Spatiotemporal Dynamics of Soil and Soil Organic Carbon Losses via Water Erosion in Coffee Cultivation in Tropical Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Description
2.2. Methodology
2.3. Sediment Delivery Ratio (SDR)
2.4. SOM and SOC Models
3. Results
3.1. RUSLE Factors and Soil Losses
3.2. Soil Organic Matter (SOM) and Carbon (SOC) Losses
4. Discussion
4.1. Soil Losses
4.2. Soil Organic Carbon (SOC) Losses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations (FAO) and Intergovernmental Technical Panel on Soils (ITPS): Rome, Italy, 2015; 607p, Available online: https://openknowledge.fao.org/server/api/core/bitstreams/6ec24d75-19bd-4f1f-b1c5-5becf50d0871/content (accessed on 20 December 2023).
- GSP Global Soil Partnership. Available online: http://www.fao.org/globalsoilpartnership/resources/highlights/detail/en/c/416516/ (accessed on 19 April 2023).
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- IAEA International Atomic Energy Agency. IAEA Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies; IAEA-TECDOC-1741 IAEA Publication: Vienna, Austria, 2014. [Google Scholar]
- Guo, J.; Liu, X.; Liu, J.; Zhang, W.; Yang, C.; Xing, L.; Li, H.; Luo, X.; Wang, R.; Mamat, Z.; et al. Analysis of Spatial and Temporal Patterns of Soil Erosion in the Yunnan-Guizhou Plateau during 2000–2030. Sustainability 2024, 16, 7769. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef] [PubMed]
- Félix, F.C.; Cândido, B.M.; De Moraes, J.F. How suitable are vegetation indices for estimating the (R)USLE C-factor for croplands? A case study from Southeast Brazil. ISPRS Open J. Photogramm. Remote Sens. 2023, 10, 100050. [Google Scholar] [CrossRef]
- Medeiros, G.O.R.; Giarolla, A.; Sampaio, G.; Marinho, M.A. Estimates of annual soil loss rates in the state of São Paulo, Brazil. Rev. Bras. Cienc. Solo 2016, 40, e0150497. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Mol, J.H. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems. Agriculture 2013, 3, 660–683. [Google Scholar] [CrossRef]
- Fitch, A.; Rowe, R.L.; McNamara, N.P.; Prayogo, C.; Ishaq, R.M.; Prasetyo, R.D.; Mitchell, Z.; Oakley, S.; Jones, L. The Coffee Compromise: Is Agricultural Expansion into Tree Plantations a Sustainable Option? Sustainability 2022, 14, 3019. [Google Scholar] [CrossRef]
- Hernani, L.C.; Freitas, P.D.; Pruski, F.F.; De Maria, I.C.; Castro Filho, C.D.; Landers, J.C.; Manzatto, C.V.; Freitas Júnior, E.D.; Peres, J.R. A erosão e seu impacto. In Uso Agrícola Dos Solos Brasileiros, 1st ed.; Manzatto, C.V., Freitas Júnior, E., Peres, J.R.R., Eds.; Embrapa Solos: Rio de Janeiro, Brazil, 2002; pp. 47–60. [Google Scholar]
- Dechen, S.C.F.; Telles, T.S.; Guimarães, M.d.F.; Maria, I.C.D. Perdas e custos associados à erosão hídrica em função de taxas de cobertura do solo. Bragantia 2015, 74, 224–233. [Google Scholar] [CrossRef]
- Dos Santos, D.G.; Coelho, C.C.; Ferreira, A.B. Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario. Microorganisms 2021, 9, 858. [Google Scholar] [CrossRef] [PubMed]
- CONAB Companhia Nacional de Abastecimento e Central de Informações Agropecuárias. Available online: http://www.conab.gov.br (accessed on 12 March 2023).
