Evaluating Methane Emission Estimates from Intergovernmental Panel on Climate Change Compared to Sentinel-Derived Air–Methane Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. IPCC Methodology for Calculating CH4 Emissions at the Country Level
2.2. Analysis of CH4 Levels Using Sentinel-5P Data
2.3. Statistical Analysis
3. Results
3.1. Results from IPCC Methodology and Sentinel Measurements
3.2. Comparison of IPCC Results with Sentinel Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Allen, M.R.; Fuglestvedt, J.S.; Shine, K.P.; Reisinger, A.; Pierrehumbert, R.T.; Forster, P.M. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Chang. 2016, 6, 773–776. [Google Scholar] [CrossRef]
- Core Writing Team. Intergovernmental Panel on Climate Change (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups 646 I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Jackson, R.B.; Saunois, M.; Bousquet, P.; Canadell, J.G.; Poulter, B.; Stavert, A.R.; Bergamaschi, P.; Niwa, Y.; Segers, A.; Tsuruta, A. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. 2020, 15, 071002. [Google Scholar] [CrossRef]
- Etiope, G.; Whiticar, M.J. Abiotic methane in continental ultramafic rock systems: Towards a genetic model. Appl. Geochem. 2019, 102, 139–152. [Google Scholar] [CrossRef]
- Thauer, R.K.; Kaster, A.-K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H.; Kirs, M. Structure of the Archaeal Community of the Rumen. Appl. Environ. Microbiol. 2008, 74, 3619–3625. [Google Scholar] [CrossRef]
- Sherwood Lollar, B.; Westgate, T.D.; Ward, J.A.; Slater, G.F.; Lacrampe-Couloume, G. Abiogenic formation of alkanes in the Earth’s crust as a minor source for global hydrocarbon reservoirs. Nature 2002, 416, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Huang, B.; Wu, K.; Shi, S.; Wu, Z.; Hou, M.; Wang, H. Nanoconfined methane density over pressure and temperature: Wettability effect. J. Nat. Gas Sci. Eng. 2022, 99, 104426. [Google Scholar] [CrossRef]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Aydin, G.; Karakurt, I.; Aydiner, K. Analysis and mitigation opportunities of methane emissions from the energy sector. Energy Sources Part A Recovery Util. Environ. Eff. 2012, 34, 967–982. [Google Scholar] [CrossRef]
- Yusuf, R.O.; Noor, Z.Z.; Abba, A.H.; Hassan, M.A.A.; Din, M.F.M. Methane emission by sectors: A comprehensive review of emission sources and mitigation methods. Renew. Sustain. Energy Rev. 2012, 16, 5059–5070. [Google Scholar] [CrossRef]
- Smith, P.; Reay, D.; Smith, J. Agricultural methane emissions and the potential formitigation. Philos. Trans. R. Soc. A 2021, 379, 20200451. [Google Scholar] [CrossRef]
- Thomson, A.; Buys, G.; Moxley, J.; Malcolm, H.; Henshall, P.; Broadmeadow, M. Projections of Emissions and Removals from the LULUCF Sector to 2050; NERC/Centre for Ecology & Hydrology: Edinburgh, UK, 2017. [Google Scholar]
- Singh, C.K.; Kumar, A.; Roy, S.S. Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci. Rep. 2018, 8, 2913. [Google Scholar] [CrossRef]
- UNFCCC. National Inventory Submissions 2023; UNFCCC: Bonn, Germany, 2023. [Google Scholar]
