A Rule-Based Modular Energy Management System for AC/DC Hybrid Microgrids
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Literature Review
1.3. Research Gaps and Contributions
- A rule-based modular EMS framework is proposed to support diverse microgrid configurations, dynamically incorporating specific constraints for renewable DERs, controllable DERs, BESSs, EVs, and multiple load types based on their presence.
- The framework adopts a hybrid AC/DC microgrid structure with dual buses interconnected by an ILC, ensuring compatibility with a wide range of configurations and facilitating the integration of components on either side of the microgrid.
- Detailed component models are provided, and constraints are dynamically updated for advanced configurations (e.g., AC and DC buses with BESSs, EVs, DERs, and priority loads).
- The proposed EMS optimizes operational costs and enhances service reliability, with its effectiveness demonstrated through extensive performance evaluations in grid-connected and islanded modes under various scenarios.
2. Modular Modeling
2.1. System Configuration
2.2. Rule-Based Individual Module Modeling
2.2.1. Battery Energy Storage System
2.2.2. Electric Vehicles
2.2.3. Microturbine
2.2.4. Solar Photovoltaic
2.2.5. Interlinking Converter
2.2.6. Utility Grid
3. Modular Energy Management
3.1. Problem Formulation
3.2. Operation Execution
4. Performance Evaluation: Grid-Connected Cases
4.1. Input Data
4.2. Interconnected
4.3. Without BESSs
4.4. Without EVs and BESSs
4.5. DC MG Isolated
4.6. Comparative Analysis
5. Performance Evaluation: Islanded Cases
5.1. Input Data
5.2. Interconnected
5.3. Renewable-Based MG
5.4. Conventional MG
5.5. DC MG Isolated
5.6. Comparative Analysis
6. Limitations and Future Research Directions
- Expanding each category to incorporate additional elements, such as wind turbines [38], diverse energy storage systems, and controllable DGs.
- Integrating demand response mechanisms on both AC and DC sides.
- Addressing uncertainty in renewables and loads to improve robustness.
- Validating the algorithm by linking it with a distribution system for power flow analysis.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rani, P.; Parkash, V.; Sharma, N.K. Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey. Renew. Sustain. Energy Rev. 2024, 192, 114257. [Google Scholar] [CrossRef]
- Saeed, M.H.; Fangzong, W.; Kalwar, B.A.; Iqbal, S. A review on microgrids’ challenges & perspectives. IEEE Access 2021, 9, 166502–166517. [Google Scholar]
- Hussain, A.; Bui, V.H.; Kim, H.M. An effort-based reward approach for allocating load shedding amount in networked microgrids using multiagent system. IEEE Trans. Ind. Inform. 2019, 16, 2268–2279. [Google Scholar] [CrossRef]
- Kumar, A.; He, X.; Deng, Y.; Singh, A.R.; Sah, B.; Kumar, P.; Bansal, R.; Bettayeb, M.; Rayudu, R. A sustainable rural electrification based on a socio-techno-economic-environmental-political microgrid design framework. Energy Environ. Sci. 2022, 15, 4213–4246. [Google Scholar] [CrossRef]
- Hussain, A.; Bui, V.H.; Kim, H.M. Resilience-oriented optimal operation of networked hybrid microgrids. IEEE Trans. Smart Grid 2017, 10, 204–215. [Google Scholar] [CrossRef]
- Vuddanti, S.; Salkuti, S.R. Review of energy management system approaches in microgrids. Energies 2021, 14, 5459. [Google Scholar] [CrossRef]
- Espín-Sarzosa, D.; Palma-Behnke, R.; Núñez-Mata, O. Energy management systems for microgrids: Main existing trends in centralized control architectures. Energies 2020, 13, 547. [Google Scholar] [CrossRef]
- Gao, H.; Liu, J.; Wang, L.; Wei, Z. Decentralized energy management for networked microgrids in future distribution systems. IEEE Trans. Power Syst. 2017, 33, 3599–3610. [Google Scholar] [CrossRef]
- Darshi, R.; Shamaghdari, S.; Jalali, A.; Arasteh, H. Decentralized energy management system for smart microgrids using reinforcement learning. IET Gener. Transm. Distrib. 2023, 17, 2142–2155. [Google Scholar] [CrossRef]
- Liu, T.; Tan, X.; Sun, B.; Wu, Y.; Tsang, D.H. Energy management of cooperative microgrids: A distributed optimization approach. Int. J. Electr. Power Energy Syst. 2018, 96, 335–346. [Google Scholar] [CrossRef]
- Muhtadi, A.; Pandit, D.; Nguyen, N.; Mitra, J. Distributed energy resources based microgrid: Review of architecture, control, and reliability. IEEE Trans. Ind. Appl. 2021, 57, 2223–2235. [Google Scholar] [CrossRef]
- García Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Energy management in microgrids with renewable energy sources: A literature review. Appl. Sci. 2019, 9, 3854. [Google Scholar] [CrossRef]
