Life Cycle Carbon Emissions Savings of Replacing Concrete with Recycled Polycarbonate and Sand Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Life Cycle Assessment
2.2.1. Goal and Scope
2.2.2. Life Cycle Inventory (LCI)
2.2.3. Life Cycle Impact Assessment (LCIA)
2.2.4. Interpretation
3. Results
3.1. Ordinary and Frost-Resistant Concrete
3.2. Sand–Plastic Brick
3.2.1. Case 1: Sensitivity Analysis of CED and CF per cm3 on Scalability for ASTM D695 Composites and Standard-Brick-Size Sand–rPC Composite Compared to the CED and CF of Ordinary and Frost-Resistant Concrete
Electricity Mix: Ontario Grid Mix
3.2.2. Case 2: Comparative Environmental Analysis Between Sand–rPC Composite (Made from Recycled and Virgin PC) and Concrete
3.2.3. Case 3: Sensitivity Analysis of Sand–rPC Composite Carbon Footprint Based on Electricity Source—100% Coal to 100% Solar Energy
4. Discussion
5. Limitations and Future Work
6. Conclusions
- Environmental Impact of Small-Scale Production:
- At small-sample scales, sand–rPC composites are 5 to 48 times more energy-intensive than ordinary and frost-resistant concrete, primarily due to the electricity-intensive nature of the production process.
- Environmental Benefits of Larger Scales:
- As production scales increase, the CF of sand–rPC composites decreases significantly, with 62% to 90% reductions observed in larger batch sizes.
- At standard brick sizes, sand–rPC composites emit:
- ○
- 96% less CO2 per cm3 compared to sand–virgin polycarbonate composites.
- ○
- 45% less CO2 than ordinary concrete.
- ○
- 54% less CO2 than frost-resistant concrete.
- In contrast, sand–vPC composites emit 14 times more CO2 than ordinary concrete and 1.5 times more than frost-resistant concrete, providing no environmental benefit.
- Role of Energy Sourcing:
- Transitioning from coal-based energy to solar energy reduces carbon emissions by 99.9%, while a mixed-energy scenario of 90% coal and 10% solar achieves a modest 10% reduction.
- Switching from the U.S. electricity mix to Canada’s grid achieves an 86.6% reduction in emissions, and Ontario’s low-carbon grid achieves a further 68% reduction.
- Using 100% solar energy in Ontario decreases emissions by 98%, emphasizing the importance of renewable energy in sustainable material production.
- Global Potential of Sand–rPC Composites:
- Recycling global polycarbonate production for sand–rPC composites could displace approximately 26 million tons of concrete annually, representing 0.1% of global concrete production.
- This substitution could result in CO2 savings of 4.5 to 5.4 million tons annually, equivalent to the carbon sequestration potential of 204 to 245 million trees.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 2013, 8, 81648. [Google Scholar] [CrossRef] [PubMed]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Tangney, P. Understanding Climate Change as Risk: A Review of IPCC Guidance for Decision-Making. J. Risk Res. 2020, 23, 1424–1439. [Google Scholar] [CrossRef]
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-70080-1. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Wilbanks, T.J. The Next Generation of Scenarios for Climate Change Research and Assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Parncutt, R. The Human Cost of Anthropogenic Global Warming: Semi-Quantitative Prediction and the 1,000-Tonne Rule. Front. Psychol. 2019, 10, 2323. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.M.; Parncutt, R. Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy. Energies 2023, 16, 6074. [Google Scholar] [CrossRef]
- Allan, R.P.; Arias, P.A.; Berger, S.; Canadell, J.G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S.L.; Coppola, E.; Cruz, F.A. Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 3–32. [Google Scholar]
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915794-0. [Google Scholar]
- IPCC. The Evidence Is Clear: The Time for Action Is Now. We Can Halve Emissions by 2030; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- IPCC. AR6 Synthesis Report: Climate Change 2023; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- IPCC. Urgent Climate Action Can Secure a Liveable Future for All. Available online: https://www.ipcc.ch/2023/03/20/press-release-ar6-synthesis-report/ (accessed on 21 October 2024).
