Exploring Supply-Side Barriers for Commercialization of New Biopolymer Production Technologies: A Systematic Review
Abstract
:1. Introduction
2. Method
3. Results
3.1. Biopolymer Technologies and Areas of Application
3.2. Barriers in the Commercialization of Biopolymer Technologies
3.2.1. Technological Barriers
3.2.2. Knowledge Barriers
3.2.3. Economic Barriers
3.2.4. Regulatory Barriers
3.2.5. Supply-Stability Barriers
3.2.6. Cultural/Behavioral Barriers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.-A.T. Environmental Impact of Bioplastic Use: A Review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Nielsen, T.D.; Hasselbalch, J.; Holmberg, K.; Stripple, J. Politics and the Plastic Crisis: A Review throughout the Plastic Life Cycle. WIREs Energy Environ. 2020, 9, e360. [Google Scholar] [CrossRef]
- Mujtaba, M.; Lipponen, J.; Ojanen, M.; Puttonen, S.; Vaittinen, H. Trends and Challenges in the Development of Bio-Based Barrier Coating Materials for Paper/Cardboard Food Packaging; a Review. Sci. Total Environ. 2022, 851, 158328. [Google Scholar] [CrossRef]
- Rendón-Villalobos, R.; Ortíz-Sánchez, A.; Tovar-Sánchez, E.; Flores-Huicochea, E. The Role of Biopolymers in Obtaining Environmentally Friendly Materials. In Composites from Renewable and Sustainable Materials; Poletto, M., Ed.; InTech: London, UK, 2016; ISBN 978-953-51-2793-2/978-953-51-2794-9. [Google Scholar]
- Shevchenko, T.; Ranjbari, M.; Shams Esfandabadi, Z.; Danko, Y.; Bliumska-Danko, K. Promising Developments in Bio-Based Products as Alternatives to Conventional Plastics to Enable Circular Economy in Ukraine. Recycling 2022, 7, 20. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Gautam, S.; Sharma, B.; Jain, P.; Chauhan, K.D. Biopolymers and Their Classifications. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–44. ISBN 978-0-12-819240-5. [Google Scholar]
- Lisitsyn, A.; Semenova, A.; Nasonova, V.; Polishchuk, E.; Revutskaya, N.; Kozyrev, I.; Kotenkova, E. Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers 2021, 13, 1592. [Google Scholar] [CrossRef]
- Luft, L.; Confortin, T.C.; Todero, I.; Zabot, G.L.; Mazutti, M.A. An Overview of Fungal Biopolymers: Bioemulsifiers and Biosurfactants Compounds Production. Crit. Rev. Biotechnol. 2020, 40, 1059–1080. [Google Scholar] [CrossRef] [PubMed]
- Omerović, N.; Djisalov, M.; Živojević, K.; Mladenović, M.; Vunduk, J.; Milenković, I.; Knežević, N.Ž.; Gadjanski, I.; Vidić, J. Antimicrobial Nanoparticles and Biodegradable Polymer Composites for Active Food Packaging Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2428–2454. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Punia Bangar, S.; Thakur, N.; Trif, M. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers 2022, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Guzman, A.; Gnutek, N.; Janik, H. Biodegradable Polymers for Food Packing—Factors Influencing Their Degradation and Certification Types—A Comprehensive Review. Chem. Chem. Technol. 2011, 5, 115–122. [Google Scholar] [CrossRef]
- Bhagwat, G.; Gray, K.; Wilson, S.P.; Muniyasamy, S.; Vincent, S.G.T.; Bush, R.; Palanisami, T. Benchmarking Bioplastics: A Natural Step Towards a Sustainable Future. J. Polym. Environ. 2020, 28, 3055–3075. [Google Scholar] [CrossRef]
- Chavooshi, R.; Ranjkesh, M.R.; Hashemi, B.; Roshangar, L. Cellulose and Lignin-Derived Scaffold and Their Biological Application in Tissue Engineering, Drug Delivery, and Wound Healing: A Review. Cell J. (Yakhteh) 2023, 25, 158–164. [Google Scholar] [CrossRef]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8, 1800465. [Google Scholar] [CrossRef] [PubMed]
- Salgado, P.R.; Di Giorgio, L.; Musso, Y.S.; Mauri, A.N. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. Front. Sustain. Food Syst. 2021, 5, 630393. [Google Scholar] [CrossRef]
- Zhang, M.; Biesold, G.M.; Choi, W.; Yu, J.; Deng, Y.; Silvestre, C.; Lin, Z. Recent Advances in Polymers and Polymer Composites for Food Packaging. Mater. Today 2022, 53, 134–161. [Google Scholar] [CrossRef]
