Analysis of the Coupling Coordination and Spatial Difference Between Economic and Ecological Environment: A Case Study of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Variables
2.2. Research Methods
2.2.1. Entropy-Weight TOPSIS Method Construction
2.2.2. CCD Model Construction
2.2.3. Kernel Density Estimation Model Construction
2.2.4. Trend Surface Analysis Model Construction
2.2.5. Spatial Autocorrelation Model Construction
3. Results
3.1. CCD Model Result Analysis
3.1.1. Time Perspective
3.1.2. Regional Perspective
3.2. Kernel Density Estimation Result Analysis
3.3. Trend Surface Result Analysis
3.4. Spatial Autocorrelation Result Analysis
3.4.1. Global Spatial Autocorrelation Result Analysis
3.4.2. Local Spatial Autocorrelation Result Analysis
4. Discussion
4.1. Discussion on the CCD
4.2. Discussion on the KDE
4.3. Discussion on the TS Analysis
4.4. Discussion on the SA Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shang, X. Study on the Ecological Environmental Quality and Development Orientation of Three Major Urban Agglomerations in China: Based on the Ecological Meaning of Hu Line. Urban Dev. Stud. 2023, 30, 72–81. [Google Scholar]
- Bei, J. Study on the “high-quality development” economics. China Political Econ. 2018, 1, 163–180. [Google Scholar] [CrossRef]
- BenDor, T.K.; Livengood, A.; Lester, T.W.; Davis, A.; Yonavjak, L. Defining and evaluating the ecological restoration economy. Restor. Ecol. 2015, 23, 209–219. [Google Scholar] [CrossRef]
- Raihan, A. Energy, economy, financial development, and ecological footprint in Singapore. Energy Econ. Lett. 2024, 11, 29–40. [Google Scholar] [CrossRef]
- Yasin, I.; Ahmad, N.; Amin, S.; Sattar, N.; Hashmat, A. Does agriculture, forests, and energy consumption foster the carbon emissions and ecological footprint? fresh evidence from BRICS economies. Environ. Dev. Sustain. 2024, 1–21. [Google Scholar] [CrossRef]
- Adejumo, O.O. Environmental quality vs. economic growth in a developing economy: Complements or conflicts. Environ. Sci. Pollut. Res. 2020, 27, 6163–6179. [Google Scholar] [CrossRef]
- Bo, S. A literature survey on environmental Kuznets curve. Energy Procedia 2011, 5, 1322–1325. [Google Scholar] [CrossRef]
- Kijima, M.; Nishide, K.; Ohyama, A. Economic models for the environmental Kuznets curve: A survey. J. Econ. Dyn. Control 2011, 34, 1187–1201. [Google Scholar] [CrossRef]
- Fodha, M.; Zaghdoud, O. Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve. Energy Policy 2010, 38, 1150–1156. [Google Scholar] [CrossRef]
- Dogan, E.; Inglesi-Lotz, R. The impact of economic structure to the environmental Kuznets curve (EKC) hypothesis: Evidence from European countries. Environ. Sci. Pollut. Res. 2020, 27, 12717–12724. [Google Scholar] [CrossRef]
- Cui, D.; Chen, X.; Xue, Y.; Li, R.; Zeng, W. An integrated approach to investigate the relationship of coupling coordination between social economy and water environment on urban scale—A case study of Kunming. J. Environ. Manag. 2019, 234, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Jin, F.; Song, Z.; Liu, Y. Spatial coupling analysis of regional economic development and environmental pollution in China. J. Geogr. Sci. 2013, 23, 525–537. [Google Scholar] [CrossRef]
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ. Sci. Pollut. Res. 2021, 28, 6898–6912. [Google Scholar] [CrossRef]
- Deng, M.; Chen, J.; Tao, F.; Zhu, J.; Wang, M. On the coupling and coordination development between environment and economy: A case study in the Yangtze River Delta of China. Int. J. Environ. Res. Public Health 2022, 19, 586. [Google Scholar] [CrossRef]
- Lai, Z.; Ge, D.; Xia, H.; Yue, Y.; Wang, Z. Coupling coordination between environment, economy and tourism: A case study of China. PLoS ONE 2020, 15, e0228426. [Google Scholar] [CrossRef]