- Aaslid, P.; Korpås, M.; Belsnes, M.M.; Fosso, O.B. Stochastic optimization of microgrid operation with renewable generation and energy storages. IEEE Trans. Sustain. Energy 2022, 13, 1481–1491. [Google Scholar] [CrossRef]
- Panda, S.P.; Genest, B.; Easwaran, A.; Rigo-Mariani, R.; Lin, P. Methods for mitigating uncertainty in real-time operations of a connected microgrid. Sustain. Energy Grids Netw. 2024, 38, 101334. [Google Scholar] [CrossRef]
- Erol, Ö.; Filik, Ü.B. A Stackelberg game-based dynamic pricing and robust optimization strategy for microgrid operations. Int. J. Electr. Power Energy Syst. 2024, 155, 109574. [Google Scholar] [CrossRef]
- Kamrani, F.; Fattaheian-Dehkordi, S.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Lehtonen, M. Flexibility-based operational management of a microgrid considering interaction with gas grid. IET Gener. Transm. Distrib. 2021, 15, 2673–2683. [Google Scholar] [CrossRef]
- Hou, S.; Gebreyesus, G.D.; Fujimura, S. Day-ahead multi-modal demand side management in microgrid via two-stage improved ring-topology particle swarm optimization. Expert Syst. Appl. 2024, 238, 122135. [Google Scholar] [CrossRef]
- Vaish, J.; Tiwari, A.K.; Siddiqui, K.M. Optimization of micro grid with distributed energy resources using physics based meta heuristic techniques. IET Renew. Power Gener. 2023. [Google Scholar] [CrossRef]
- Ponsich, A.; Domenech, B.; Ferrer-Martí, L.; Juanpera, M.; Pastor, R. A multi-objective optimization approach for the design of stand-alone electrification systems based on renewable energies. Expert Syst. Appl. 2022, 199, 116939. [Google Scholar] [CrossRef]
- Kurukuru, V.S.B.; Haque, A.; Padmanaban, S.; Khan, M.A. Rule-based inferential system for microgrid energy management system. IEEE Syst. J. 2021, 16, 1582–1591. [Google Scholar] [CrossRef]
- Fathy, A.; Ferahtia, S.; Rezk, H.; Yousri, D.; Abdelkareem, M.A.; Olabi, A. Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid. Energy 2022, 247, 123447. [Google Scholar] [CrossRef]
- Rodriguez, M.; Arcos-Aviles, D.; Martinez, W. Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms. Appl. Energy 2023, 335, 120771. [Google Scholar] [CrossRef]
- Guo, C.; Wang, X.; Zheng, Y.; Zhang, F. Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning. Energy 2022, 238, 121873. [Google Scholar] [CrossRef]
- Huang, Y.; Li, G.; Chen, C.; Bian, Y.; Qian, T.; Bie, Z. Resilient distribution networks by microgrid formation using deep reinforcement learning. IEEE Trans. Smart Grid 2022, 13, 4918–4930. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Yang, Z. Optimal scheduling of isolated microgrids using automated reinforcement learning-based multi-period forecasting. IEEE Trans. Sustain. Energy 2021, 13, 159–169. [Google Scholar] [CrossRef]
- Gupta, P.; Ansari, M.; Ali, I. Smart Energy Management Techniques of Microgrid: A Review. In Proceedings of the 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), Aligarh, India, 10–12 February 2023; pp. 1–6. [Google Scholar]
- Morales, R.; Marín, L.G.; Roje, T.; Caquilpan, V.; Sáez, D.; Nuñez, A. Microgrid planning based on computational intelligence methods for rural communities: A case study in the José Painecura Mapuche community, Chile. Expert Syst. Appl. 2024, 235, 121179. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, M.K.; Kim, H.J. A multi-agent based optimization model for microgrid operation with hybrid method using game theory strategy. Energies 2021, 14, 603. [Google Scholar] [CrossRef]
- Charadi, S.; Chaibi, Y.; Redouane, A.; Allouhi, A.; El Hasnaoui, A.; Mahmoudi, H. Efficiency and energy-loss analysis for hybrid AC/DC distribution systems and microgrids: A review. Int. Trans. Electr. Energy Syst. 2021, 31, e13203. [Google Scholar] [CrossRef]
- Hüner, B. Feasibility and environmental analysis of biogas-based hybrid energy system using HOMER pro software: A case study for Hatay. Energy Convers. Manag. 2025, 326, 119480. [Google Scholar] [CrossRef]
- Zaro, F.; Ayyash, N.A. Design and Management of Hybrid Renewable Energy System using RETscreen Software: A Case Study. Int. J. Electr. Eng. Comput. Sci. 2023, 5, 164–170. [Google Scholar] [CrossRef]
- Pater, S. Long-term performance analysis using TRNSYS software of hybrid systems with PV-T. Energies 2021, 14, 6921. [Google Scholar] [CrossRef]
- Hussain, A.; Kim, H.-M. Modular EMS. Available online: https://github.com/Akhtar-UL/Modular-EMS (accessed on 10 December 2024).