- Panoutsou, C.; Von Cossel, M.; Ciria, P.; Ciria, C.S.; Baraniecki, P.; Monti, A.; Zanetti, F.; Dubois, J. Social Considerations for the Cultivation of Industrial Crops on Marginal Agricultural Land as Feedstock for Bioeconomy. Biofuels Bioprod. Biorefining 2022, 16, 1319–1341. [Google Scholar] [CrossRef]
- Pires, J.R.A.; Souza, V.G.L.; Fuciños, P.; Pastrana, L.; Fernando, A.L. Methodologies to Assess the Biodegradability of Bio-Based Polymers—Current Knowledge and Existing Gaps. Polymers 2022, 14, 1359. [Google Scholar] [CrossRef] [PubMed]
- Provin, A.P.; Cubas, A.L.V.; Dutra, A.R.D.A.; Schulte, N.K. Textile Industry and Environment: Can the Use of Bacterial Cellulose in the Manufacture of Biotextiles Contribute to the Sector? Clean Technol. Environ. Policy 2021, 23, 2813–2825. [Google Scholar] [CrossRef]
- Rognoli, V.; Petreca, B.; Pollini, B.; Saito, C. Materials Biography as a Tool for Designers’ Exploration of Bio-Based and Bio-Fabricated Materials for the Sustainable Fashion Industry. Sustain. Sci. Pract. Policy 2022, 18, 749–772. [Google Scholar] [CrossRef]
- Cherrington, R.; Marshall, J.; Alexander, A.T.; Goodship, V. Exploring the Circular Economy through Coatings in Transport. Sustain. Prod. Consum. 2022, 32, 136–146. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.Z.M.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Pérez, M.P.; Brümmer, M.; Durán-Suárez, J.A. A Review of the Factors Affecting the Properties and Performance of Hemp Aggregate Concretes. J. Build. Eng. 2020, 31, 101323. [Google Scholar] [CrossRef]
- Shyamala, G.; Rajesh Kumar, K.; Olalusi, O.B. Impacts of Nonconventional Construction Materials on Concrete Strength Development: Case Studies. SN Appl. Sci. 2020, 2, 1927. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and Biomass-Based Energy Supply and Demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Senthil Kumar, P.; Saravanan, A.; Karishma, S.; Rangasamy, G. A Biotechnological Roadmap for Decarbonization Systems Combined into Bioenergy Production: Prelude of Environmental Life-Cycle Assessment. Chemosphere 2023, 329, 138670. [Google Scholar] [CrossRef]
- Kordasht, H.K.; Hasanzadeh, M.; Seidi, F.; Alizadeh, P.M. Poly (Amino Acids) towards Sensing: Recent Progress and Challenges. TrAC Trends Anal. Chem. 2021, 140, 116279. [Google Scholar] [CrossRef]
- Li, J.; Tian, X.; Hua, T.; Fu, J.; Koo, M.; Chan, W.; Poon, T. Chitosan Natural Polymer Material for Improving Antibacterial Properties of Textiles. ACS Appl. Bio Mater. 2021, 4, 4014–4038. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Madhavan, A.; Sindhu, R.; Pugazhendhi, A.; Binod, P.; Sirohi, R.; Awasthi, M.K.; Tarafdar, A.; Pandey, A. Advanced Biomaterials for Sustainable Applications in the Food Industry: Updates and Challenges. Environ. Pollut. 2021, 283, 117071. [Google Scholar] [CrossRef]
- Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and Challenges of Biopolymer-based Nanocomposites in Food Packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5321–5344. [Google Scholar] [CrossRef]
- Fertala, A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering 2020, 7, 155. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Cai, Z.; Xie, Y.; Ma, A.; Zhang, H.; Rao, P.; Wang, Q. Synthesis, Physicochemical Properties, and Health Aspects of Structured Lipids: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 759–800. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Ali, M.H.; Ali, A.; Jain, P.; Anwer, M.K.; Iqbal, Z.; Mirza, M.A. 3D Printing Technology in Healthcare: Applications, Regulatory Understanding, IP Repository and Clinical Trial Status. J. Drug Target 2022, 30, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Rathee, S.; Nayak, V.; Singh, K.R.; Ojha, A. Nanofortification of Vitamin B-Complex in Food Matrix: Need, Regulations, and Prospects. Food Chem. Mol. Sci. 2022, 4, 100100. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G. Biorefinery of Sewage Sludge: Overview of Possible Value-Added Products and Applicable Process Technologies. Water 2023, 15, 1195. [Google Scholar] [CrossRef]