- Babor, D.; Plian, D.; Judele, L. Environmental Impact of Concrete. Bul. Institutului Politeh. Din Lasi Sect. Constr. Arhit. 2009, 55, 27. [Google Scholar]
- Ellis, L.D.; Badel, A.F.; Chiang, M.L.; Park, R.J.-Y.; Chiang, Y.-M. Toward Electrochemical Synthesis of Cement—An Electrolyzer-Based Process for Decarbonating CaCO3 While Producing Useful Gas Streams. Proc. Natl. Acad. Sci. USA 2020, 117, 12584–12591. [Google Scholar] [CrossRef] [PubMed]
- Cement Industry Accounts for About 8% of CO2 Emissions. One Startup Seeks to Change That. Available online: https://www.cbsnews.com/news/cement-industry-co2-emissions-climate-change-brimstone/ (accessed on 11 May 2023).
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards Sustainable Concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef]
- Tiseo, I. Global Carbon Dioxide Emissions from Cement Manufacturing 1990–2023, by Country. Available online: https://www.statista.com/statistics/1091672/carbon-dioxide-emissions-global-cement-manufacturing/ (accessed on 10 May 2023).
- Watts, J. Concrete: The Most Destructive Material on Earth. The Guardian. 2019. Available online: https://www.theguardian.com/cities/2019/feb/25/concrete-the-most-destructive-material-on-earth (accessed on 8 May 2023).
- Tiseo, I. Global CO2 Emissions from Cement Manufacturing 1960–2023. Available online: https://www.statista.com/statistics/1299532/carbon-dioxide-emissions-worldwide-cement-manufacturing/ (accessed on 8 May 2023).
- Miller, S.A.; Horvath, A.; Monteiro, P.J.M. Impacts of Booming Concrete Production on Water Resources Worldwide. Nat. Sustain. 2018, 1, 69–76. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook Database Plastic Pollution Is Growing Relentlessly as Waste Management and Recycling Fall Short, Says OECD. Available online: https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.htm (accessed on 8 May 2023).
- Andrady, A.L. (Ed.) Plastics and the Environment, 1st ed.; Wiley: Hoboken, NJ, USA, 2003; ISBN 978-0-471-09520-0. [Google Scholar]
- Lim, X. Microplastics Are Everywhere—But Are They Harmful? Nature 2021, 593, 22–25. [Google Scholar] [CrossRef]
- Gu, L.; Ozbakkaloglu, T. Use of Recycled Plastics in Concrete: A Critical Review. Waste Manag. 2016, 51, 19–42. [Google Scholar] [CrossRef]
- Al-Sinan, M.A.; Bubshait, A.A. Using Plastic Sand as a Construction Material toward a Circular Economy: A Review. Sustainability 2022, 14, 6446. [Google Scholar] [CrossRef]
- Suriyaa, M.; Hareharan, P.; Nageshwaran, J.; Nandhini, S.; Sathyamoorthy, R. Experimental Study on Strength Behaviour of Plastic Sand Bricks. Int. J. Sci. Eng. Res. 2021, 9, 6–9. [Google Scholar] [CrossRef]
- Sahani, K.; Joshi, B.; Khatri, K.; Thapa Magar, A.; Chapagain, S.; Karmacharya, N. Mechanical Properties of Plastic Sand Brick Containing Plastic Waste. Adv. Civ. Eng. 2022, 2022, 8305670. [Google Scholar] [CrossRef]
- Bamigboye, G.; Ngene, B.; Ademola, D.; Jolayemi, K. Experimental Study on the Use of Waste Polyethylene Terephthalate (PET) and River Sand in Roof Tile Production. J. Phys. Conf. Ser. 2019, 1378, 042105. [Google Scholar] [CrossRef]
- Yu, Q.L.; Spiesz, P.; Brouwers, H.J.H. Development of Cement-Based Lightweight Composites—Part 1: Mix Design Methodology and Hardened Properties. Cem. Concr. Compos. 2013, 44, 17–29. [Google Scholar] [CrossRef]