- Zhang, F.; Sarker, M.N.I.; Lv, Y. Coupling coordination of the regional economy, tourism industry, and the ecological environment: Evidence from western China. Sustainability 2022, 14, 1654. [Google Scholar] [CrossRef]
- Li, W.; Yi, P. Assessment of city sustainability—Coupling coordinated development among economy, society and environment. J. Clean. Prod. 2020, 256, 120453. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, M.; Zhang, J.; Sun, Z.; Sun, Z. The improved coupling coordination analysis on the relationship between climate, eco-environment, and socio-economy. Environ. Ecol. Stat. 2022, 29, 1–24. [Google Scholar] [CrossRef]
- Dong, Q.; Zhong, K.; Liao, Y.; Xiong, R.; Wang, F.; Pang, M. Coupling coordination degree of environment, energy, and economic growth in resource-based provinces of China. Resour. Policy 2023, 81, 103308. [Google Scholar] [CrossRef]
- He, L.; Lv, J.; He, P.; Hu, Q.; Liu, W. Analysis of Synergistic Benefits between Carbon Emissions and Air Pollution Based on Remote Sensing Observations: A Case Study of the Central Henan Urban Agglomeration. Sustainability 2024, 16, 4919. [Google Scholar] [CrossRef]
- Yu, W.; Yu, W. Analysis of the Coupling Coordination between the Ecosystem Service Value and Urbanization in the Circum-Bohai-Sea Region and Its Obstacle Factors. Sustainability 2024, 16, 3776. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, Y.; Shah, M.H. Coupling and Coordination Analysis of High-Quality Agricultural Development and Rural Revitalization: Spatio-Temporal Evolution, Spatial Disparities, and Convergence. Sustainability 2024, 16, 9007. [Google Scholar] [CrossRef]
- Faizi, S.; Sałabun, W.; Rashid, T.; Zafar, S.; Wątróbski, J. Intuitionistic fuzzy sets in multi-criteria group decision making problems using the characteristic objects method. Symmetry 2020, 12, 1382. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Zhao, S.; Fan, L.; Xin, C.; Jiang, X.; Yao, Y. Benefit Evaluation of Carbon Reduction in Power Transmission and Transformation Projects Based on the Modified TOPSIS-RSR Method. Energies 2024, 17, 2988. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Więckowski, J.; Sałabun, W. SESP-SPOTIS: Advancing Stochastic Approach for Re-identifying MCDA Models. In Proceedings of the International Conference on Computational Science, Malaga, Spain, 2–4 July 2024; pp. 281–295. [Google Scholar]
- Kizielewicz, B.; Tomczyk, T.; Gandor, M.; Sałabun, W. Subjective weight determination methods in multi-criteria decision-making: A systematic review. Procedia Comput. Sci. 2024, 246, 5396–5407. [Google Scholar] [CrossRef]
- Sun, X. Green city and regional environmental economic evaluation based on entropy method and GIS. Environ. Technol. Innov. 2021, 23, 101667. [Google Scholar] [CrossRef]
- Lee, C.C.; Yan, J.; Li, T. Ecological resilience of city clusters in the middle reaches of Yangtze river. J. Clean. Prod. 2024, 443, 141082. [Google Scholar] [CrossRef]
- Sun, L.Y.; Miao, C.L.; Yang, L. Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 2017, 73, 554–558. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Więckowski, J.; Kizielewicz, B.; Shekhovtsov, A.; Sałabun, W. RANCOM: A novel approach to identifying criteria relevance based on inaccuracy expert judgments. Eng. Appl. Artif. Intell. 2023, 122, 106114. [Google Scholar] [CrossRef]
- Więckowski, J.; Wątróbski, J.; Sałabun, W. Inaccuracies in expert judgment: Comparative analysis of RANCOM and AHP methods in housing location selection problem. IEEE Access 2024, 12, 142083–142100. [Google Scholar] [CrossRef]