- Ktari, L.; Chebil Ajjabi, L.; De Clerck, O.; Gómez Pinchetti, J.L.; Rebours, C. Seaweeds as a Promising Resource for Blue Economy Development in Tunisia: Current State, Opportunities, and Challenges. J. Appl. Phycol. 2022, 34, 489–505. [Google Scholar] [CrossRef]
- Page-Dumroese, D.S.; Franco, C.R.; Archuleta, J.G.; Taylor, M.E.; Kidwell, K.; High, J.C.; Adam, K. Forest Biomass Policies and Regulations in the United States of America. Forests 2022, 13, 1415. [Google Scholar] [CrossRef]
- Mobtaker, A.; Ouhimmou, M.; Audy, J.-F.; Rönnqvist, M. A Review on Decision Support Systems for Tactical Logistics Planning in the Context of Forest Bioeconomy. Renew. Sustain. Energy Rev. 2021, 148, 111250. [Google Scholar] [CrossRef]
- Bos, H.L.; Broeze, J. Circular Bio-based Production Systems in the Context of Current Biomass and Fossil Demand. Biofuels Bioprod. Biorefining 2020, 14, 187–197. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Hastings, A.; Von Cossel, M.; Murphy-Bokern, D.; McCalmont, J.; Whitaker, J.; Alexopoulou, E.; Amaducci, S.; Andronic, L.; Ashman, C.; et al. Perennial Biomass Cropping and Use: Shaping the Policy Ecosystem in European Countries. GCB Bioenergy 2023, 15, 538–558. [Google Scholar] [CrossRef]
- Cristofoli, N.L.; Lima, A.R.; Tchonkouang, R.D.N.; Quintino, A.C.; Vieira, M.C. Advances in the Food Packaging Production from Agri-Food Waste and By-Products: Market Trends for a Sustainable Development. Sustainability 2023, 15, 6153. [Google Scholar] [CrossRef]
- Dini, I. Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector. Antioxidants 2022, 11, 563. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Shaida, B.; Rastogi, M.; Singh, N.B. Food Packaging Materials with Special Reference to Biopolymers-Properties and Applications. Chem. Afr. 2023, 6, 117–144. [Google Scholar] [CrossRef]
- Duran, M.; Serrano, A.; Nikulin, A.; Dauvergne, J.-L.; Derzsi, L.; Palomo Del Barrio, E. Microcapsule Production by Droplet Microfluidics: A Review from the Material Science Approach. Mater. Des. 2022, 223, 111230. [Google Scholar] [CrossRef]
- Ma, T.; Hu, X.; Lu, S.; Liao, X.; Song, Y.; Hu, X. Nanocellulose: A Promising Green Treasure from Food Wastes to Available Food Materials. Crit. Rev. Food Sci. Nutr. 2022, 62, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Oulkhir, A.; Lyamlouli, K.; Danouche, M.; Ouazzani, J.; Benhida, R. A Critical Review on Natural Surfactants and Their Potential for Sustainable Mineral Flotation. Rev. Environ. Sci. Biotechnol. 2023, 22, 105–131. [Google Scholar] [CrossRef]
- Rehman, K.U.; Hollah, C.; Wiesotzki, K.; Heinz, V.; Aganovic, K.; Rehman, R.U.; Petrusan, J.-I.; Zheng, L.; Zhang, J.; Sohail, S.; et al. Insect-Derived Chitin and Chitosan: A Still Unexploited Resource for the Edible Insect Sector. Sustainability 2023, 15, 4864. [Google Scholar] [CrossRef]
- Larrañaga, A.; Lizundia, E. A Review on the Thermomechanical Properties and Biodegradation Behaviour of Polyesters. Eur. Polym. J. 2019, 121, 109296. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Koning, C.E.; Wang, H. Short-Process Synthetic Strategies of Sustainable Isohexide-Based Polyesters towards Higher Molecular Weight and Commercial Applicability. Green Chem. 2022, 24, 8637–8670. [Google Scholar] [CrossRef]
- Sydow, Z.; Bieńczak, K. The Overview on the Use of Natural Fibers Reinforced Composites for Food Packaging. J. Nat. Fibers 2019, 16, 1189–1200. [Google Scholar] [CrossRef]
- Vázquez-Núñez, E.; Avecilla-Ramírez, A.M.; Vergara-Porras, B.; López-Cuellar, M.d.R. Green Composites and Their Contribution toward Sustainability: A Review. Polym. Polym. Compos. 2021, 29, S1588–S1608. [Google Scholar] [CrossRef]
