Weigh-In-Motion Placement for Overloaded Truck Enforcement Considering Traffic Loadings and Disruptions
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Upper-Level WIM Planning Problem
3.2. Lower-Level Traffic Problem
4. Numerical Study
4.1. Network Configuration
4.2. Traffic Assignment and Demand Shift
4.3. Impact of WIM Installation on Objective 1 and Objective 2 for All WIM Candidate Sets
4.4. Sensitivity Analysis
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mulyono, A.T.; Parikesit, D.; Antameng, M.; Rahim, R. Analysis of loss cost of road pavement distress due to overloading freight transportation. Proc. East. Asia Soc. Transp. Stud. 2009, 7, 139. [Google Scholar]
- De Beer, M.; Fisher, C.; Jooste, F.J. Determination of pneumatic tyre/pavement interface contact stresses under moving loads and some effects on pavements with thin asphalt surfacing layers. In Proceedings of the 8th International Conference on Asphalt Pavements (8th ICAP ’97), Seattle, WA, USA, 10–14 August 1997; Volume 1, pp. 179–227, ISBN 8790145356. [Google Scholar]
- De Beer, M.; Fisher, C.; Jooste, F.J. Evaluation of nonuniform tyre contact stresses on thin asphalt pavements. In Proceedings of the 9th International Conference on Asphalt Pavements, ISAP, Copenhagen, Denmark, 17–22 August 2002; Volume 1, pp. 488–511. [Google Scholar]
- Santero, N.J.; Nokes, W.; Harvey, J.T. Virtual Weigh Stations: The Business Case. UC Davis Research Reports, eScholarship. 2005. Available online: https://escholarship.org/uc/item/2432w0wj (accessed on 22 December 2024).
- Pais, J.C.; Amorim, S.I.; Minhoto, M.J. Impact of traffic overload on road pavement performance. J. Transp. Eng. 2013, 139, 873–879. [Google Scholar] [CrossRef]
- Rys, D.; Judycki, J.; Jaskula, P. Analysis of effect of overloaded vehicles on fatigue life of flexible pavements based on weigh in motion (WIM) data. Int. J. Pavement Eng. 2016, 17, 716–726. [Google Scholar] [CrossRef]
- Turner, D.; Nicholson, L.A.; Agent, K. Oversize/overweight commercial vehicle safety. In Proceedings of the HVTT10 International Conference on Heavy Vehicles, Paris, France, 19–22 May 2008. [Google Scholar]
- Marković, N.; Ryzhov, I.O.; Schonfeld, P. Evasive flow capture: Optimal location of weigh-in-motion systems, tollbooths, and security checkpoints. Networks 2015, 65, 22–42. [Google Scholar] [CrossRef]
- Stephens, J.E.; Carson, J.; Reagor, D.; Harrington, M. An Evaluation of Montana’s State Truck Activities Reporting System; State of Montana, Department of Transportation, Motor Carrier Services and Planning Divisions: Helena, MT, USA, 2003. [Google Scholar]
- Cottrell, B.H. The Avoidance of Weigh Stations in Virginia by Overweight Trucks; Publication VTRC 93-R2; Virginia Transportation Research Council (VTRC): Charlottesville, VA, USA, 1992. [Google Scholar]