- Susila, I.M.; Suardana, N.P.G.; Kencanawati, C.I.P.K.; Thanaya, I.N.A.; Adnyana, I.W.B. The effect of composition of plastic waste low density polyethylene (ldpe) with sand to pressure strength and density of sand/ldpe composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 539, 012043. [Google Scholar] [CrossRef]
- Woods, M.C.; Kulkarni, A.; Pearce, J.M. The Potential of Replacing Concrete with Sand and Recycled Polycarbonate Composites: Compressive Strength Testing. J. Compos. Sci. 2023, 7, 249. [Google Scholar] [CrossRef]
- ASTM D695-23; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2023. [CrossRef]
- Baechler, C.; DeVuono, M.; Pearce, J.M. Distributed Recycling of Waste Polymer into RepRap Feedstock. Rapid Prototyp. J. 2013, 19, 118–125. [Google Scholar] [CrossRef]
- Woern, A.L.; McCaslin, J.R.; Pringle, A.M.; Pearce, J.M. RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament. HardwareX 2018, 4, e00026. [Google Scholar] [CrossRef]
- Woods, M.C.; Brooks, C.K.; Pearce, J.M. Open-Source Cold and Hot Scientific Sheet Press for Investigating Polymer-Based Material Properties. HardwareX 2024, 19, e00566. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Pearce, J.M. Is Small or Big Solar Better for the Environment? Comparative Life Cycle Assessment of Solar Photovoltaic Rooftop vs. Ground-Mounted Systems. Int. J. Life Cycle Assess. 2024, 29, 516–536. [Google Scholar] [CrossRef]
- Hayibo, K.S.; Mayville, P.; Pearce, J.M. The Greenest Solar Power? Life Cycle Assessment of Foam-Based Flexible Floatovoltaics. Sustain. Energy Fuels 2022, 6, 1398–1413. [Google Scholar] [CrossRef]
- Frankl, P.; Masini, A.; Gamberale, M.; Toccaceli, D. Simplified Life-cycle Analysis of PV Systems in Buildings: Present Situation and Future Trends. Prog. Photovolt. Res. Appl. 1998, 6, 137–146. [Google Scholar] [CrossRef]
- Simonen, K. Life Cycle Assessment; Routledge: London, UK, 2014. [Google Scholar]
- Curran, M.A. Life Cycle Assessment. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 1–28. [Google Scholar]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Karvinen, H. Life Cycle Assessment and Technical Performance of Recycled and Bio-Based Plastics. Master’s Thesis, Aalto University, Espoo, Finland, 2015. [Google Scholar]
- Kim, S.Y.; Kang, D.H.; Charoensri, K.; Ryu, J.R.; Shin, Y.J.; Park, H.J. Comparative Life Cycle Assessment of Reusable and Disposable Distribution Packaging for Fresh Food. Sustainability 2023, 15, 16448. [Google Scholar] [CrossRef]
- openLCA. Download|openLCA.Org. 2022. Available online: https://www.openlca.org/ (accessed on 8 May 2023).
- Arzoumanidis, I.; D’Eusanio, M.; Raggi, A.; Petti, L. Functional Unit Definition Criteria in Life Cycle Assessment and Social Life Cycle Assessment: A Discussion. In Perspectives on Social LCA; Traverso, M., Petti, L., Zamagni, A., Eds.; SpringerBriefs in Environmental Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–10. ISBN 978-3-030-06564-5. [Google Scholar]
- Sjunnesson, J. Life Cycle Assessment of Concrete. Master’s Thesis, Lund University, Lund, Sweden, 2005. [Google Scholar]
- De Schepper, M.; Van den Heede, P.; Van Driessche, I.; De Belie, N. Life Cycle Assessment of Completely Recyclable Concrete. Materials 2014, 7, 6010–6027. [Google Scholar] [CrossRef] [PubMed]
- Hottle, T.; Hawkins, T.R.; Chiquelin, C.; Lange, B.; Young, B.; Sun, P.; Elgowainy, A.; Wang, M. Environmental Life-Cycle Assessment of Concrete Produced in the United States. J. Clean. Prod. 2022, 363, 131834. [Google Scholar] [CrossRef]