- Sentinel, C. 5P (Processed by ESA): TROPOMI Level 2 Carbon Monoxide Total Column Products, version 02; Paris, France, 2021. [Google Scholar]
- Riddick, S.N.; Mbua, M.; Santos, A.; Hartzell, W.; Zimmerle, D.J. Potential Underestimate in Reported Bottom-up Methane Emissions from Oil and Gas Operations in the Delaware Basin. Atmosphere 2024, 15, 202. [Google Scholar] [CrossRef]
- Johnson, M.R.; Tyner, D.R.; Conley, S.; Schwietzke, S.; Zavala-Araiza, D. Comparisons of Airborne Measurements and Inventory Estimates of Methane Emissions in the Alberta Upstream Oil and Gas Sector. Environ. Sci. Technol. 2017, 51, 13008–13017. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, J.S.; Sherwin, E.D.; Ravikumar, A.P.; Heath, G.A.; Englander, J.; Cooley, D.; Lyon, D.; Omara, M.; Langfitt, Q.; Brandt, A.R. Closing the methane gap in US oil and natural gas production emissions inventories. Nat. Commun. 2021, 12, 4715. [Google Scholar] [CrossRef] [PubMed]
- Watine-Guiu, M.; Varon, D.J.; Irakulis-Loitxate, I.; Balasus, N.; Jacob, D.J. Geostationary satellite observations of extreme and transient methane emissions from oil and gas infrastructure. Proc. Natl. Acad. Sci. USA 2023, 120, e2310797120. [Google Scholar] [CrossRef] [PubMed]
- Kozicka, K.; Orazalina, Z.; Gozdowski, D.; Wójcik-Gront, E. Evaluation of temporal changes in methane content in the atmosphere for areas with a very high rice concentration based on Sentinel-5P data. Remote Sens. Appl. Soc. Environ. 2023, 30, 100972. [Google Scholar] [CrossRef]
- Siddiqui, A.; Halder, S.; Kannemadugu, H.B.S.; Prakriti; Chauhan, P. Detecting Methane Emissions from Space Over India: Analysis Using EMIT and Sentinel-5P TROPOMI Datasets. J. Indian Soc. Remote Sens. 2024, 52, 1901–1921. [Google Scholar] [CrossRef]
- Chen, B.; Kan, S.; Wang, S.; Deng, H.; Zhang, B. Beyond wells: Towards demand-side perspective to manage global methane emissions from oil and gas production. Resour. Conserv. Recycl. 2023, 193, 106971. [Google Scholar] [CrossRef]
- Munnings, C.; Krupnick, A. Comparing policies to reduce methane emissions in the natural gas sector. Resour. Future 2017, 21, 2018. [Google Scholar]
- Dobson, S.; Goodday, V.; Winter, J. If it matters, measure it: A review of methane sources and mitigation policy in Canada. Int. Rev. Environ. Resour. Econ. 2023, 16, 309–429. [Google Scholar] [CrossRef]
- Mead, G.J.; Herman, D.I.; Giorgetta, F.R.; Malarich, N.A.; Baumann, E.; Washburn, B.R.; Newbury, N.R.; Coddington, I.; Cossel, K.C. Apportionment and Inventory Optimization of Agriculture and Energy Sector Methane Emissions Using Multi-Month Trace Gas Measurements in Northern Colorado. Geophys. Res. Lett. 2024, 51, e2023GL105973. [Google Scholar] [CrossRef]
- Lorente, A.; Borsdorff, T.; Butz, A.; Hasekamp, O.; aan de Brugh, J.; Schneider, A.; Wu, L.; Hase, F.; Kivi, R.; Wunch, D.; et al. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements. Atmos. Meas. Tech. 2021, 14, 665–684. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; QGIS Association: Gossau, Germany, 2021. [Google Scholar]