- Berman, O.; Larson, R.C.; Fouska, N. Optimal location of discretionary service facilities. Transp. Sci. 1992, 26, 201–211. [Google Scholar] [CrossRef]
- Hodgson, M.J.; Rosing, K.E.; Zhang, J. Locating vehicle inspection stations to protect a transportation network. Geogr. Anal. 1996, 28, 299–314. [Google Scholar] [CrossRef]
- Gendreau, M.; Laporte, G.; Parent, I. Heuristics for the location of inspection stations on a network. Nav. Res. Logist. 2000, 47, 287–303. [Google Scholar] [CrossRef]
- Jinyu, J.; Xu, Z.; Zhongzhen, Y. Locating control stations for mobile monitoring of overloaded trucks on rural highways. IEEE Access 2020, 8, 65821–65829. [Google Scholar] [CrossRef]
- Marković, N.; Ryzhov, I.O.; Schonfeld, P. Evasive flow capture: A multi-period stochastic facility location problem with independent demand. Eur. J. Oper. Res. 2017, 257, 687–703. [Google Scholar] [CrossRef]
- Arslan, O.; Jabali, O.; Laporte, G. Exact solution of the evasive flow capturing problem. Oper. Res. 2018, 66, 1625–1640. [Google Scholar] [CrossRef]
- Hooshmand, F.; MirHassani, S.A. Reduction of nonanticipativity constraints in multistage stochastic programming problems with endogenous and exogenous uncertainty. Math. Methods Oper. Res. 2018, 87, 1–18. [Google Scholar] [CrossRef]
- Bogyrbayeva, A.; Kwon, C. Pessimistic evasive flow capturing problems. Eur. J. Oper. Res. 2021, 293, 133–148. [Google Scholar] [CrossRef]
- Franceschi, L.; Sobrosa, C.; Otto, G.; van Loo, H.; Repette, W.; Valente, A. WIM Placement on Road Networks: Optimization Models and a Proposed Deployment Process. Available online: https://hvttforum.org/wp-content/uploads/2023/12/HVTT17_paper_2789_Franceschi.pdf (accessed on 22 December 2024).
- Lu, C.C.; Yan, S.; Ko, H.C.; Chen, H.J. A bilevel model with a solution algorithm for locating weigh-in-motion stations. IEEE Trans. Intell. Transp. Syst. 2017, 19, 380–389. [Google Scholar] [CrossRef]
- Wardrop, J.G.; Whitehead, J.I. Correspondence. some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1952, 1, 767–768. [Google Scholar] [CrossRef]
- US Bureau of Public Roads, Office of Planning, Urban Planning Division. Traffic Assignment Manual for Application with a Large, High Speed Computer; US Department of Commerce: Washington, DC, USA, 1964. [Google Scholar]
- Sheffi, Y. Urban Transportation Networks; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985; Volume 6. [Google Scholar]
- Ukkusuri, S.V.; Yushimito, W.F. A methodology to assess the criticality of highway transportation networks. J. Transp. Secur. 2009, 2, 29–46. [Google Scholar] [CrossRef]
- Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [Google Scholar] [CrossRef]
- Gupta, D.; Tang, X.; Yuan, L. Weigh-in-Motion Sensor and Controller Operation and Performance Comparison (No. MN/RC 2018-03); Minnesota. Dept. of Transportation, Research Services Library: Saint Paul, MN, USA, 2018. [Google Scholar]