- Maia de Souza, D.; Lafontaine, M.; Charron-Doucet, F.; Chappert, B.; Kicak, K.; Duarte, F.; Lima, L. Comparative Life Cycle Assessment of Ceramic Brick, Concrete Brick and Cast-in-Place Reinforced Concrete Exterior Walls. J. Clean. Prod. 2016, 137, 70–82. [Google Scholar] [CrossRef]
- Anh, L.H.; Mihai, F.-C.; Belousova, A.; Kucera, R.; Oswald, K.-D.; Riedel, W.; Sekar, N.A.; Schneider, P. Life Cycle Assessment of River Sand and Aggregates Alternatives in Concrete. Materials 2023, 16, 2064. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhai, Y.; Ren, K.; Cheng, Z.; Shen, X.; Zhang, T.; Bai, Y.; Jia, Y.; Hong, J. Life Cycle Assessment of Polycarbonate Production: Proposed Optimization toward Sustainability. Resour. Conserv. Recycl. 2023, 189, 106765. [Google Scholar] [CrossRef]
- Sarwar, S.; Shaibur, M.R.; Hossain, M.S.; Hossain, R.; Ahmmed, I.; Ahmed, F.F.; Sarker, A.H.; Shamim, A.H.M. Preparation of Environmental Friendly Plastic Brick from High-Density Polyethylene Waste. Case Stud. Chem. Environ. Eng. 2023, 7, 100291. [Google Scholar] [CrossRef]
- Tinz, J.; de Ancos, T.; Rohn, H. Carbon Footprint of Mechanical Recycling of Post-Industrial Plastic Waste: Study of ABS, PA66GF30, PC and POM Regrinds. Waste 2023, 1, 127–139. [Google Scholar] [CrossRef]
- Santos, J.; Pizzol, M.; Azarijafari, H. 14—Life Cycle Assessment (LCA) of Using Recycled Plastic Waste in Road Pavements: Theoretical Modeling. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F., Nizamuddin, S., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2022; pp. 273–302. ISBN 978-0-323-85789-5. [Google Scholar]
- Earn Tan, A.H.; Ze Chew, A.W.; Wing-Keung Law, A. Deployment of Recyclable Polycarbonate as Alternative Coarse Media in Dual-Media Rapid Filters. Energy Procedia 2017, 143, 475–480. [Google Scholar] [CrossRef]
- US EPA. Environmental Factoids|WasteWise|US EPA. Available online: https://archive.epa.gov/epawaste/conserve/smm/wastewise/web/html/factoid.html (accessed on 2 November 2024).
- Kousemaker, T.M.; Jonker, G.H.; Vakis, A.I. LCA Practices of Plastics and Their Recycling: A Critical Review. Appl. Sci. 2021, 11, 3305. [Google Scholar] [CrossRef]
- Heo, Y.; Bae, D.; Oh, C.; Suh, Y.; Lee, K. Life Cycle Assessment of Mobile Phone Charger Containing Recycled Plastics. J. Korean Soc. Environ. Eng. 2017, 39, 698–705. [Google Scholar] [CrossRef]
- Puig, R.; Fullana-i-Palmer, P.; Baquero, G.; Riba, J.-R.; Bala, A. A Cumulative Energy Demand Indicator (CED), Life Cycle Based, for Industrial Waste Management Decision Making. Waste Manag. 2013, 33, 2789–2797. [Google Scholar] [CrossRef] [PubMed]
- Röhrlich, M.; Mistry, M.; Martens, P.N.; Buntenbach, S.; Ruhrberg, M.; Dienhart, M.; Briem, S.; Quinkertz, R.; Alkan, Z.; Kugeler, K. A Method to Calculate the Cumulative Energy Demand (CED) of Lignite Extraction. Int. J. Life Cycle Assess. 2000, 5, 369–373. [Google Scholar] [CrossRef]
- Patel, M. Cumulative Energy Demand (CED) and Cumulative CO2 Emissions for Products of the Organic Chemical Industry. Energy 2003, 28, 721–740. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Hellweg, S.; Frischknecht, R.; Hendriks, H.W.M.; Hungerbühler, K.; Hendriks, A.J. Cumulative Energy Demand As Predictor for the Environmental Burden of Commodity Production. Environ. Sci. Technol. 2010, 44, 2189–2196. [Google Scholar] [CrossRef]
- Frischknecht, R.; Wyss, F.; Büsser Knöpfel, S.; Lützkendorf, T.; Balouktsi, M. Cumulative Energy Demand in LCA: The Energy Harvested Approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [Google Scholar] [CrossRef]
