.17–1.23] | - | [−0.10–0.70] | [−0.23–0.21] | [−0.18–0.17] | [−0.51–0.45] | [−0.11–0.10] | |
T1B | dSOC | 0.22 | 0.24 | 0.53 | 0.13 | −0.06 | −0.05 | −0.13 | −0.03 |
Range MC | [−0.63–1.06] | [−0.41–0.92] | [−1.00–2.13] | [−0.24–0.53] | [−0.28–0.15] | [−0.22–0.12] | [−0.62–0.34] | [−0.13–0.07] | |
T2A | dSOC | 0 | 0.03 | - | 0.02 | −0.07 | −0.06 | −0.16 | −0.03 |
Range MC | [−0.47–0.51] | [−0.29–0.37] | - | [−0.16–0.22] | [−0.18–0.05] | [−0.14–0.04] | [−0.42–0.10] | [−0.08–0.02] | |
T2B | dSOC | - | −0.45 | −1.00 | - | −0.05 | −0.04 | −0.11 | −0.02 |
Range MC | - | [−1.11–0.20] | [−2.55–0.45] | - | [−0.29–0.17] | [−0.22–0.15] | [−0.62–0.38] | [−0.12–0.08] |
References
- Romero, J.; Lee, H. Summary for Policymakers. In Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse Gas Mitigation in Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Carbon Sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- Verchot, L.V.; Van Noordwijk, M.; Kandji, S.; Tomich, T.; Ong, C.; Albrecht, A.; Mackensen, J.; Bantilan, C.; Anupama, K.V.; Palm, C. Climate Change: Linking Adaptation and Mitigation through Agroforestry. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 901–918. [Google Scholar] [CrossRef]
- Lal, R. Agricultural Activities and the Global Carbon Cycle. Nutr. Cycl. Agroecosyst. 2004, 70, 103–116. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil Carbon Debt of 12,000 Years of Human Land Use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; De Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative Emissions—Part 2: Costs, Potentials and Side Effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, Soil Organic Carbon and N2O Emissions. A Review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- Sainju, U.M.; Jabro, J.D.; Stevens, W.B. Soil Carbon Dioxide Emission and Carbon Content as Affected by Irrigation, Tillage, Cropping System, and Nitrogen Fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Domingos, T. Detailed Global Modelling of Soil Organic Carbon in Cropland, Grassland and Forest Soils. PLoS ONE 2019, 14, e0222604. [Google Scholar] [CrossRef]
- Paustian, K.; Collier, S.; Baldock, J.; Burgess, R.; Creque, J.; DeLonge, M.; Dungait, J.; Ellert, B.; Frank, S.; Goddard, T.; et al. Quantifying Carbon for Agricultural Soil Management: From the Current Status toward a Global Soil Information System. Carbon Manag. 2019, 10, 567–587. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Smith, P. Carbon Sequestration in Croplands: The Potential in Europe and the Global Context. Eur. J. Agron. 2004, 20, 229–236. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; López, M.V.; Arrúe, J.L.; Moret, D.; Paustian, K. Tillage and Cropping Effects on Soil Organic Carbon in Mediterranean Semiarid Agroecosystems: Testing the Century Model. Agric. Ecosyst. Environ. 2009, 134, 211–217. [Google Scholar] [CrossRef]
- Ordóñez Fernández, R.; González Fernández, P.; Giráldez Cervera, J.V.; Perea Torres, F. Soil Properties and Crop Yields after 21 Years of Direct Drilling Trials in Southern Spain. Soil Tillage Res. 2007, 94, 47–54. [Google Scholar] [CrossRef]
- Forte, A.; Fiorentino, N.; Fagnano, M.; Fierro, A. Mitigation Impact of Minimum Tillage on CO2 and N2O Emissions from a Mediterranean Maize Cropped Soil under Low-Water Input Management. Soil Tillage Res. 2017, 166, 167–178. [Google Scholar] [CrossRef]