- Ngatchou, P.; Zarei, A.; El-Sharkawi, A. Pareto multi objective optimization. In Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems, Arlington, VA, USA, 6–10 November 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 84–91. [Google Scholar]
- Lee, J.; Madanat, S. A joint bottom-up solution methodology for system-level pavement rehabilitation and reconstruction. Transp. Res. Part B Methodol. 2015, 78, 106–122. [Google Scholar] [CrossRef]
- Lee, J.; Madanat, S. Optimal policies for greenhouse gas emission minimization under multiple agency budget constraints in pavement management. Transp. Res. Part D Transp. Environ. 2017, 55, 39–50. [Google Scholar] [CrossRef]
- Lee, J.; Madanat, S.; Reger, D. Pavement systems reconstruction and resurfacing policies for minimization of life-cycle costs under greenhouse gas emissions constraints. Transp. Res. Part B Methodol. 2016, 93, 618–630. [Google Scholar] [CrossRef]
, and the Other Parameters |
---|
Initialization: Set , . Step 1. Based on the current , solve UE to find . Step 2. Numerically update by increasing it with a step positively related to the overloading penalty, . Step 3. If converges terminate. Otherwise, go to Step 1. |
Output: and |
(veh/hour) | ||||
---|---|---|---|---|
1 | 13 | |||
8 | 200 | 100 | 200 | 100 |
10 | 200 | 100 | 200 | 100 |
15 | 200 | 100 | 200 | 100 |
19 | 200 | 100 | 200 | 100 |
22 | 200 | 100 | 200 | 100 |
(veh/hour) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
1 | 0 | 50 | 50 | 250 | 100 | 150 | 250 | 400 | 250 | 650 | 250 | 100 | 250 | 150 | 250 | 250 | 200 | 50 | 150 | 150 | 50 | 200 | 150 | 50 |
2 | 50 | 0 | 50 | 100 | 50 | 200 | 100 | 200 | 100 | 300 | 100 | 50 | 150 | 50 | 50 | 200 | 100 | 0 | 50 | 50 | 0 | 50 | 0 | 0 |
3 | 50 | 50 | 0 | 100 | 50 | 150 | 50 | 100 | 50 | 150 | 150 | 100 | 50 | 50 | 50 | 100 | 50 | 0 | 0 | 0 | 0 | 50 | 50 | 0 |
4 | 250 | 100 | 100 | 0 | 250 | 200 | 200 | 350 | 350 | 600 | 700 | 300 | 300 | 250 | 250 | 400 | 250 | 50 | 100 | 150 | 100 | 200 | 250 | 100 |
5 | 100 | 50 | 50 | 250 | 0 | 100 | 100 | 250 | 400 | 500 | 250 | 100 | 100 | 50 | 100 | 250 | 100 | 0 | 50 | 50 | 50 | 100 | 50 | 0 |
6 | 150 | 200 | 150 | 200 | 100 | 0 | 200 | 400 | 200 | 400 | 200 | 100 | 100 | 50 | 100 | 450 | 250 | 50 | 100 | 150 | 50 | 100 | 50 | 50 |
7 | 250 | 100 | 50 | 200 | 100 | 200 | 0 | 500 | 300 | 950 | 250 | 350 | 200 | 100 | 250 | 700 | 500 | 100 | 200 | 250 | 100 | 250 | 100 | 50 |
8 | 400 | 200 | 100 | 350 | 250 | 400 | 500 | 0 | 400 | 800 | 400 | 300 | 300 | 200 | 300 | 1100 | 700 | 150 | 350 | 450 | 200 | 250 | 150 | 100 |
9 | 250 | 100 | 50 | 350 | 400 | 200 | 300 | 400 | 0 | 1400 | 700 | 300 | 300 | 300 | 450 | 700 | 450 | 100 | 200 | 300 | 150 | 350 | 250 | 100 |