- Gołasa, P.; Wysokiński, M.; Bieńkowska-Gołasa, W.; Gradziuk, P.; Golonko, M.; Gradziuk, B.; Siedlecka, A.; Gromada, A. Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used. Energies 2021, 14, 3784. [Google Scholar] [CrossRef]
- Nuss, P. Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products, Edited by MaryAnn Curran. Hoboken, NJ, USA: John Wiley & Sons, Inc., and Salem, MA, USA: Scrivener Publishing LLC, 2012, 611 pp., ISBN 9781118099728, $199.00 (Paper), $159.99 (E-book). J. Ind. Ecol. 2015, 19, 167–168. [Google Scholar] [CrossRef]
- Verones, F.; Hellweg, S.; Antón, A.; Azevedo, L.B.; Chaudhary, A.; Cosme, N.; Cucurachi, S.; De Baan, L.; Dong, Y.; Fantke, P.; et al. LC-IMPACT: A Regionalized Life Cycle Damage Assessment Method. J. Ind. Ecol. 2020, 24, 1201–1219. [Google Scholar] [CrossRef]
- Füssel, H.-M. An Updated Assessment of the Risks from Climate Change Based on Research Published since the IPCC Fourth Assessment Report. Clim. Chang. 2009, 97, 469–482. [Google Scholar] [CrossRef]
- Hulme, M.; Mahony, M. Climate Change: What Do We Know about the IPCC? Prog. Phys. Geogr. Earth Environ. 2010, 34, 705–718. [Google Scholar] [CrossRef]
- Mohd Nordin, A.H.; Sulaiman, S.I.; Shaari, S.; Mustapa, R.F. Effect of Photovoltaic (PV) Module Degradation Rate on the Greenhouse Gas Emissions: A Life-Cycle Assessment. J. Electr. Electron. Syst. Res. 2021, 18, 58–62. [Google Scholar] [CrossRef]
- Houghton, J.T.; Filho, L.G.M.; Callander, B.A.; Harris, N.; Kattenberg, A.; Maskell, K. (Eds.) Climate Change 1995; Intergovernmental Panel on Climate Change (IPCC): Cambridge, UK, 1995; Volume 4. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. IPCC Fourth Assessment Report (AR4); Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; Volume 374. [Google Scholar]
- O’neill, B.C.; Oppenheimer, M.; Warren, R.; Hallegatte, S.; Kopp, R.E.; Pörtner, H.O.; Scholes, R.; Birkmann, J.; Foden, W.; Licker, R. IPCC Reasons for Concern Regarding Climate Change Risks. Nat. Clim. Chang. 2017, 7, 28–37. [Google Scholar] [CrossRef]
- Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J. (Eds.) Climate Change. The IPCC Scientific Assessment; Intergovernmental Panel on Climate Change (IPCC): Cambridge, UK, 1990; Volume 365. [Google Scholar]
- EIA. Electric Power Annual—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/electricity/annual/index.php (accessed on 19 October 2024).
- Government of Canada; CER. Provincial and Territorial Energy Profiles—Canada. Available online: https://www.cer-rec.gc.ca/en/data-analysis/energy-markets/provincial-territorial-energy-profiles/provincial-territorial-energy-profiles-canada.html (accessed on 19 October 2024).
- Ali Sadat, S.; Pearce, J.M. The Threat of Economic Grid Defection in the U.S. with Solar Photovoltaic, Battery and Generator Hybrid Systems. Sol. Energy 2024, 282, 112910. [Google Scholar] [CrossRef]
- NREL U.S. Life Cycle Inventory Database. Available online: https://www.nrel.gov/analysis/lci.html (accessed on 29 April 2024).
- Meyer, T.K.; Tanikella, N.G.; Reich, M.J.; Pearce, J.M. Potential of Distributed Recycling from Hybrid Manufacturing of 3-D Printing and Injection Molding of Stamp Sand and Acrylonitrile Styrene Acrylate Waste Composite. Sustain. Mater. Technol. 2020, 25, e00169. [Google Scholar] [CrossRef]
- ASTM C109/C109M-20; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2020.