- Carvalho, M.; Basch, G.; Calado, J.M.G.; Barros, J.F.C. Long Term Effect of Tillage System and Crop Residue Management on Soil Carbon Content of a Luvisol under Rainfed Mediterranean Conditions. Agrocienc. Urug. 2012, 16, 183–187. [Google Scholar] [CrossRef]
- Teixeira, R.F.M.; Proença, V.; Crespo, D.; Valada, T.; Domingos, T. A Conceptual Framework for the Analysis of Engineered Biodiverse Pastures. Ecol. Eng. 2015, 77, 85–97. [Google Scholar] [CrossRef]
- Ravaioli, G.; Domingos, T.; Teixeira, R.F.M. Data-Driven Agent-Based Modelling of Incentives for Carbon Sequestration: The Case of Sown Biodiverse Pastures in Portugal. J. Environ. Manag. 2023, 338, 117834. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.B.; Gifford, R.M. Soil Carbon Stocks and Land Use Change: A Meta Analysis: Soil Carbon Stocks and Land Use Change. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Ledo, A.; Smith, P.; Zerihun, A.; Whitaker, J.; Vicente-Vicente, J.L.; Qin, Z.; McNamara, N.P.; Zinn, Y.L.; Llorente, M.; Liebig, M.; et al. Changes in Soil Organic Carbon under Perennial Crops. Glob. Change Biol. 2020, 26, 4158–4168. [Google Scholar] [CrossRef] [PubMed]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of Tropical Land-Use Change on Soil Organic Carbon Stocks—A Meta-Analysis. Glob. Change Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef]
- Powlson, D.S.; Whitmore, A.P.; Goulding, K.W.T. Soil Carbon Sequestration to Mitigate Climate Change: A Critical Re-Examination to Identify the True and the False. Eur. J. Soil Sci. 2011, 62, 42–55. [Google Scholar] [CrossRef]
- Freibauer, A.; Rounsevell, M.D.A.; Smith, P.; Verhagen, J. Carbon Sequestration in the Agricultural Soils of Europe. Geoderma 2004, 122, 1–23. [Google Scholar] [CrossRef]
- Schrumpf, M.; Schulze, E.D.; Kaiser, K.; Schumacher, J. How Accurately Can Soil Organic Carbon Stocks and Stock Changes Be Quantified by Soil Inventories? Biogeosciences 2011, 8, 1193–1212. [Google Scholar] [CrossRef]
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global Soil Carbon: Understanding and Managing the Largest Terrestrial Carbon Pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Kuhnert, M.; Vetter, S.; Smith, P. Measuring and Monitoring Soil Carbon Sequestration. In Burleigh Dodds Series in Agricultural Science; Rumpel, C., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2022; pp. 305–322. ISBN 978-1-78676-969-5. [Google Scholar]
- FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems: Guidelines for Assessment (Version 1); Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and Soil Carbon Sequestration—What Do We Really Know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Can No-Tillage Stimulate Carbon Sequestration in Agricultural Soils? A Meta-Analysis of Paired Experiments. Agric. Ecosyst. Environ. 2010, 139, 224–231. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the Largest Expandable Soil Dataset for Europe: A Review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Pires, F.P.; Duffy, D.; Martins, J.C. The INFOSOLO Database as a First Step towards the Development of a Soil Information System in Portugal. Catena 2017, 158, 390–412. [Google Scholar] [CrossRef]
- Batjes, N.H. IPCC Default Soil Classes Derived from the Harmonized World Soil Data Base; ISRIC—World Soil Information: Wageningen, The Netherlands, 2009. [Google Scholar]
- IPCC. IPCC 2019, 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019; Volume 4. [Google Scholar]