10 | 650 | 300 | 150 | 600 | 500 | 400 | 950 | 800 | 1400 | 0 | 2000 | 1000 | 950 | 1050 | 2000 | 2200 | 1950 | 350 | 900 | 1250 | 600 | 1300 | 900 | 400 |
11 | 250 | 100 | 150 | 750 | 250 | 200 | 250 | 400 | 700 | 1950 | 0 | 700 | 500 | 800 | 700 | 700 | 500 | 50 | 200 | 300 | 200 | 550 | 650 | 300 |
12 | 100 | 50 | 100 | 300 | 100 | 100 | 350 | 300 | 300 | 1000 | 700 | 0 | 650 | 350 | 350 | 350 | 300 | 100 | 150 | 200 | 150 | 350 | 350 | 250 |
13 | 250 | 150 | 50 | 300 | 100 | 100 | 200 | 300 | 300 | 950 | 500 | 650 | 0 | 300 | 350 | 300 | 250 | 50 | 150 | 300 | 300 | 650 | 400 | 400 |
14 | 150 | 50 | 50 | 250 | 50 | 50 | 100 | 200 | 300 | 1050 | 800 | 350 | 300 | 0 | 650 | 350 | 350 | 50 | 150 | 250 | 200 | 600 | 550 | 200 |
15 | 250 | 50 | 50 | 250 | 100 | 100 | 250 | 300 | 500 | 2000 | 700 | 350 | 350 | 650 | 0 | 600 | 750 | 100 | 400 | 550 | 400 | 1300 | 500 | 200 |
16 | 250 | 200 | 100 | 400 | 250 | 450 | 700 | 1100 | 700 | 2200 | 700 | 350 | 300 | 350 | 600 | 0 | 1400 | 250 | 650 | 800 | 300 | 600 | 250 | 150 |
17 | 200 | 100 | 50 | 250 | 100 | 250 | 500 | 700 | 450 | 1950 | 500 | 300 | 250 | 350 | 750 | 1400 | 0 | 300 | 850 | 850 | 300 | 850 | 300 | 150 |
18 | 50 | 0 | 0 | 50 | 0 | 50 | 100 | 150 | 100 | 350 | 100 | 100 | 50 | 50 | 100 | 250 | 300 | 0 | 150 | 200 | 50 | 150 | 50 | 0 |
19 | 150 | 50 | 0 | 100 | 50 | 100 | 200 | 350 | 200 | 900 | 200 | 150 | 150 | 150 | 400 | 650 | 850 | 150 | 0 | 600 | 200 | 600 | 150 | 50 |
20 | 150 | 50 | 0 | 150 | 50 | 150 | 250 | 450 | 300 | 1250 | 300 | 250 | 300 | 250 | 550 | 800 | 850 | 200 | 600 | 0 | 600 | 1200 | 350 | 200 |
21 | 50 | 0 | 0 | 100 | 50 | 50 | 100 | 200 | 150 | 600 | 200 | 150 | 300 | 200 | 400 | 300 | 300 | 50 | 200 | 600 | 0 | 900 | 350 | 250 |
22 | 200 | 50 | 50 | 200 | 100 | 100 | 250 | 250 | 350 | 1300 | 550 | 350 | 650 | 600 | 1300 | 600 | 850 | 150 | 600 | 1200 | 900 | 0 | 1050 | 550 |
23 | 150 | 0 | 50 | 250 | 50 | 50 | 100 | 150 | 250 | 900 | 650 | 350 | 400 | 550 | 500 | 250 | 300 | 50 | 150 | 350 | 350 | 1050 | 0 | 350 |
24 | 50 | 0 | 0 | 100 | 0 | 50 | 50 | 100 | 100 | 400 | 300 | 250 | 350 | 200 | 200 | 150 | 150 | 0 | 50 | 200 | 250 | 550 | 350 | 0 |
(USD/veh) | ||||
---|---|---|---|---|
Travel Cost | ||||
Origin | Destination | Overloaded Trucks | Non-Overloaded Trucks | Regular Vehicles |
8 | 1 | 1.81 | 1.59 | 0.30 |
13 | 3.99 | 3.58 | 0.67 | |
10 | 1 | 3.96 | 3.58 | 0.66 |
13 | 4.39 | 4.15 | 0.73 | |
15 | 1 | 6.14 | 5.74 | 1.02 |
13 | 4.47 | 4.21 | 0.74 | |
19 | 1 | 6.55 | 6.11 | 1.09 |
13 | 4.88 | 4.58 | 0.81 | |
22 | 1 | 5.00 | 4.64 | 0.83 |
13 | 3.20 | 3.03 | 0.53 |
(USD/veh) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Travel Cost of Overloaded Truck by Origin | ||||||||||
WIM Location Link | 8 | 10 | 15 | 19 | 22 | |||||
1 | 13 | 1 | 13 | 1 | 13 | 1 | 13 | 1 | 13 | |