- Titirici, M.; Baird, S.G.; Sparks, T.D.; Yang, S.M.; Brandt-Talbot, A.; Hosseinaei, O.; Harper, D.P.; Parker, R.M.; Vignolini, S.; Berglund, L.A.; et al. The Sustainable Materials Roadmap. J. Phys. Mater. 2022, 5, 32001. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, Z.; Xue, C. Recent Advances in Carrageenan-Based Delivery Systems for Bioactive Ingredients: A Review. Trends Food Sci. Technol. 2021, 112, 348–361. [Google Scholar] [CrossRef]
- Maraveas, C.; Bayer, I.S.; Bartzanas, T. 4D Printing: Perspectives for the Production of Sustainable Plastics for Agriculture. Biotechnol. Adv. 2022, 54, 107785. [Google Scholar] [CrossRef] [PubMed]
- Stark, N.M.; Matuana, L.M. Trends in Sustainable Biobased Packaging Materials: A Mini Review. Mater. Today Sustain. 2021, 15, 100084. [Google Scholar] [CrossRef]
- Bhola, S.; Arora, K.; Kulshrestha, S.; Mehariya, S.; Bhatia, R.K.; Kaur, P.; Kumar, P. Established and Emerging Producers of PHA: Redefining the Possibility. Appl. Biochem. Biotechnol. 2021, 193, 3812–3854. [Google Scholar] [CrossRef]
- Costa, A.; Encarnação, T.; Tavares, R.; Todo Bom, T.; Mateus, A. Bioplastics: Innovation for Green Transition. Polymers 2023, 15, 517. [Google Scholar] [CrossRef] [PubMed]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef]
- Dong, H.; Hu, B.; Zhang, W.; Xie, W.; Mo, J.; Sun, H.; Shang, J. Robotic-Assisted Automated in Situ Bioprinting. Int. J. Bioprint 2022, 9, 629. [Google Scholar] [CrossRef]
- Fiallos-Cárdenas, M.; Pérez-Martínez, S.; Ramirez, A.D. Prospectives for the Development of a Circular Bioeconomy around the Banana Value Chain. Sustain. Prod. Consum. 2022, 30, 541–555. [Google Scholar] [CrossRef]
- Jamieson, C.; Keenan, P.; Kirkwood, D.; Oji, S.; Webster, C.; Russell, K.A.; Koch, T.G. A Review of Recent Advances in 3D Bioprinting With an Eye on Future Regenerative Therapies in Veterinary Medicine. Front. Vet. Sci. 2021, 7, 584193. [Google Scholar] [CrossRef] [PubMed]
- Pessôa, L.C.; Deamici, K.M.; Pontes, L.A.M.; Druzian, J.I.; Assis, D.D.J. Technological Prospection of Microalgae-Based Biorefinery Approach for Effluent Treatment. Algal. Res. 2021, 60, 102504. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A.; Kumar, S. Green Product Innovation: A Means towards Achieving Global Sustainable Product within Biodegradable Plastic Industry. J. Clean. Prod. 2022, 363, 132506. [Google Scholar] [CrossRef]
- Prabha, K.; Ghosh, P.; Abdullah, S.; Joseph, R.M.; Krishnan, R.; Rana, S.S.; Pradhan, R.C. Recent Development, Challenges, and Prospects of Extrusion Technology. Future Foods 2021, 3, 100019. [Google Scholar] [CrossRef]
- Vlăsceanu, G.M.; Iovu, H.; Ioniţă, M. Graphene Inks for the 3D Printing of Cell Culture Scaffolds and Related Molecular Arrays. Compos. B Eng. 2019, 162, 712–723. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, S.; Mei, D.; Li, J.; Zhang, J.; Yang, S.; Guan, S. Application of 3D Printing Technology in Bone Tissue Engineering: A Review. Curr. Drug Deliv. 2020, 18, 847–861. [Google Scholar] [CrossRef]
- Asim, N.; Su’Ait, M.S.; Badiei, M.; Mohammad, M.; Akhtaruzzaman, M.; Rajabi, A.; Amin, N.; Ghazali, M.J. Perspectives in Biopolymer/Graphene-Based Composite Application: Advances, Challenges, and Recommendations. Nanotechnol. Rev. 2022, 11, 1525–1554. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, L.; McClements, D.J.; Yang, T.; Zhang, Z.; Ren, F.; Miao, M.; Tian, Y.; Jin, Z. Starch-Based Biodegradable Packaging Materials: A Review of Their Preparation, Characterization and Diverse Applications in the Food Industry. Trends Food Sci. Technol. 2021, 114, 70–82. [Google Scholar] [CrossRef]
- Ebers, L.-S.; Arya, A.; Bowland, C.C.; Glasser, W.G.; Chmely, S.C.; Naskar, A.K.; Laborie, M.-P. 3D Printing of Lignin: Challenges, Opportunities and Roads Onward. Biopolymers 2021, 112, e23431. [Google Scholar] [CrossRef]
- Han, M.; Zhang, R.; Wu, Q.; Wu, N.; Liu, J. Biopolymer-Based Aerogels for Electromagnetic Wave Shielding and Absorbing. Chin. J. Chem. 2023, 41, 322–334. [Google Scholar] [CrossRef]