- Lopes, P.G.; Araújo, K.C.S.; Lopes, I.M.; Rangel, R.P.; Santos, N.F.F.; Kageyama, P.Y. Uma análise das consequências da agricultura convencional e das opções de modelos sustentáveis de produção—Agricultura orgânica e agroflorestal. REDD—Revista Espaço Diálogo Desconexão 2014, 8, e2. [Google Scholar]
- Bouchoms, S.; Wang, Z.; Vanacker, V.; Van Oost, K. Evaluating the effects of soil erosion and productivity decline on soil carbon dynamics using a mode-based approach. Soil 2015, 5, 367–382. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality-a critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Fujisaki, K.; Chevallier, T.; Chapuis-Lardy, L.; Albrecht, A.; Razafimbelo, T.; Masse, D.; Ndour, Y.B.; Chotte, J. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 2018, 259, 147–158. [Google Scholar] [CrossRef]
- Paustian, K.; Andrén, O.; Janzen, H.H.; Lal, R.; Smith, P.; Tian, G.; Tiessen, H.; Van Noordwijk, M.; Woomer, P.L. Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag. 1997, 13, 230–244. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Ghimire, R.; Bista, P.; Machado, S. Long-term Management Effects and Temperature Sensitivity of Soil Organic Carbon in Grassland and Agricultural Soils. Sci. Rep. 2019, 9, 12151. [Google Scholar] [CrossRef]
- Girmay, G.; Singh, B.; Nyssen, J.; Borrosen, T. Runoff and sediment-associated nutrient losses under different land uses in Tigray, Northern Ethiopia. J. Hydro. 2009, 376, 70–80. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.; Naderi, M.; Dematte, J.A.M. Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha Watershed, Northwestern Ethiopia. Geoderma Reg. 2017, 11, 28–36. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In Agriculture Handbook; USDA-SCS: Washington, DC, USA, 1997. [Google Scholar]
- Alves, W.D.S.; Martins, A.P.; Morais, W.A.; Pôssa, É.M.; Castro, R.M.; Borges de Moura, D.M. USLE modelling of soil loss in a Brazilian cerrado catchment. Remote Sens. Appl. Soc. Environ. 2022, 27, 100788. [Google Scholar] [CrossRef]
- ESRI Environmental Systems Research Institute. ARCGIS Professional GIS for the Desktop (ArcGIS) v10.3 (Version 10.3); ESRI: Redlands, CA, USA, 2020. [Google Scholar]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. (Integrated Valuation of Ecosystem Services and Trade-Offs) (InVEST) v3.14; Stanford University: Stanford, CA, USA, 2018. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Silva, M.A.P.; Pinheiro, C.P.; Marinho, M.A.P.; Lombello, M.S.; Pinho, J.C.; Goulart, J.M.P.P.; Magalhães, L.E.A.; Reis, J. Mapa geológico do estado de Minas Gerais: Escala 1:1.000.000; CPRM Serviço Geológico do Brasil, Secretaria de Geologia, Mineração e Transformação Mineral, Ministério de Minas e Energia: Brasília, Brazil, 2020. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; EMBRAPA: Brasília, Brazil, 2018. [Google Scholar]
- IUSS International Union of Soil Sciences. World Reference Base for Soil Resources (WRB) Recognized by the International Union of Soil Science (IUSS) and FAO. Available online: http://www.fao.org/3/a-i3794e.pdf (accessed on 16 January 2023).
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. CATENA 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Vigiak, O.; Borselli, L.; Newham, L.; McInnes, J.; Roberts, A. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphol. 2012, 138, 74–88. [Google Scholar] [CrossRef]
- JAXA Japan Aerospace Exploration Agency. Advanced Land Observing Satellite “DAICHI” (ALOS): Advanced Land Observing Satellite “DAICHI” (ALOS), Palsar Sensor. Tokyo, Japan. Available online: https://global.jaxa.jp/index.html (accessed on 11 January 2022).