- Bakar, N.N.A.; Hassan, M.Y.; Sulaima, M.F.; Na’im Mohd Nasir, M.; Khamis, A. Microgrid and load shedding scheme during islanded mode: A review. Renew. Sustain. Energy Rev. 2017, 71, 161–169. [Google Scholar] [CrossRef]
- Diaz, N.L.; Luna, A.C.; Vasquez, J.C.; Guerrero, J.M. Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded AC microgrids. IEEE Trans. Power Electron. 2016, 32, 5202–5213. [Google Scholar] [CrossRef]
- El-Hendawi, M.; Gabbar, H.A.; El-Saady, G.; Ibrahim, E.N.A. Control and EMS of a grid-connected microgrid with economical analysis. Energies 2018, 11, 129. [Google Scholar] [CrossRef]
- Kazerani, M.; Tehrani, K. Grid of hybrid AC/DC microgrids: A new paradigm for smart city of tomorrow. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), Budapest, Hungary, 2–4 June 2020; pp. 175–180. [Google Scholar]
- Tehrani, K.; Beikbabaei, M.; Mehrizi-Sani, A.; Jamshidi, M. A smart multiphysics approach for wind turbines design in industry 5.0. J. Ind. Inf. Integr. 2024, 42, 100704. [Google Scholar] [CrossRef]
Parameter | Unit | AC-BESS | DC-BESS | AC-EV | DC-EV |
---|---|---|---|---|---|
Initial SoC | % | 50 | 50 | 30 | 40 |
Min SoC | % | 10 | 10 | 10 | 10 |
Max SoC | % | 90 | 90 | 90 | 90 |
Capacity | kWh | 85 | 100 | 46 | 68 |
Efficiency | % | 90 | 95 | 90 | 95 |
Power rating | kWh | 10 | 10 | 11 | 11 |
target SoC | % | - | - | 80 | 70 |
Microturbine | ILC | ||||
---|---|---|---|---|---|
Parameter | Unit | Value | Parameter | Unit | Value |
Alpha | KRW | 1135.6 | Efficiency | % | 95 |
Beta | KRW/kW | 301.03 | Rated capacity | kW | 100 |
Gamma | KRW/kW² | 0.393 | Utility grid | ||
Rated Capacity | kW | 20 | Rated capacity | kW | 80 |
AC PV | DC PV | ||||
Rated capacity | kW | 30 | Rated capacity | kW | 40 |
Case | Cost KRW | Increase % |
---|---|---|
Interconnected | 16,816.63 | 0.00 |
Without BESSs | 32,064.42 | 47.55 |
Without EVs and BESSs | 30,737.19 | 45.29 |
DC MG Isolated | 61,626.46 | 72.71 |
Case | Cost KRW | Increase % | AC Load Shedding kWh | DC Load Shedding kWh |
---|---|---|---|---|
Interconnected | 119,641.13 | 0.00 | 0.00 | 0.00 |
Renewables only | 170,896.42 | 29.99 | 217.63 | 217.63 |
Conventional | 323,050.13 | 62.97 | 156.06 | 170.80 |
DC MG Isolated | 130,536.32 | 8.35 | 0.00 | 85.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, A.; Kim, H.-M. A Rule-Based Modular Energy Management System for AC/DC Hybrid Microgrids. Sustainability 2025, 17, 867. https://doi.org/10.3390/su17030867
Hussain A, Kim H-M. A Rule-Based Modular Energy Management System for AC/DC Hybrid Microgrids. Sustainability. 2025; 17(3):867. https://doi.org/10.3390/su17030867
Chicago/Turabian StyleHussain, Akhtar, and Hak-Man Kim. 2025. "A Rule-Based Modular Energy Management System for AC/DC Hybrid Microgrids" Sustainability 17, no. 3: 867. https://doi.org/10.3390/su17030867
APA StyleHussain, A., & Kim, H.-M. (2025). A Rule-Based Modular Energy Management System for AC/DC Hybrid Microgrids. Sustainability, 17(3), 867. https://doi.org/10.3390/su17030867