- Mazzoncini, M.; Antichi, D.; Di Bene, C.; Risaliti, R.; Petri, M.; Bonari, E. Soil Carbon and Nitrogen Changes after 28 Years of No-Tillage Management under Mediterranean Conditions. Eur. J. Agron. 2016, 77, 156–165. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Plaza-Bonilla, D.; Arrúe, J.L.; Lampurlanés, J.; Cantero-Martínez, C. Soil Organic Carbon Storage in a No-Tillage Chronosequence under Mediterranean Conditions. Plant Soil 2014, 376, 31–41. [Google Scholar] [CrossRef]
- Chen, S.; Shuai, Q.; Arrouays, D.; Chen, Z.; Dai, L.; Hong, Y.; Hu, B.; Huang, Y.; Ji, W.; Li, S.; et al. GSOCS-LULCC: The Global Soil Organic Carbon Stock Dataset after Land Use and Land Cover Change. Earth Syst. Sci. Data Discuss. 2024, preprint. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural Land Abandonment in Mediterranean Environment Provides Ecosystem Services via Soil Carbon Sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Alvaro-Fuentes, J.; Cantero-Martinez, C. Short communication. Potential to mitigate anthropogenic CO2 emissions by tillage reduction in dryland soils of Spain. Span. J. Agric. Res. 2010, 8, 1271–1276. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Achieving Soil Organic Carbon Sequestration with Conservation Agricultural Systems in the Southeastern United States. Soil Sci. Soc. Am. J. 2010, 74, 347–357. [Google Scholar] [CrossRef]
- Emde, D.; Hannam, K.D.; Most, I.; Nelson, L.M.; Jones, M.D. Soil Organic Carbon in Irrigated Agricultural Systems: A Meta-Analysis. Glob. Change Biol. 2021, 27, 3898–3910. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.F.M.; Domingos, T.; Costa, A.P.S.V.; Oliveira, R.; Farropas, L.; Calouro, F.; Barradas, A.M.; Carneiro, J.P.B.G. Soil Organic Matter Dynamics in Portuguese Natural and Sown Rainfed Grasslands. Ecol. Model. 2011, 222, 993–1001. [Google Scholar] [CrossRef]
- Siddique, I.A.; Grados, D.; Chen, J.; Lærke, P.E.; Jørgensen, U. Soil Organic Carbon Stock Change Following Perennialization: A Meta-Analysis. Agron. Sustain. Dev. 2023, 43, 58. [Google Scholar] [CrossRef]
- Baiamonte, G.; Gristina, L.; Orlando, S.; Palermo, S.S.; Minacapilli, M. No-Till Soil Organic Carbon Sequestration Patterns as Affected by Climate and Soil Erosion in the Arable Land of Mediterranean Europe. Remote Sens. 2022, 14, 4064. [Google Scholar] [CrossRef]
- Farina, R.; Marchetti, A.; Francaviglia, R.; Napoli, R.; Bene, C.D. Modeling Regional Soil C Stocks and CO2 Emissions under Mediterranean Cropping Systems and Soil Types. Agric. Ecosyst. Environ. 2017, 238, 128–141. [Google Scholar] [CrossRef]
- Stamati, F.E.; Nikolaidis, N.P.; Schnoor, J.L. Modeling Topsoil Carbon Sequestration in Two Contrasting Crop Production to Set-aside Conversions with RothC—Calibration Issues and Uncertainty Analysis. Agric. Ecosyst. Environ. 2013, 165, 190–200. [Google Scholar] [CrossRef]
- Giannini, V.; Raimondi, G.; Toffanin, A.; Maucieri, C.; Borin, M. Agronomic Management Strategies to Increase Soil Organic Carbon in the Short-Term: Evidence from on-Farm Experimentation in the Veneto Region. Plant Soil 2023, 491, 561–574. [Google Scholar] [CrossRef]
- da Gama, J.T.; Rato Nunes, J.; Loures, L.; Lopez Piñeiro, A.; Vivas, P. Assessing Spatial and Temporal Variability for Some Edaphic Characteristics of Mediterranean Rainfed and Irrigated Soils. Agronomy 2019, 9, 132. [Google Scholar] [CrossRef]