- Kiseleva, A.P.; Krivoshapkin, P.V.; Krivoshapkina, E.F. Recent Advances in Development of Functional Spider Silk-Based Hybrid Materials. Front. Chem. 2020, 8, 554. [Google Scholar] [CrossRef] [PubMed]
- Kostas, E.T.; Adams, J.M.M.; Ruiz, H.A.; Durán-Jiménez, G.; Lye, G.J. Macroalgal Biorefinery Concepts for the Circular Bioeconomy: A Review on Biotechnological Developments and Future Perspectives. Renew. Sustain. Energy Rev. 2021, 151, 111553. [Google Scholar] [CrossRef]
- Liyanage, S.; Acharya, S.; Parajuli, P.; Shamshina, J.L.; Abidi, N. Production and Surface Modification of Cellulose Bioproducts. Polymers 2021, 13, 3433. [Google Scholar] [CrossRef] [PubMed]
- Menossi, M.; Ollier, R.P.; Casalongué, C.A.; Alvarez, V.A. Essential Oil-loaded Bio-nanomaterials for Sustainable Agricultural Applications. J. Chem. Technol. Biotechnol. 2021, 96, 2109–2122. [Google Scholar] [CrossRef]
- Asabuwa Ngwabebhoh, F.; Saha, N.; Saha, T.; Saha, P. Bio-Innovation of New-Generation Nonwoven Natural Fibrous Materials for the Footwear Industry: Current State-of-the-Art and Sustainability Panorama. J. Nat. Fibers 2022, 19, 4897–4907. [Google Scholar] [CrossRef]
- Rosseto, M.; Rigueto, C.V.T.; Alessandretti, I.; de Oliveira, R.; Raber Wohlmuth, D.A.; Loss, R.A.; Dettmer, A.; Richards, N.S.P. dos S. Whey-Based Polymeric Films for Food Packaging Applications: A Review of Recent Trends. J. Sci. Food Agric. 2023, 103, 3217–3229. [Google Scholar] [CrossRef] [PubMed]
- Lemos, P.V.F.; Marcelino, H.R.; Cardoso, L.G.; Souza, C.O.d.; Druzian, J.I. Starch Chemical Modifications Applied to Drug Delivery Systems: From Fundamentals to FDA-Approved Raw Materials. Int. J. Biol. Macromol. 2021, 184, 218–234. [Google Scholar] [CrossRef]
- Lim, H.J.; Cheng, W.K.; Tan, K.W.; Yu, L.J. Oil Palm-Based Nanocellulose for a Sustainable Future: Where Are We Now? J. Environ. Chem. Eng. 2022, 10, 107271. [Google Scholar] [CrossRef]
- Rodrigues, C.; Souza, V.G.L.; Coelhoso, I.; Fernando, A.L. Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Sensors 2021, 21, 2148. [Google Scholar] [CrossRef] [PubMed]
- Roibás-Rozas, A.; Mosquera-Corral, A.; Hospido, A. Environmental Assessment of Complex Wastewater Valorisation by Polyhydroxyalkanoates Production. Sci. Total Environ. 2020, 744, 140893. [Google Scholar] [CrossRef]
- Santhosh, R.; Nath, D.; Sarkar, P. Novel Food Packaging Materials Including Plant-Based Byproducts: A Review. Trends Food Sci. Technol. 2021, 118, 471–489. [Google Scholar] [CrossRef]
- Song, J.; Yu, Y.; Chen, M.; Ren, Z.; Chen, L.; Fu, C.; Ma, Z.F.; Li, Z. Advancement of Protein- and Polysaccharide-Based Biopolymers for Anthocyanin Encapsulation. Front. Nutr. 2022, 9, 938829. [Google Scholar] [CrossRef] [PubMed]
- Catoira, M.C.; González-Payo, J.; Fusaro, L.; Ramella, M.; Boccafoschi, F. Natural Hydrogels R&D Process: Technical and Regulatory Aspects for Industrial Implementation. J. Mater. Sci. Mater. Med. 2020, 31, 64. [Google Scholar] [CrossRef] [PubMed]
- Khodaman, E.; Barzegar, H.; Jokar, A.; Jooyandeh, H. Production and Evaluation of Physicochemical, Mechanical and Antimicrobial Properties of Chia (Salvia hispanica L.) Mucilage-Gelatin Based Edible Films Incorporated with Chitosan Nanoparticles. J. Food Meas. Charact. 2022, 16, 3547–3556. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Chanet, G.; Morin-Crini, N. Applications of Hemp in Textiles, Paper Industry, Insulation and Building Materials, Horticulture, Animal Nutrition, Food and Beverages, Nutraceuticals, Cosmetics and Hygiene, Medicine, Agrochemistry, Energy Production and Environment: A Review. Environ. Chem. Lett. 2020, 18, 1451–1476. [Google Scholar] [CrossRef]
- Semple, K.E.; Zhou, C.; Rojas, O.J.; Nkeuwa, W.N.; Dai, C. Moulded Pulp Fibers for Disposable Food Packaging: A State-of-the-Art Review. Food Packag. Shelf Life 2022, 33, 100908. [Google Scholar] [CrossRef]