- Hussain, M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Springer: Boston, MA, USA, 1948. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Gront, D. Assessing Uncertainty in the Polish Agricultural Greenhouse Gas Emission Inventory Using Monte Carlo Simulation. Outlook Agric. 2014, 43, 61–65. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Zhou, L.; Ming, T.; Li, W.; de Richter, R. Removal of Atmospheric Methane by Increasing Hydroxyl Radicals via a Water Vapor Enhancement Strategy. Atmosphere 2024, 15, 1046. [Google Scholar] [CrossRef]
- Tibrewal, K.; Ciais, P.; Saunois, M.; Martinez, A.; Lin, X.; Thanwerdas, J.; Deng, Z.; Chevallier, F.; Giron, C.; Albergel, C.; et al. Assessment of methane emissions from oil, gas and coal sectors across inventories and atmospheric inversions. Commun. Earth Environ. 2024, 5, 26. [Google Scholar] [CrossRef]
- Olczak, M.; Piebalgs, A.; Balcombe, P. A global review of methane policies reveals that only 13% of emissions are covered with unclear effectiveness. One Earth 2023, 6, 519–535. [Google Scholar] [CrossRef]
- Ahmed, F.; Ali, I.; Kousar, S.; Ahmed, S. The environmental impact of industrialization and foreign direct investment: Empirical evidence from Asia-Pacific region. Environ. Sci. Pollut. Res. Int. 2022, 29, 29778–29792. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, X.; Guan, C.; Wu, X.; Zhang, B. Economic drivers of global and regional CH4 emission growth from the consumption perspective. Energy Policy 2022, 170, 113242. [Google Scholar] [CrossRef]
- Stavert, A.R.; Saunois, M.; Canadell, J.G.; Poulter, B.; Jackson, R.B.; Regnier, P.; Lauerwald, R.; Raymond, P.A.; Allen, G.H.; Patra, P.K. Regional trends and drivers of the global methane budget. Glob. Chang. Biol. 2022, 28, 182–200. [Google Scholar] [CrossRef]
- Cerri, C.C.; Bernoux, M.; Maia, S.M.F.; Cerri, C.E.P.; Costa Junior, C.; Feigl, B.J.; Frazão, L.A.; Mello, F.F.d.C.; Galdos, M.V.; Moreira, C.S. Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. Sci. Agric. 2010, 67, 102–116. [Google Scholar] [CrossRef]
- Bousquet, P.; Ciais, P.; Miller, J.B.; Dlugokencky, E.J.; Hauglustaine, D.A.; Prigent, C.; Van der Werf, G.R.; Peylin, P.; Brunke, E.G.; Carouge, C.; et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 2006, 443, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Lin, X.; Thompson, R.L.; Xi, Y.; Liu, G.; Hauglustaine, D.; Lan, X.; Poulter, B.; Ramonet, M.; Saunois, M.; et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 2022, 612, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Rößger, N.; Sachs, T.; Wille, C.; Boike, J.; Kutzbach, L. Seasonal increase of methane emissions linked to warming in Siberian tundra. Nat. Clim. Chang. 2022, 12, 1031–1036. [Google Scholar] [CrossRef]
- Ito, A. Global termite methane emissions have been affected by climate and land-use changes. Sci. Rep. 2023, 13, 17195. [Google Scholar] [CrossRef] [PubMed]
- Etiope, G.; Fridriksson, T.; Italiano, F.; Winiwarter, W.; Theloke, J. Natural emissions of methane from geothermal and volcanic sources in Europe. J. Volcanol. Geotherm. Res. 2007, 165, 76–86. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Kharuk, V.I.; Ranson, K.J. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef]