74 | 1.79 | 4.08 | 3.96 | 5.14 | 6.18 | 6.86 | 6.6 | 7.28 | 6.34 | 7.02 |
5 | 1.85 | 4.02 | 4.05 | 4.43 | 9.86 | 4.43 | 9.68 | 4.75 | 9.86 | 3.15 |
19 | 3.93 | 5.24 | 4.02 | 4.42 | 6.23 | 4.55 | 6.66 | 4.90 | 5.05 | 3.27 |
44 | 1.81 | 4.01 | 3.96 | 4.52 | 6.37 | 4.55 | 6.75 | 4.93 | 5.09 | 3.27 |
74 and 5 | 1.83 | 4.07 | 3.97 | 5.17 | 9.89 | 6.82 | 9.75 | 7.24 | 9.85 | 6.97 |
74 and 19 | 3.96 | 5.76 | 4.05 | 5.16 | 6.24 | 6.89 | 6.66 | 7.31 | 6.35 | 7.01 |
74 and 44 | 1.79 | 4.09 | 3.95 | 5.17 | 7.85 | 8.46 | 8.27 | 8.88 | 6.50 | 7.11 |
5 and 19 | 3.98 | 5.22 | 4.08 | 4.37 | 10.11 | 4.51 | 10.53 | 4.91 | 10.26 | 3.23 |
5 and 44 | 1.86 | 4.02 | 4.06 | 4.37 | 10.75 | 4.42 | 9.79 | 4.82 | 9.86 | 3.15 |
19 and 44 | 3.93 | 5.35 | 3.99 | 4.49 | 6.47 | 4.65 | 6.86 | 5.04 | 5.18 | 3.36 |
WIM Location Link | Number of Overloaded Trucks [veh/hour] | [Objective 1] ESAL Kilometers by All Vehicle Groups [ESALs-km/hr] | [Objective 2] Vehicle Hours Traveled (VHT) by All Vehicle Groups [veh-hr/hr] | |||
---|---|---|---|---|---|---|
Overloaded | Non-Overloaded | Regular | Total VHT | |||
Default () | 1000 (-) | 213,500 (-) | 674 | 1343 | 79,360 | 81,376 (-) |
74 | 702 (−30%) | 207,565 (−3%) | 501 | 1689 | 79,820 | 82,010 (0.78%) |
5 | 702 (−30%) | 195,850 (−8%) | 412 | 1799 | 79,711 | 81,922 (0.67%) |
19 | 901 (−10%) | 209,295 (−2%) | 688 | 1387 | 79,380 | 81,455 (0.10%) |
44 | 1000 (0%) | 214,664 (1%) | 686 | 1333 | 79,227 | 81,245 (−0.16%) |
74 and 5 | 404 (−60%) | 186,203 (−13%) | 206 | 2180 | 80,346 | 82,732 (1.67%) |
74 and 19 | 603 (−40%) | 207,327 (−3%) | 512 | 1736 | 80,034 | 82,282 (1.11%) |
74 and 44 | 702 (−30%) | 215,273 (1%) | 550 | 1702 | 80,131 | 82,383 (1.24%) |
5 and 19 | 603 (−40%) | 191,727 (−10%) | 427 | 1856 | 79,962 | 82,245 (1.07%) |
5 and 44 | 702 (−30%) | 195,838 (−8%) | 412 | 1801 | 79,749 | 81,962 (0.72%) |
19 and 44 | 901 (−10%) | 210,888 (−1%) | 701 | 1378 | 79,429 | 81,508 (0.16%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.; Mizutani, D.; Lee, J. Weigh-In-Motion Placement for Overloaded Truck Enforcement Considering Traffic Loadings and Disruptions. Sustainability 2025, 17, 826. https://doi.org/10.3390/su17030826
Jung Y, Mizutani D, Lee J. Weigh-In-Motion Placement for Overloaded Truck Enforcement Considering Traffic Loadings and Disruptions. Sustainability. 2025; 17(3):826. https://doi.org/10.3390/su17030826
Chicago/Turabian StyleJung, Yunkyeong, Daijiro Mizutani, and Jinwoo Lee. 2025. "Weigh-In-Motion Placement for Overloaded Truck Enforcement Considering Traffic Loadings and Disruptions" Sustainability 17, no. 3: 826. https://doi.org/10.3390/su17030826
APA StyleJung, Y., Mizutani, D., & Lee, J. (2025). Weigh-In-Motion Placement for Overloaded Truck Enforcement Considering Traffic Loadings and Disruptions. Sustainability, 17(3), 826. https://doi.org/10.3390/su17030826