- Environment and Climate Change Canada (ECCC). Plastic Waste and Pollution Reduction. Available online: https://www.canada.ca/en/environment-climate-change/services/managing-reducing-waste/reduce-plastic-waste.html (accessed on 19 October 2024).
- US EPA. Plastics: Material-Specific Data. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data (accessed on 19 October 2024).
- NREL News Release: NREL Calculates Lost Value of Landfilled Plastic in U.S. Available online: https://www.nrel.gov/news/press/2022/nrel-calculates-lost-value-of-landfilled-plastic-in-us.html (accessed on 19 October 2024).
- Prismane Consulting. Polycarbonate Market Analysis by Production, Capacity, Demand & Forecast Report Until 2036. 2022. Available online: https://prismaneconsulting.com/report-details/global-polycarbonate-market-study (accessed on 19 October 2024).
- Statista Polycarbonates Global Demand 2022. Available online: https://www.statista.com/statistics/750965/polycarbonates-demand-worldwide/ (accessed on 19 October 2024).
- Flower, D.J.; Sanjayan, J.G. Green House Gas Emissions Due to Concrete Manufacture. Int. J. Life Cycle Assess. 2007, 12, 282–288. [Google Scholar] [CrossRef]
- IEA. Technology Roadmap. Low-Carbon Transition in the Cement Industry—Analysis; IEA: Paris, France, 2018.
- Global Cement and Concrete Association GCCA. Concrete Future—Roadmap to Net Zero; GCCA: London, UK, 2021. [Google Scholar]
- Petek Gursel, A.; Masanet, E.; Horvath, A.; Stadel, A. Life-Cycle Inventory Analysis of Concrete Production: A Critical Review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- IEA. Global Cement Production,2010–2019—Charts—Data & Statistics; IEA: Paris, France, 2020.
- Ritchie, H.; Roser, M. CO2 Emissions. Our World Data. 2024. Available online: https://ourworldindata.org/co2-emissions (accessed on 24 October 2024).
- Soll, J. Can Planting a Trillion Trees Save Our Planet? Available online: https://www.oregonmetro.gov/news/power-trees (accessed on 24 October 2024).
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping Tree Density at a Global Scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef]
- Sedjo, R.A.; Solomon, A.M. Climate and Forests. In Greenhouse Warming; Routledge: London, UK, 2016; pp. 105–118. [Google Scholar]
- Akbari, H. Shade Trees Reduce Building Energy Use and CO2 Emissions from Power Plants. Environ. Pollut. 2002, 116, S119–S126. [Google Scholar] [CrossRef]
- Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K. Carbon Storage and Sequestration Potential of Selected Tree Species in India. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 489–510. [Google Scholar] [CrossRef]
- IEA Data Centres & Networks. Available online: https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks (accessed on 23 October 2024).
- EIA. Annual Energy Outlook 2023—U.S. Energy Information Administration (EIA). 2023. Available online: https://www.eia.gov/outlooks/aeo/ (accessed on 23 October 2024).