- Fletcher, C.A.; Niemenoja, K.; Hunt, R.; Adams, J.; Dempsey, A.; Banks, C.E. Addressing Stakeholder Concerns Regarding the Effective Use of Bio-Based and Biodegradable Plastics. Resources 2021, 10, 95. [Google Scholar] [CrossRef]
- Brandolese, A.; Kleij, A.W. Catalyst Engineering Empowers the Creation of Biomass-Derived Polyesters and Polycarbonates. Acc. Chem. Res. 2022, 55, 1634–1645. [Google Scholar] [CrossRef] [PubMed]
- Geijer, C.; Ledesma-Amaro, R.; Tomás-Pejó, E. Unraveling the Potential of Non-Conventional Yeasts in Biotechnology. FEMS Yeast Res. 2022, 22, foab071. [Google Scholar] [CrossRef]
- Krujatz, F.; Dani, S.; Windisch, J.; Emmermacher, J.; Hahn, F.; Mosshammer, M.; Murthy, S.; Steingröwer, J.; Walther, T.; Kühl, M.; et al. Think Outside the Box: 3D Bioprinting Concepts for Biotechnological Applications—Recent Developments and Future Perspectives. Biotechnol. Adv. 2022, 58, 107930. [Google Scholar] [CrossRef] [PubMed]
- Bamps, B.; Guimaraes, R.M.M.; Duijsters, G.; Hermans, D.; Vanminsel, J.; Vervoort, E.; Buntinx, M.; Peeters, R. Characterizing Mechanical, Heat Seal, and Gas Barrier Performance of Biodegradable Films to Determine Food Packaging Applications. Polymers 2022, 14, 2569. [Google Scholar] [CrossRef]
- Dalton, B.; Bhagabati, P.; De Micco, J.; Padamati, R.B.; O’Connor, K. A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022, 12, 319. [Google Scholar] [CrossRef]
- Hinchliffe, J.D.; Parassini Madappura, A.; Syed Mohamed, S.M.D.; Roy, I. Biomedical Applications of Bacteria-Derived Polymers. Polymers 2021, 13, 1081. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Singh Patel, S.K.; Shanmugam, R.; Lee, J.-K. Polyhydroxyalkanoates: Trends and Advances toward Biotechnological Applications. Bioresour. Technol. 2021, 326, 124737. [Google Scholar] [CrossRef] [PubMed]
- Madej-Kiełbik, L.; Gzyra-Jagieła, K.; Jóźwik-Pruska, J.; Dziuba, R.; Bednarowicz, A. Biopolymer Composites with Sensors for Environmental and Medical Applications. Materials 2022, 15, 7493. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, P.; Możejko-Ciesielska, J. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria? Polymers 2021, 13, 1731. [Google Scholar] [CrossRef] [PubMed]
- Mazitova, A.K.; Aminova, G.K.; Buylova, E.A.; Zaripov, I.I.; Vikhareva, I.N. Biodegradable Polymer Materials and Modifying Additives: State of the Art. Part III. Nanotechnol. Constr. 2021, 13, 73–78. [Google Scholar]
- Silva, E.G.S.; Cardoso, S.; Bettencourt, A.F.; Ribeiro, I.A.C. Latest Trends in Sustainable Polymeric Food Packaging Films. Foods 2022, 12, 168. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.; Sadaiappan, B.; Aruni, W.; Kumarappan, A.; Thirunavukarasu, R.; Srinivasan, G.P.; Bharathi, S.; Nainangu, P.; Renuga, P.S.; Elamaran, A.; et al. Bioconversion of Chitin and Concomitant Production of Chitinase and N-Acetylglucosamine by Novel Achromobacter Xylosoxidans Isolated from Shrimp Waste Disposal Area. Sci. Rep. 2020, 10, 11898. [Google Scholar] [CrossRef]
- Alves, A.A.; Siqueira, E.C.; Barros, M.P.S.; Silva, P.E.C.; Houllou, L.M. Polyhydroxyalkanoates: A Review of Microbial Production and Technology Application. Int. J. Environ. Sci. Technol. 2023, 20, 3409–3420. [Google Scholar] [CrossRef]
- Kunamaneni, S. Bioplastics Innovation: Commercialization Strategies for Polyethylene Furanoate (PEF) and Polyhydroxy Alkanoates (PHA). Biofuels Bioprod. Biorefining 2023, 17, 421–436. [Google Scholar] [CrossRef]
- Ludwicka, K.; Kaczmarek, M.; Białkowska, A. Bacterial Nanocellulose—A Biobased Polymer for Active and Intelligent Food Packaging Applications: Recent Advances and Developments. Polymers 2020, 12, 2209. [Google Scholar] [CrossRef]
- Nduko, J.M.; Taguchi, S. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources. Front. Bioeng. Biotechnol. 2021, 8, 618077. [Google Scholar] [CrossRef] [PubMed]
- Vikhareva, I.N.; Zaripov, I.I.; Kinzyabulatova, D.F.; Minigazimov, N.S.; Aminova, G.K. Biodegradable Polymer Materials and Modifying Additives: State of the Art. Part I. Nanotechnol. Constr. A Sci. Internet-J. 2019, 35, 16. [Google Scholar] [CrossRef]