- Feng, L.; Tavakkoli, S.; Jordaan, S.M.; Andrews, A.E.; Benmergui, J.S.; Waugh, D.W.; Zhang, M.; Gaeta, D.C.; Miller, S.M. Inter-Annual Variability in Atmospheric Transport Complicates Estimation of US Methane Emissions Trends. Geophys. Res. Lett. 2023, 50, e2022GL100366. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil. Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
Methodology | Complexity | Data Source | Accuracy | Example |
---|---|---|---|---|
Tier 1 | Basic | Default IPCC factors | Low | General livestock population |
Tier 2 | Intermediate | Country-specific factors | Medium | Breed-specific livestock data |
Tier 3 | Advanced | Direct measurements/models | High | Real-time methane monitoring at facilities |
Method | Purpose | Input | Output |
---|---|---|---|
Mann–Kendall Trend Test | Detect monotonic trends in time series data | Time series of CH4 emissions (per country) | Increasing, decreasing, or stable trend |
Sen’s Slope Estimation | Quantify the rate of change in time series data | Time series of CH4 emissions | Rate of change (e.g., ppb/year) |
PCA | Reduce the dimensionality of complex datasets | CH4 emissions by sector and country | Principal components explaining variance in data |
Agriculture | Energy | IPPU | LULUCF | Waste | Total | Sentinel | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1990–2021 | 2019–2024 | |||||||||||||
AUS | −19.103 | ↓ | 2.183 | → | −0.027 | ↓ | −2.331 | → | −13.432 | ↓ | −33.953 | ↓ | 2.450 | ↑ |
AUT | −0.947 | ↓ | −0.475 | ↓ | 0.017 | ↑ | 0.000 | → | −4.133 | ↓ | −5.478 | ↓ | 2.441 | ↑ |
BEL | −1.188 | ↓ | −0.271 | ↓ | 0.011 | → | 0.000 | ↓ | −4.824 | ↓ | −6.276 | ↓ | 2.487 | ↑ |
BGR | −1.568 | ↓ | −1.113 | ↓ | −0.067 | ↓ | 0.004 | → | −2.029 | ↓ | −4.819 | ↓ | 2.725 | ↑ |
BLR | −0.029 | → | −0.083 | → | 0.073 | ↑ | 0.001 | → | 2.746 | ↑ | 2.916 | ↑ | 2.923 | ↑ |
CAN | 0.203 | → | 13.940 | ↑ | 0.024 | ↑ | −0.408 | ↓ | 1.807 | ↑ | 9.945 | → | 2.477 | ↑ |
CHE | −0.372 | ↓ | −0.585 | ↓ | 0.003 | ↑ | −0.006 | ↓ | −0.503 | ↓ | −1.443 | ↓ | 2.261 | ↑ |
CYP | −0.032 | → | 0.005 | ↑ | 0.000 | → | 0.000 | → | 0.242 | ↑ | 0.219 | ↑ | 1.808 | ↑ |
CZE | −2.623 | ↓ | −11.718 | ↓ | 0.022 | ↑ | −0.038 | ↓ | 2.740 | ↑ | −11.269 | ↓ | 2.688 | ↑ |
DEU | −6.909 | ↓ | −44.614 | ↓ | 0.140 | ↑ | 0.354 | ↑ | −51.445 | ↓ | −102.638 | ↓ | 2.458 | ↑ |
DNM | −0.200 | ↓ | −0.790 | ↓ | 0.000 | → | −0.012 | ↓ | −0.875 | ↓ | −1.675 | ↓ | 2.202 | ↑ |
ESP | −0.274 | → | −1.190 | ↓ | 0.021 | ↑ | −0.171 | ↓ | 1.846 | ↑ | −1.797 | → | 2.215 | ↑ |
EST | 0.011 | → | −0.056 | ↓ | 0.000 | → | 0.002 | ↑ | −0.249 | ↓ | −0.408 | ↓ | 2.809 | ↑ |
FIN | −0.120 | ↓ | −0.139 | ↓ | −0.005 | ↓ | −1.144 | ↓ | −4.491 | ↓ | −5.972 | ↓ | 2.770 | ↑ |
FRA | −5.360 | ↓ | −14.095 | ↓ | −0.241 | ↓ | −0.588 | ↓ | −1.092 | → | −26.382 | ↓ | 2.461 | ↑ |
GBR | −6.455 | ↓ | −37.574 | ↓ | −0.282 | ↓ | 0.190 | ↑ | −84.054 | ↓ | −133.026 | ↓ | 2.293 | ↑ |
GRC | −0.651 | ↓ | −0.508 | → | −0.001 | ↓ | −0.033 | → | −0.551 | ↓ | −2.223 | ↓ | 1.963 | ↑ |
HRV | −0.667 | ↓ | −0.283 | ↓ | −0.011 | ↓ | −0.004 | → | 1.200 | ↑ | 0.283 | → | 2.725 | ↑ |
HUN | −1.125 | ↓ | −2.435 | ↓ | 0.036 | ↑ | −0.008 | ↓ | −0.552 | ↓ | −4.132 | ↓ | 2.688 | ↑ |