- Souza, C.M.P.; Veloso, G.V.; Mello, C.R.; Ribeiro, R.P.; Silva, L.A.P. Spatiotemporal prediction of rainfall erosivity by machine learning in southeastern Brazil. Geocarto Int. 2022, 37, 11652–11670. [Google Scholar] [CrossRef]
- UFV Universidade Federal de Viçosa; CETEC-MG Fundação Centro Tecnológico de Minas Gerais; UFLA Universidade Federal de Lavras; FEAM Fundação Estadual do Meio Ambiente. Mapa de Solos do Estado de Minas Gerais: Legenda Expandida, Escala 1:650.000, 1st ed.; Editora da FEAM: Belo Horizonte, Brazil, 2010. [Google Scholar]
- Silva, M.L.N.; Curi, N.; Ferreira, M.M.; de Lima, J.M.; Ferreira, D.F. Proposição de modelos para estimativa da erodibilidade de latossolos brasileiros. Pesq. Agropecu. Bras. 1999, 34, 2287–2298. [Google Scholar] [CrossRef]
- MapBiomas Project. Map Biomas Project—Collection 8 Annual Series Maps of Land Use and Land Cover in Brazil. Available online: https://brasil.mapbiomas.org/download (accessed on 17 January 2024).
- Senanayake, S.; Pradhan, B.; Alamri, A.; Park, H. A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction. Sci. Total Environ. 2022, 845, 157220. [Google Scholar] [CrossRef] [PubMed]
- Prochnow, D.; Dechen, S.C.F.; Maria, I.C.; Castro, O.M.; Vieira, S.R. Soil loss ratio and C factor for coffee plantations in five spacings in Pindorama, State of São Paulo, Brazil. Rev. Bras. Cienc. Solo 2005, 29, 91–98. [Google Scholar] [CrossRef]
- Silva, B.P.C.; Silva, M.L.N.; Batista, P.V.G.; Pontes, L.M.; Araújo, E.F.; Curi, N. Soil and water losses in eucalyptus plantation and natural forest and determination of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil. Cienc. Agrotec. 2016, 40, 432–442. [Google Scholar] [CrossRef]
- Swarnkar, S.; Malini, A.; Tripathi, S.; Sinha, R. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin, India. Hydrol. Earth Syst. Sci. 2018, 22, 2471–2485. [Google Scholar] [CrossRef]
- Ayer, J.E.B.; Olivetti, D.; Mincato, R.L.; Silva, M.L.N. Erosão hídrica em Latossolos Vermelhos distróficos. Pesqui. Agropecu. Trop. 2015, 45, 180–191. Available online: https://revistas.ufg.br/pat/article/view/31197 (accessed on 17 March 2024). [CrossRef]
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H.G. Large-scale Modeling of Soil Erosion with RUSLE for Conservationist Planning of Degraded Cultivated Brazilian Pastures. L. Degrad. Dev. 2016, 27, 773–784. [Google Scholar] [CrossRef]
- Endalamaw, N.T.; Moges, M.A.; Kebede, Y.S.; Alehegn, B.M.; Sinshaw, B.G. Potential soil loss estimation for conservation planning, upper Blue Nile Basin, Ethiopia. Environ. Chall. 2021, 5, 100224. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Thomas, J.; Joseph, S.; Thrivikramji, K. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geosci. Front. 2018, 9, 893–906. [Google Scholar] [CrossRef]
- Beskow, S.; Mello, C.R.; Norton, L.D.; Curi, N.; Viola, M.R.; Avanzi, J.C. Soil erosion prediction in the Grande River Basin, Brazil using distributed modelling. CATENA 2009, 79, 49–59. [Google Scholar] [CrossRef]
- USDA United States Department of Agriculture; NRCS Natural Resources Conservation Service. Soil Survey Laboratory Methods Manual, 3rd ed.; USDA: Washington, DC, USA, 1996. [Google Scholar]
- van Bemmelen, J.M. Ueber die Bestimmung des Wassers, des Humus, des Schwefels, der in den kolloidalen Silikaten gebundenen Kieselsäure, und des Mangans, im Ackerboden. Landwirtsch Vers. 1890, 37, 279–290. Available online: https://edepot.wur.nl/211282 (accessed on 18 January 2025).