- Zornoza, R.; Rosales, R.M.; Acosta, J.A.; De La Rosa, J.M.; Arcenegui, V.; Faz, Á.; Pérez-Pastor, A. Efficient Irrigation Management Can Contribute to Reduce Soil CO2 Emissions in Agriculture. Geoderma 2016, 263, 70–77. [Google Scholar] [CrossRef]
- Bell, S.M.; Terrer, C.; Barriocanal, C.; Jackson, R.B.; Rosell-Melé, A. Soil Organic Carbon Accumulation Rates on Mediterranean Abandoned Agricultural Lands. Sci. Total Environ. 2021, 759, 143535. [Google Scholar] [CrossRef] [PubMed]
- Nadal-Romero, E.; Rubio, P.; Kremyda, V.; Absalah, S.; Cammeraat, E.; Jansen, B.; Lasanta, T. Effects of Agricultural Land Abandonment on Soil Organic Carbon Stocks and Composition of Soil Organic Matter in the Central Spanish Pyrenees. Catena 2021, 205, 105441. [Google Scholar] [CrossRef]
- Rühl, J.; Gristina, L.; La Mantia, T.; Novara, A.; Pasta, S. Afforestation and Reforestation: The Sicilian Case Study. In The Greenhouse Gas Balance of Italy; Environmental Science and Engineering; Valentini, R., Miglietta, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 173–184. ISBN 978-3-642-32423-9. [Google Scholar]
- Deng, L.; Zhu, G.; Tang, Z.; Shangguan, Z. Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef]
- Vesterdal, L.; Ritter, E.; Gundersen, P. Change in Soil Organic Carbon Following Afforestation of Former Arable Land. For. Ecol. Manag. 2002, 169, 137–147. [Google Scholar] [CrossRef]
- De Baets, S.; Meersmans, J.; Vanacker, V.; Quine, T.A.; Van Oost, K. Spatial Variability and Change in Soil Organic Carbon Stocks in Response to Recovery Following Land Abandonment and Erosion in Mountainous Drylands. Soil Use Manag. 2013, 29, 65–76. [Google Scholar] [CrossRef]
- Abdelbaki, A.M. Evaluation of Pedotransfer Functions for Predicting Soil Bulk Density for U.S. Soils. Ain Shams Eng. J. 2018, 9, 1611–1619. [Google Scholar] [CrossRef]
- Peter, C.; Fiore, A.; Hagemann, U.; Nendel, C.; Xiloyannis, C. Improving the Accounting of Field Emissions in the Carbon Footprint of Agricultural Products: A Comparison of Default IPCC Methods with Readily Available Medium-Effort Modeling Approaches. Int. J. Life Cycle Assess. 2016, 21, 791–805. [Google Scholar] [CrossRef]
- Bellassen, V.; Cienciala, E.; Lehtonen, A.; Korosuo, A.; Blujdea, V.; Rossi, S.; Grassi, G. Moving to Higher Tiers for Soil Carbon; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Pereira, T.C.; Amaro, A.; Borges, M.; Silva, R.; Seabra, T.; Canaveira, P. Portuguese National Inventory Report on Greenhouse Gases, 1990–2021; Portuguese Environmental Agency: Amadora, Portugal, 2023; p. 7.
IPMA | IPCC Climate Classification Scheme |
---|---|
TAnMed | MAT (mean annual temperature) |
PPAnoTot | MAP (mean annual precipitation) |
EV0 | PET (potential evapotranspiration) |
TAnMinN < 0 | Days of frost per year |
COS_LULC | Initial LU Name | Land Use (FLU) 2 | Management (FMG) 2 | Inputs (FI) 2 |
---|---|---|---|---|
Rainfed Annual Crops | Rainfed crop | Long-term cultivated | Full tillage | Medium |
Irrigated Annual Crops | Irrigated crop | Long-term cultivated | Full tillage | HWOM |
Vineyards | Permanent crops | Tree crop | Reduced tillage | Low |
Olive Groves | Permanent crops | Tree crop | Reduced tillage | Medium |
Other Permanent Crops | Permanent crops | Tree crop | Reduced tillage | Medium |
Pastures 1 | Normal grassland | All | Non-degraded | - |
Pastures 1 | Degraded grassland | All | Severely degraded | - |
Transition * | Scenario | Land-Use (FLU) | Management (FMG) | Inputs (FI) | |
---|---|---|---|---|---|