IRL | 1.046 | → | −0.302 | ↓ | 0.000 | → | 0.188 | ↑ | −1.279 | ↓ | −0.241 | → | 2.266 | ↑ |
ISL | −0.057 | ↓ | −0.003 | ↓ | 0.002 | ↑ | −0.137 | ↓ | −0.034 | → | −0.219 | ↓ | 1.521 | ↑ |
ITA | −4.459 | ↓ | −5.841 | ↓ | −0.099 | ↓ | −0.493 | ↓ | −3.308 | → | −13.856 | ↓ | 2.286 | ↑ |
JPN | −5.394 | ↓ | −3.824 | ↓ | −0.022 | ↓ | −0.045 | ↓ | −14.462 | ↓ | −24.445 | ↓ | 3.093 | ↑ |
KAZ | 14.086 | ↑ | −38.788 | ↓ | −0.007 | ↓ | −0.017 | → | 3.101 | ↑ | −25.887 | ↓ | 2.138 | ↑ |
LTU | −1.300 | ↓ | 0.115 | ↑ | −0.003 | ↓ | −0.005 | ↓ | −1.023 | ↓ | −2.431 | ↓ | 2.398 | ↑ |
LUX | 0.010 | → | 0.006 | → | 0.000 | → | 0.000 | → | −0.034 | ↓ | −0.014 | ↓ | 2.590 | ↑ |
LVA | −0.121 | → | −0.369 | ↓ | 0.000 | ↓ | 0.240 | ↑ | −0.241 | ↓ | −0.492 | ↓ | 2.928 | ↑ |
MCO | 0.000 | → | −0.001 | ↓ | 0.000 | → | 0.000 | → | 0.001 | ↑ | −0.001 | ↓ | 2.363 | ↑ |
MLT | −0.039 | ↓ | −0.004 | ↓ | 0.000 | → | 0.000 | → | 0.116 | ↑ | 0.080 | ↑ | 2.128 | ↑ |
NLD | −3.469 | ↓ | −0.774 | ↓ | 0.036 | ↑ | −0.077 | ↓ | −17.539 | ↓ | −20.963 | ↓ | 2.501 | ↑ |
NOR | −0.233 | ↓ | −0.703 | ↓ | −0.009 | ↓ | 0.027 | ↑ | −1.557 | ↓ | −2.480 | ↓ | 2.575 | ↑ |
NZL | 2.417 | ↑ | −0.825 | ↓ | 0.054 | → | 0.012 | → | −1.719 | ↓ | −0.207 | → | 2.866 | ↑ |
POL | −4.284 | ↓ | −1.499 | → | 0.023 | ↑ | −0.049 | ↓ | −19.456 | ↓ | −25.830 | ↓ | 2.636 | ↑ |
PRT | −0.305 | ↓ | −0.408 | ↓ | 0.004 | → | −0.027 | → | −0.975 | → | −1.431 | ↓ | 2.579 | ↑ |
ROU | −6.983 | ↓ | −23.567 | ↓ | −0.062 | ↓ | 0.003 | ↑ | 1.231 | ↑ | −30.613 | ↓ | 2.677 | ↑ |
RUS | −57.804 | ↓ | −70.571 | ↓ | 0.507 | ↑ | 7.208 | ↑ | 64.034 | ↑ | −55.263 | ↓ | 2.725 | ↑ |
SVK | −1.518 | ↓ | −3.071 | ↓ | 0.002 | ↑ | 0.019 | ↑ | 0.703 | ↑ | −3.873 | ↓ | 2.433 | ↑ |
SVN | −0.025 | → | −0.264 | ↓ | −0.007 | ↓ | −0.001 | ↓ | −0.469 | ↓ | −0.800 | ↓ | 1.935 | ↑ |
SWE | −0.688 | ↓ | −0.317 | ↓ | −0.002 | → | −0.101 | ↓ | −4.298 | ↓ | −5.489 | ↓ | 2.334 | ↑ |
TUR | 15.124 | ↑ | 6.175 | ↑ | 0.012 | ↑ | −0.030 | → | 7.991 | ↑ | 29.251 | ↑ | 2.450 | ↑ |
UKR | −35.902 | ↓ | −105.724 | ↓ | 1.752 | ↑ | −0.025 | → | 1.328 | ↑ | −140.553 | ↓ | 2.450 | ↑ |
USA | 31.886 | ↑ | −84.113 | ↓ | −0.093 | → | 9.546 | ↑ | −91.254 | ↓ | −136.161 | ↓ | 2.441 | ↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójcik-Gront, E.; Wnuk, A. Evaluating Methane Emission Estimates from Intergovernmental Panel on Climate Change Compared to Sentinel-Derived Air–Methane Data. Sustainability 2025, 17, 850. https://doi.org/10.3390/su17030850
Wójcik-Gront E, Wnuk A. Evaluating Methane Emission Estimates from Intergovernmental Panel on Climate Change Compared to Sentinel-Derived Air–Methane Data. Sustainability. 2025; 17(3):850. https://doi.org/10.3390/su17030850
Chicago/Turabian StyleWójcik-Gront, Elżbieta, and Agnieszka Wnuk. 2025. "Evaluating Methane Emission Estimates from Intergovernmental Panel on Climate Change Compared to Sentinel-Derived Air–Methane Data" Sustainability 17, no. 3: 850. https://doi.org/10.3390/su17030850
APA StyleWójcik-Gront, E., & Wnuk, A. (2025). Evaluating Methane Emission Estimates from Intergovernmental Panel on Climate Change Compared to Sentinel-Derived Air–Methane Data. Sustainability, 17(3), 850. https://doi.org/10.3390/su17030850