- Leung, C.K.Y. Concrete as a Building Material. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 1471–1479. ISBN 978-0-08-043152-9. [Google Scholar]
- Zabalza Bribián, I.; Valero Capilla, A.; Aranda Usón, A. Life Cycle Assessment of Building Materials: Comparative Analysis of Energy and Environmental Impacts and Evaluation of the Eco-Efficiency Improvement Potential. Build. Environ. 2011, 46, 1133–1140. [Google Scholar] [CrossRef]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA Databases Focused on Construction Materials: A Review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- Stelzer, L.; Hoberg, F.; Bach, V.; Schmidt, B.; Pfeiffer, S.; Meyer, V.; Finkbeiner, M. Life Cycle Assessment of Fungal-Based Composite Bricks. Sustainability 2021, 13, 11573. [Google Scholar] [CrossRef]
- Asman, N.S.A.; Bolong, N.; Mirasa, A.K.; Asrah, H. Life Cycle Assessment of Interlocking Compressed Earth Brick and Conventional Fired Clay Brick for Residential House. J. Phys. Conf. Ser. 2020, 1529, 042012. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; van der Meide, M.; Di Maio, F.; Yang, X.; Gao, X.; Li, K.; Zhao, H.; Li, C. Life Cycle Assessment of Material Footprint in Recycling: A Case of Concrete Recycling. Waste Manag. 2023, 155, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.R.; Calmon, J.L.; Coelho, F.Z. Life Cycle Assessment (LCA) Applied to the Manufacturing of Common and Ecological Concrete: A Review. Constr. Build. Mater. 2016, 124, 656–666. [Google Scholar] [CrossRef]
- Saberian, M.; Zhang, J.; Gajanayake, A.; Li, J.; Zhang, G.; Boroujeni, M. Life Cycle Assessment (LCA) of Concrete Containing Waste Materials. In Handbook of Sustainable Concrete and Industrial Waste Management; Elsevier: Amsterdam, The Netherlands, 2022; pp. 637–659. ISBN 978-0-12-821730-6. [Google Scholar]
- Xing, W.; Tam, V.W.; Le, K.N.; Hao, J.L.; Wang, J. Life Cycle Assessment of Recycled Aggregate Concrete on Its Environmental Impacts: A Critical Review. Constr. Build. Mater. 2022, 317, 125950. [Google Scholar] [CrossRef]
Material | Small Sample, Average Amount [31] | Average Amount, Standard Construction Brick Size | Unit |
---|---|---|---|
Silica sand | 80.4 | 811 | g/batch |
Recycled polycarbonate | 50.4 | 854.75 | g/batch |
Energy Consumption | |||
By hot press | 3.61 | 3.61 | kWh/batch |
By plastic extruder | 0.03 | 0.52 | kWh/batch |
Volume | 8.19 | 1069.26 | cm3/sample |
No. of samples per batch | 12 | 1 | sample/batch |
Electricity Consumption | kWh |
---|---|
To reach and maintain the optimum extruder temperature | 0.6 |
While adding material | 1.98 |
While baking | 1.27 |
While extruding rPC to mix the material | 3 × 10−2 |
To reach and maintain the optimum hot press temperature | 5.1 × 10−1 |
Construction Material Type | No. of Samples per Batch | CED (kWh/cm3) | CF (kg CO2eq./cm3) |
---|---|---|---|
Ordinary concrete | 5.20 × 10−4 | 4.20 × 10−4 | |
Frost-resistant concrete | 7.80 × 10−4 | 5.00 × 10−4 | |
Sand–rPC composite (ASTM D695) | 12 | 2.49 × 10−2 | 1.87 × 10−3 |
36 | 8.53 × 10−3 | 6.60 × 10−4 | |
60 | 5.27 × 10−3 | 4.10 × 10−4 | |
84 | 3.86 × 10−3 | 3.10 × 10−4 | |
108 | 3.09 × 10−3 | 2.50 × 10−4 | |
121 | 2.79 × 10−3 | 2.30 × 10−4 | |
Sand–rPC brick (standard brick size) | 1 | 2.79 × 10−3 | 2.30 × 10−4 |
5 | 1.97 × 10−4 | 1.83 × 10−5 | |
10 | 7.48 × 10−5 | 7.47 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, R.; Mottaghi, M.; Woods, M.; Pearce, J.M. Life Cycle Carbon Emissions Savings of Replacing Concrete with Recycled Polycarbonate and Sand Composite. Sustainability 2025, 17, 839. https://doi.org/10.3390/su17030839
Roy R, Mottaghi M, Woods M, Pearce JM. Life Cycle Carbon Emissions Savings of Replacing Concrete with Recycled Polycarbonate and Sand Composite. Sustainability. 2025; 17(3):839. https://doi.org/10.3390/su17030839
Chicago/Turabian StyleRoy, Riya, Maryam Mottaghi, Morgan Woods, and Joshua M. Pearce. 2025. "Life Cycle Carbon Emissions Savings of Replacing Concrete with Recycled Polycarbonate and Sand Composite" Sustainability 17, no. 3: 839. https://doi.org/10.3390/su17030839
APA StyleRoy, R., Mottaghi, M., Woods, M., & Pearce, J. M. (2025). Life Cycle Carbon Emissions Savings of Replacing Concrete with Recycled Polycarbonate and Sand Composite. Sustainability, 17(3), 839. https://doi.org/10.3390/su17030839