- Starr, G.C.; Lal, R.; Malone, R.; Hothem, D.; Owens, L. Modeling soil carbon transported by water erosion processes. Land Degrad. Dev. 2000, 11, 83–91. [Google Scholar] [CrossRef]
- Trindade, A.L.F.; Oliveira, P.T.S.; Anache, J.A.A.; Wendland, E. Variabilidade espacial da erosividade das chuvas no Brasil. Pesq. Agropecu. Bras. 2016, 51, 1918–1928. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli. P.; Meusburger, K.; Yu, B.; Klik, A.; Lim, K.J.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, N.; Sadeghi, S.H.; Hazbavi, Z.; et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci. Rep. 2017, 7, 4175. [Google Scholar] [CrossRef]
- Bezak, N.; Borrelli, P.; Panagos, P. Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity. HESS 2022, 26, 1907–1924. [Google Scholar] [CrossRef]
- Lima, C.G.d.R.; Bacani, V.M.; Montanari, R.; Vick, E.P.; Ferreira, C.C.; Silva, E.R. dos S. Metodologias indiretas de mensuração da erodibilidade do solo e caracterização da variabilidade espacial. Mercator 2021, 20, e20023. [Google Scholar]
- Bertol, I.; Almeida, J.A. Tolerância de perda de solo por erosão para os principais solos do estado de Santa Catarina. Rev. Bras. Cienc. Solo 2000, 24, 657–668. [Google Scholar] [CrossRef]
- Ansari, A.; Tayfur, G. Comparative analysis of estimation of slope-length gradient (LS) factor for entire Afghanistan. Geomat. Nat. Hazards Risk 2023, 14, 2200890. [Google Scholar] [CrossRef]
- Pandey, A.; Chowdary, V.M.; Mal, B.C. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing. Water Resour. Manag. 2007, 21, 729–746. [Google Scholar] [CrossRef]
- Resck, D.V.S.; Pereira, J.; Silva, J.E. Dinâmica da Matéria Orgânica na Região dos Cerrados; Série Documentos, 36; Planaltina, Empresa Brasileira de Pesquisa Agropecuária: Brasília, Brazil, 1991; 22p. [Google Scholar]
- FAO and ITPS. Global Soil Organic Carbon Map (GSOCmap) Technical Report; FAO: Rome, Italy, 2018; 162p. [Google Scholar]
- SENAR. Café: Manejo de Podas, Desbrotas, Irrigação e Nutrição do Cafeeiro, 1st ed.; SENAR: Brasília, Brazil, 2016. [Google Scholar]
- Ragassi, C.F.; Pedrosa, A.W.; Favarin, J.L. Aspectos positivos e riscos no consórcio cafeeiro e braquiária. Visão Agrícola 2013, 8, 29–32. [Google Scholar]
- Bian, H.; Li, C.; Zhu, J.; Xu, L.; Li, M.; Zheng, S.; He, N. Soil Moisture Affects the Rapid Response of Microbes to Labile Organic C Addition. Front. Ecol. Evol. 2022, 10, 857185. [Google Scholar] [CrossRef]
- Ipanema Coffees. Personal Communication About Historical Climatic Data, Since 1984 to 2023; Da dos_climáticos_histórico2023.xlsx; Ipanema Coffees: Alfenas, Minas Gerais, Brazil, 2023. [Google Scholar]
- Mendes Júnior, H.; Tavares, A.S.; Santos, W.J.R.; Silva, M.L.N.; Santos, B.R.; Mincato, R.L. Water erosion in Oxisols under coffee cultivation. Rev. Bras. Cienc. Solo 2018, 42, 0093. [Google Scholar] [CrossRef]
- Tavares, A.S.; Spalevic, V.; Avanzi, J.C.; Nogueira, D.A.; Silva, M.L.N.; Mincato, R.L. Modelagem da erosão hídrica pelo método de erosão potencial em uma sub-bacia hidrográfica de referência no sul de Minas Gerais. Semin. Ciências Agrárias 2019, 40, 555–572. [Google Scholar] [CrossRef]