- Fuentes, K.M.; Gómez, M.; Rebolledo, H.; Figueroa, J.M.; Zamora, P.; Naranjo-Briceño, L. Nanomaterials in the Future Biotextile Industry: A New Cosmovision to Obtain Smart Biotextiles. Front. Nanotechnol. 2022, 4, 1056498. [Google Scholar] [CrossRef]
- Cantera, S.; Bordel, S.; Lebrero, R.; Gancedo, J.; García-Encina, P.A.; Muñoz, R. Bio-Conversion of Methane into High Profit Margin Compounds: An Innovative, Environmentally Friendly and Cost-Effective Platform for Methane Abatement. World J. Microbiol. Biotechnol. 2019, 35, 16. [Google Scholar] [CrossRef]
- Sun, L.; Xin, F.; Alper, H.S. Bio-Synthesis of Food Additives and Colorants-a Growing Trend in Future Food. Biotechnol. Adv. 2021, 47, 107694. [Google Scholar] [CrossRef]
- Mossberg, J.; Söderholm, P.; Frishammar, J. Challenges of Sustainable Industrial Transformation: Swedish Biorefinery Development and Incumbents in the Emerging Biofuels Industry. Biofuels Bioprod. Biorefining 2021, 15, 1264–1280. [Google Scholar] [CrossRef]
- Friedrich, D. How Regulatory Measures towards Biobased Packaging Influence the Strategic Behaviour of the Retail Industry: A Microempirical Study. J. Clean. Prod. 2020, 260, 121128. [Google Scholar] [CrossRef]
- Salvador, R.; Barros, M.V.; Donner, M.; Brito, P.; Halog, A.; De Francisco, A.C. How to Advance Regional Circular Bioeconomy Systems? Identifying Barriers, Challenges, Drivers, and Opportunities. Sustain. Prod. Consum. 2022, 32, 248–269. [Google Scholar] [CrossRef]
- Pippa, N.; Gazouli, M.; Pispas, S. Recent Advances and Future Perspectives in Polymer-Based Nanovaccines. Vaccines 2021, 9, 558. [Google Scholar] [CrossRef] [PubMed]
- Agyekum, K.; Adinyira, E.; Oppon, J.A. Factors Limiting the Adoption of Hemp as an Alternative Sustainable Material for Green Building Delivery in Ghana. Int. J. Build. Pathol. Adapt. 2022, 40, 202–218. [Google Scholar] [CrossRef]
- Goh, C.S.; Potter, L. Bio-Economy for Sustainable Growth in Developing Countries: The Case of Oil Palm in Malaysia and Indonesia. Biofuels Bioprod. Biorefining 2022, 16, 1808–1819. [Google Scholar] [CrossRef]
- Massella, D.; Giraud, S.; Guan, J.; Ferri, A.; Salaün, F. Textiles for Health: A Review of Textile Fabrics Treated with Chitosan Microcapsules. Environ. Chem. Lett. 2019, 17, 1787–1800. [Google Scholar] [CrossRef]
- Grama, S.B.; Liu, Z.; Li, J. Emerging Trends in Genetic Engineering of Microalgae for Commercial Applications. Mar. Drugs 2022, 20, 285. [Google Scholar] [CrossRef]
- Joye, I.J. Cereal Biopolymers for Nano- and Microtechnology: A Myriad of Opportunities for Novel (Functional) Food Applications. Trends Food Sci. Technol. 2019, 83, 1–11. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Vasiljevic, Z.Z.; Auger, S.; Vidic, J. Metal Oxide Nanoparticles for Safe Active and Intelligent Food Packaging. Trends Food Sci. Technol. 2021, 116, 655–668. [Google Scholar] [CrossRef]
- Vera, M.; Mella, C.; García, Y.; Jiménez, V.A.; Urbano, B.F. Recent Advances in Tannin-Containing Food Biopackaging. Trends Food Sci. Technol. 2023, 133, 28–36. [Google Scholar] [CrossRef]
- Kulej-Dudek, E. Ecolabnet Service Packages as a Response to the Needs of Manufacturing Enterprises in the SME Sector of the Baltic Sea Region. Prod. Eng. Arch. 2021, 27, 265–271. [Google Scholar] [CrossRef]
- Jaconis, S.B.; Morita, A.T.; Coutinho, P.L.; Borschiver, S. Systematically Monitoring, Relational Database and Technology Roadmapping for Trends and Innovation Opportunities in Biopolymers. J. Renew. Mater. 2019, 7, 1221–1230. [Google Scholar] [CrossRef]
- Abdollahiparsa, H.; Shahmirzaloo, A.; Teuffel, P.; Blok, R. A Review of Recent Developments in Structural Applications of Natural Fiber-Reinforced Composites (NFRCs). Compos. Adv. Mater. 2023, 32, 263498332211475. [Google Scholar] [CrossRef]