M1A 1 | I | Rainfed crop, full-till | Long-term cultivated | Full tillage | Medium |
F | Rainfed crop, no-till | Long-term cultivated | No tillage | Medium | |
M1B 1 | I | Irrigated crop, full-till | Long-term cultivated | Full tillage | HWOM 8 |
F | Irrigated crop, no-till | Long-term cultivated | No tillage | HWOM | |
M2 2 | I | Rainfed crop, full-till | Long-term cultivated | Full tillage | Medium |
F | Irrigated crop, full-till | Long-term cultivated | Full tillage | HWOM | |
M3A 3 | I | Rainfed crop, full-till | Long-term cultivated | Full tillage | Medium |
F | Improved grassland | All | Improved | High | |
M3B 3 | I | Irrigated crop, full-till | Long-term cultivated | Full tillage | HWOM |
F | Improved grassland | All | Improved | High | |
M4A 4 | I | Rainfed crop, full-till | Long-term cultivated | Full tillage | Medium |
F | Set aside land | Set aside (<20 yr) | No tillage | Low | |
M4B 4 | I | Irrigated crop, full-till | Long-term cultivated | Full tillage | HWOM |
F | Set aside land | Set aside (<20 yr) | No tillage | Low | |
M5A 5 | I | Degraded grassland | All | Severely degraded | - |
F | Improved grassland | All | Improved | High | |
M5B 5 | I | Normal grassland | All | Non-degraded | - |
F | Improved grassland | All | Improved | High | |
T1A 6 | I | Rainfed crop, full-till | Long-term cultivated | Full tillage | Medium |
F | Intensive permanent crop | Tree crop | Reduced tillage | HWOM | |
T1B 6 | I | Irrigated crop, full-till | Long-term cultivated | Full tillage | HWOM |
F | Intensive permanent crop | Tree crop | Reduced tillage | HWOM | |
T2A 7 | I | Rainfed crop, full-till | Long-term cultivated | Full tillage | Medium |
F | Degraded grassland | All | Severely degraded | - | |
T2B 7 | I | Intensive permanent crop | Tree crop | Reduced tillage | Medium |
F | Degraded grassland | All | Severely degraded | - |
Transition | (tC ha−1 yr−1) | [Range] (tC ha−1 yr−1) | Average SOC Increase (%) Over 20 Years |
---|---|---|---|
M1A | 0.07 | [0.02–0.49] | +5% |
M1B | 0.12 | [0.02–0.55] | +6% |
M2 | 0.07 | [0.02–0.54] | +5% |
M3A | 0.82 | [0.25–4.11] | +69% |
M3B | 1.05 | [0.24–3.57] | +62% |
M4A | 0.24 | [0.08–1.00] | +21% |
M4B | 0.20 | [0.06–0.46] | +13% |
M5A | 0.84 | [0.28–4.04] | +81% |
M5B | 0.39 | [0.13–1.90] | +27% |
T1A | 0.05 | [−0.02–1.07] | 0% |
T1B | 0.05 | [−0.13–0.52] | 1% |
T2A | −0.06 | [−0.15–0.07] | −7% |
T2B | −0.08 | [−0.99–−0.02] | −8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposo, M.; Canaveira, P.; Domingos, T. Estimating Soil Carbon Sequestration Potential in Portuguese Agricultural Soils Through Land-Management and Land-Use Changes. Sustainability 2025, 17, 1223. https://doi.org/10.3390/su17031223
Raposo M, Canaveira P, Domingos T. Estimating Soil Carbon Sequestration Potential in Portuguese Agricultural Soils Through Land-Management and Land-Use Changes. Sustainability. 2025; 17(3):1223. https://doi.org/10.3390/su17031223
Chicago/Turabian StyleRaposo, Mariana, Paulo Canaveira, and Tiago Domingos. 2025. "Estimating Soil Carbon Sequestration Potential in Portuguese Agricultural Soils Through Land-Management and Land-Use Changes" Sustainability 17, no. 3: 1223. https://doi.org/10.3390/su17031223
APA StyleRaposo, M., Canaveira, P., & Domingos, T. (2025). Estimating Soil Carbon Sequestration Potential in Portuguese Agricultural Soils Through Land-Management and Land-Use Changes. Sustainability, 17(3), 1223. https://doi.org/10.3390/su17031223