- Lense, G.H.E.; Parreiras, T.C.; Moreira, R.S.; Avanzi, J.C.; Mincato, R.L. Estimates of soil losses by the erosion potential method in tropical latosols. Cienc. Agrotec. 2019, 43, e012719. [Google Scholar] [CrossRef]
- Santana, D.B.; Rios, G.S.; Lense, G.H.E.; Brizolari, G.R.; Franceschi, F.R.A.; Ayer, J.E.B.; Rubira, F.G.; Mincato, R.L. Modeling soil losses by water erosion in a coffee growing area in Southeastern Brazil. Rev. Bras. Geogr. Fis. 2023, 16, 2031–2046. [Google Scholar] [CrossRef]
- Gomes, L.; Simões, S.J.; Dalla Nora, E.L.; Rodrigues, E.; Forti, M.C.; Ometto, J.P. Agricultural Expansion in the Brazilian Cerrado: Increased Soil and Nutrient Losses and Decreased Agricultural Productivity. Land 2019, 8, 12. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Xu, G.; Fu, J.; Cai, S.; Mu, X.; Zhou, T.; Zhang, W.; Chen, J.; Li, L.; et al. Assessment of Integrated Soil and Water Conservation Practices on Soil Erosion Risk in a Typical Red-Beds Watershed in South China. Water 2023, 15, 2613. [Google Scholar] [CrossRef]
- Batista, P.V.G.; Silva, M.L.N.; Silva, B.P.C.; Curi, N.; Bueno, I.T.; Acérbi Júnior, F.W.; Davies, J.; Quinton, J. Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin—Brazil. CATENA 2017, 157, 139–150. [Google Scholar] [CrossRef]
- Mellado, D.E.G.; Mello, C.R.; Curi, N. Environmental degradation risk by water erosion in a water producer Colombian Andes basin. Cienc. Agrotec. 2021, 45, e010021. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Silva, M.L.N.; Curi, N.; Martins, R.P.; Neto, J.O.M. Modeling of Soil Losses on a Yellow Argisol Under Planted Forest. Floresta Ambient. 2019, 26, e20160292. [Google Scholar] [CrossRef]
- Latini, A.O.; Silva, D.P.; Souza, F.M.L.; Ferreira, M.C.; Moura, M.S.D. Reconciling coffee productivity and natural vegetation conservation in an agroecosystem landscape in Brazil. J. Nat. Conserv. 2020, 57, 125902. [Google Scholar] [CrossRef]
- Polyakov, V.; Lal, R. Soil organic matter and CO2 emission as affected by water erosion on field runoff plots. Geoderma 2008, 143, 216–222. [Google Scholar] [CrossRef]
- Hua, K.; Zhu, B.; Wang, X.; Tian, L. Forms and Fluxes of Soil Organic Carbon Transport via Overland Flow, Interflow, and Soil Erosion. Soil Sci. Soc. Am. J. 2016, 80, 1011–1019. [Google Scholar] [CrossRef]
- Roose, E.; Bartches, B. Soil Carbon Erosion and its Selectivity at the Plot Scale in Tropical and Mediterranean Regions. In Soil Erosion and Carbon Dynamics, 1st ed.; Roose, E.J., Lal, R., Feller, C., Barthes, B., Stewart, B.A., Eds.; Tailor and Francis Group: London, UK, 2005; pp. 55–72. [Google Scholar]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Change Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Lin, H.; Duan, X.; Li, Y.; Zhang, L.; Rong, L.; Li, R. Simulating the effects of erosion on organic carbon dynamics in agricultural soils. CATENA 2022, 208, 105753. [Google Scholar] [CrossRef]
- Kader, S.; Raimi, M.O.; Spalevic, V.; Iyingiala, A.A.; Bukola, R.W.; Jaufer, L.; Butt, T.E. A concise study on essential parameters for the Sustainability of Lagoon waters in terms of scientific literature. Turk. J. Agric. For. 2023, 47, 69–78. [Google Scholar] [CrossRef]