- van Leeuwen, M.; Gonzalez-Martinez, A.R.; Sturm, V. Developing BioMAT: A New Conceptual Framework to Model the Market of Bio-Based Materials in the EU. Stud. Agric. Econ. 2022, 124, 82–87. [Google Scholar] [CrossRef]
- Kövilein, A.; Kubisch, C.; Cai, L.; Ochsenreither, K. Malic Acid Production from Renewables: A Review. J. Chem. Technol. Biotechnol. 2020, 95, 513–526. [Google Scholar] [CrossRef]
- Jayakumar, A.; Radoor, S.; Kim, J.T.; Rhim, J.W.; Nandi, D.; Parameswaranpillai, J.; Siengchin, S. Recent Innovations in Bionanocomposites-Based Food Packaging Films—A Comprehensive Review. Food Packag. Shelf Life 2022, 33, 100877. [Google Scholar] [CrossRef]
- Bruine De Bruin, W.; Bostrom, A. Assessing What to Address in Science Communication. Proc. Natl. Acad. Sci. USA 2013, 110, 14062–14068. [Google Scholar] [CrossRef] [PubMed]
Stakeholders | Description | % |
---|---|---|
Academic and research industry | Research centers | 57.4 |
Food and packaging industry | Food and beverages, food packaging, smart food packaging, dairy industry, and meat industry | 45.5 |
Government and regulation | Governmental agencies, environmental protection agencies, and policymakers | 39.8 |
Biomedical and healthcare industry | Medical device companies, pharmaceutical, drug delivery, and cosmetics | 34.7 |
Agriculture, aquaculture, and farming industry | Agro-food sector, fertilizers industry, pest control, forest companies, wood industry, and marine biotechnology | 18.8 |
Construction and engineering industry | Civil engineering, building and furniture, and concrete producers | 10.2 |
Energy and environment industry | Biorefinery, bioenergy, and oil industry | 9.7 |
Textile and fashion industry | Clothing, sport equipment, and footwear industry | 9.1 |
Technology and manufacturing industry | Industrial machinery, electronic equipment, automotive, transportation sector, and communication sector | 7.4 |
Waste management industry | Biomass, food waste management, and wastewater treatment | 7.4 |
Barriers | Description | e.g., | % |
---|---|---|---|
Technological | Limited biopolymer properties, specialized equipment availability, and the need for diverse technical expertise | [11,43] | 83.0 |
Knowledge | Limited research, gaps in farming techniques, lack of collaboration, and multidisciplinary approaches | [10,44] | 56.8 |
Economic | High production costs and limited access to financial capital for research, development, and commercialization | [45,46] | 47.7 |
Regulatory | Inconsistent policies and unique regulatory landscapes that complicate cross-border knowledge transfer | [19,47] | 43.8 |
Supply stability | Limited raw material availability, seasonal variations, and resource management challenges | [48,49] | 33.5 |
Behavioral | Resistance to change, intention–behavior gaps, market uncertainty, and perceived unacceptance from the demand side | [41,42] | 18.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Possidónio, C.; Farias, A.R.; Domingos, S.; Cruz, B.; Luís, S.; Loureiro, A. Exploring Supply-Side Barriers for Commercialization of New Biopolymer Production Technologies: A Systematic Review. Sustainability 2025, 17, 820. https://doi.org/10.3390/su17030820
Possidónio C, Farias AR, Domingos S, Cruz B, Luís S, Loureiro A. Exploring Supply-Side Barriers for Commercialization of New Biopolymer Production Technologies: A Systematic Review. Sustainability. 2025; 17(3):820. https://doi.org/10.3390/su17030820
Chicago/Turabian StylePossidónio, Catarina, Ana Rita Farias, Samuel Domingos, Bernardo Cruz, Sílvia Luís, and Ana Loureiro. 2025. "Exploring Supply-Side Barriers for Commercialization of New Biopolymer Production Technologies: A Systematic Review" Sustainability 17, no. 3: 820. https://doi.org/10.3390/su17030820
APA StylePossidónio, C., Farias, A. R., Domingos, S., Cruz, B., Luís, S., & Loureiro, A. (2025). Exploring Supply-Side Barriers for Commercialization of New Biopolymer Production Technologies: A Systematic Review. Sustainability, 17(3), 820. https://doi.org/10.3390/su17030820