- Ling, M.; Chen, J.; Lan, Y.; Chen, Z.; You, H.; Han, X.; Zhou, G. Exploring the Drivers of Soil Conservation Variation in the Source of Yellow River under Diverse Development Scenarios from a Geospatial Perspective. Sustainability 2024, 16, 777. [Google Scholar] [CrossRef]
- Benavidez, R.; Jacksin, B.; Maxel, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Ganasri, B.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Fronti. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Thapa, P. Spatial estimation of soil erosion using RUSLE modeling: A case study of Dolakha district, Nepal. Environ. Syst. Res. 2020, 9, 15. [Google Scholar] [CrossRef]
- Soussana, J.; Lutfalla, S.; Ehrhardt, F.; Rosenstock, T.; Lamanna, C.; Havlík, P.; Richards, M.; Wollenberg, E.; Chotte, J.; Torquebiau, E.; et al. Matching policy and science: Rationale for the ‘4 per 1000—Soils for food security and climate’ initiative. Soil Tillage Res. 2019, 188, 3–15. [Google Scholar] [CrossRef]
- Poeplau, C.; Dechow, R. The legacy of one hundred years of climate change for organic carbon stocks in global agriculturaltopsoils. Sci. Rep. 2023, 13, 7483. [Google Scholar] [CrossRef] [PubMed]
- Yossif, T.M. Potentialities of soil taxa common in the landscape of valleys in the arid Mediterranean region. Ann. Agric. Sci. 2022, 67, 1–14. [Google Scholar] [CrossRef]
- Zhang, P.; He, Y.; Ren, T.; Wang, Y.; Liu, C.; Li, N.; Li, L. The Crop Residue Removal Threshold Ensures Sustainable Agriculture in the Purple Soil Region of Sichuan, China. Sustainability 2021, 13, 3799. [Google Scholar] [CrossRef]
- Riquetti, N.B.; Mello, C.R.; Leandro, D.; Guzman, J.A.; Beskow, S. Assessment of the soil-erosion-sediment for Sustainable development of South America. J. Environ. Manag. 2022, 321, 115933. [Google Scholar] [CrossRef] [PubMed]
Class | Year | |||||
---|---|---|---|---|---|---|
2017 | 2019 | 2022 | ||||
ha | % | ha | % | ha | % | |
Coffee | 1325.94 | 64.81 | 1288.40 | 62.98 | 1234.24 | 60.33 |
Eucalyptus | 24.23 | 1.19 | 40.08 | 1.96 | 61.98 | 3.03 |
Facilities | 4.50 | 0.22 | 4.70 | 0.23 | 3.69 | 0.18 |
Native forest | 135.93 | 6.64 | 151.41 | 7.40 | 170.36 | 8.33 |
* Other crops | 84.93 | 4.15 | 85.82 | 4.19 | 83.66 | 4.09 |
Pasture | 89.66 | 4.38 | 92.29 | 4.51 | 110.11 | 5.38 |
Water bodies | 5.53 | 0.27 | 5.53 | 0.27 | 6.33 | 0.31 |
Bare soil | 375.18 | 18.34 | 377.67 | 18.46 | 375.53 | 18.35 |
Total | 2045.90 | 100 | 2045.90 | 100 | 2045.90 | 100 |
LULC | C Factor | Source C Factor | P Factor [39] |
---|---|---|---|
Coffee | 0.086 | [40] | 0.350 |
Eucalyptus | 0.121 | [41] | 0.560 |
Native forest | 0.001 | [42] | 0.200 |
Other crops | 0.096 | [43] | 0.350 |
Pasture | 0.061 | [44] | 0.350 |
Bare soil | 0.600 * | [45] | 1.000 |
2017 Year | Total Soil Loss (Mg yr−1) | Total Potential Soil Loss (Mg yr−1) | Difference (Mg yr−1) | Difference (%) |
---|---|---|---|---|
Coffee | 2346 | 6657 | 4310 | 283 |
Eucalyptus | 47 | 102 | 55 | 217 |
Native forest | 42 | 61 | 19 | 145 |
Other crops | 170 | 261 | 90 | 153 |
Pasture | 95 | 160 | 64 | 167 |
Bare soil | 4588 | 6423 | 1834 | 139 |
Sum | 7290 | 13,665 | 6374 | 187 |
2019 Year | Total Soil Loss (Mg yr−1) | Total Potential Soil Loss (Mg yr−1) | Difference (Mg yr−1) | Difference (%) |
Coffee | 2319 | 6421 | 4102 | 276 |
Eucalyptus | 82 | 143 | 60 | 173 |
Native forest | 39 | 55 | 16 | 142 |
Other crops | 169 | 253 | 84 | 149 |
Pasture | 112 | 200 | 87 | 177 |
Bare soil | 4645 | 6503 | 1858 | 140 |
Sum | 7368 | 13,577 | 6209 | 184 |
2022 Year | Total Soil Loss (Mg yr−1) | Total Potential Soil Loss (Mg yr−1) | Difference (Mg yr−1) | Difference (%) |
Coffee | 2184 | 5969 | 3785 | 273 |
Eucalyptus | 111 | 269 | 158 | 241 |
Native forest | 54 | 64 | 10 | 117 |
Other crops | 174 | 277 | 103 | 159 |
Pasture | 123 | 222 | 99 | 180 |
Bare soil | 4588 | 6423 | 1834 | 139 |
Sum | 7236 | 13,227 | 5990 | 182 |
Year | Estimated SDR () | Observed SDR () | Variation (%) |
---|---|---|---|
2017 | 0.28 | 0.29 | 4 |
2019 | 0.30 | 0.34 | 12 |
2022 | 0.25 | 0.28 | 11 |
SOC Loss | Period 1 * Area (ha) | % of the Area | Area (ha) | Period 2 ** % of the Area | Difference (%) Period 2–Period 1 |
---|---|---|---|---|---|
0–5 | 729.77 | 35.67 | 780.30 | 38.14 | 2.47 |
>5–10 | 229.34 | 11.21 | 247.96 | 12.12 | 0.91 |
>10–15 | 260.44 | 12.73 | 274.96 | 13.44 | 0.71 |
>15–25 | 96.97 | 4.74 | 158.14 | 7.73 | 2.99 |
>25–50 | 343.50 | 16.79 | 283.97 | 13.88 | −2.91 |
>50–100 | 83.88 | 4.10 | 135.23 | 6.61 | 2.51 |
>100–200 | 199.67 | 9.76 | 112.52 | 5.50 | −4.26 |
>200 | 102.29 | 5.00 | 52.78 | 2.58 | −2.42 |
2045.90 | 100 | 2045.9 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, D.B.; Lense, G.H.E.; Rios, G.d.S.; Archanjo, R.E.d.S.; Raniero, M.; Santana, A.B.; Rubira, F.G.; Ayer, J.E.B.; Mincato, R.L. Spatiotemporal Dynamics of Soil and Soil Organic Carbon Losses via Water Erosion in Coffee Cultivation in Tropical Regions. Sustainability 2025, 17, 821. https://doi.org/10.3390/su17030821
Santana DB, Lense GHE, Rios GdS, Archanjo REdS, Raniero M, Santana AB, Rubira FG, Ayer JEB, Mincato RL. Spatiotemporal Dynamics of Soil and Soil Organic Carbon Losses via Water Erosion in Coffee Cultivation in Tropical Regions. Sustainability. 2025; 17(3):821. https://doi.org/10.3390/su17030821
Chicago/Turabian StyleSantana, Derielsen Brandão, Guilherme Henrique Expedito Lense, Guilherme da Silva Rios, Raissa Eduarda da Silva Archanjo, Mariana Raniero, Aleksander Brandão Santana, Felipe Gomes Rubira, Joaquim Ernesto Bernardes Ayer, and Ronaldo Luiz Mincato. 2025. "Spatiotemporal Dynamics of Soil and Soil Organic Carbon Losses via Water Erosion in Coffee Cultivation in Tropical Regions" Sustainability 17, no. 3: 821. https://doi.org/10.3390/su17030821
APA StyleSantana, D. B., Lense, G. H. E., Rios, G. d. S., Archanjo, R. E. d. S., Raniero, M., Santana, A. B., Rubira, F. G., Ayer, J. E. B., & Mincato, R. L. (2025). Spatiotemporal Dynamics of Soil and Soil Organic Carbon Losses via Water Erosion in Coffee Cultivation in Tropical Regions. Sustainability, 17(3), 821. https://doi.org/10.3390/su17030821