- Yang, Z.; Zhan, J.; Wang, C.; Twumasi-Ankrah, M.J. Coupling coordination analysis and spatiotemporal heterogeneity between sustainable development and ecosystem services in Shanxi Province, China. Sci. Total Environ. 2022, 836, 155625. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Gao, W.; Su, W.; Li, H.; Hokao, K. Modeling and dynamic assessment of urban economy–resource–environment system with a coupled system dynamics–geographic information system model. Ecol. Indic. 2011, 11, 1333–1344. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Cheng, X.; Mu, R.; Zuo, J. Coordinated development of energy, economy and environment subsystems—A case study. Ecol. Indic. 2014, 46, 514–523. [Google Scholar] [CrossRef]
- Luo, D.; Liang, L.; Wang, Z.; Chen, L.; Zhang, F. Exploration of coupling effects in the Economy–Society–Environment system in urban areas: Case study of the Yangtze River Delta Urban Agglomeration. Ecol. Indic. 2021, 128, 107858. [Google Scholar]
- Lu, X.; Xue, M.; Hu, M. Dynamic simulation and assessment of the coupling coordination degree of the economy–resource–environment system: Case of Wuhan City in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar]
- Zheng, W.; Walsh, P.P. Economic growth, urbanization and energy consumption–A provincial level analysis of China. Energy Econ. 2019, 80, 153–162. [Google Scholar] [CrossRef]
- Wang, J.; Wei, X.; Guo, Q. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 2018, 89, 348–355. [Google Scholar] [CrossRef]
- Xu, M.; Hu, W.Q. A research on coordination between economy, society and environment in China: A case study of Jiangsu. J. Clean. Prod. 2020, 258, 120641. [Google Scholar] [CrossRef]
- Liu, N.; Liu, C.; Xia, Y.; Ren, Y.; Liang, J. Examining the coordination between green finance and green economy aiming for sustainable development: A case study of China. Sustainability 2020, 12, 3717. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Rao, C. Evaluation index system design and coordinated development analysis for the industrial green development system and regional non-waste system in the Yangtze River Economic Zone. Environ. Sci. Pollut. Res. 2021, 28, 32592–32608. [Google Scholar] [CrossRef] [PubMed]
- Ayamba, E.C.; Haibo, C.; Abdul-Rahaman, A.R.; Serwaa, O.E.; Osei-Agyemang, A. The impact of foreign direct investment on sustainable development in China. Environ. Sci. Pollut. Res. 2020, 27, 25625–25637. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zheng, C.; Sagawa, T.; Meenakshisundaram, S.; Wu, C.; Tronconi, E. Air pollution control for a green future. J. Zhejiang Univ.-Sci. A 2018, 19, 1–4. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Li, M.; Meng, L. Coupling coordination degree of production, living and ecological spaces and its influencing factors in the Yellow River Basin. J. Clean. Prod. 2021, 298, 126803. [Google Scholar] [CrossRef]
- Çelikbilek, Y.; Tüysüz, F. An in-depth review of theory of the TOPSIS method: An experimental analysis. J. Manag. Anal. 2020, 7, 281–300. [Google Scholar] [CrossRef]
- Li, H.; Luo, G.; Xie, Q. Evaluation model of dynamic allied manufacturing resources based on application service provider. Comput. Integr. Manuf. Syst. 2007, 13, 862–868. [Google Scholar]
- Omar, M.N.; Fayek, A.R. A TOPSIS-based approach for prioritized aggregation in multi-criteria decision-making problems. J. Multi-Criteria Decis. Anal. 2016, 23, 197–209. [Google Scholar] [CrossRef]
- Zou, Z.H.; Yi, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Prasad, M.; Srikanth, T. Clustering Accuracy Improvement Using Modified Min-Max Normalization. 2024. Available online: https://www.preprints.org/manuscript/202411.0486/v1 (accessed on 26 November 2024).
- Pranolo, A.; Setyaputri, F.U.; Paramarta, A.K.A.I.; Triono, A.P.P.; Fadhilla, A.F.; Akbari, A.K.G.; Utama, A.B.P.; Wibawa, A.P.; Uriu, W. Enhanced Multivariate Time Series Analysis Using LSTM: A Comparative Study of Min-Max and Z-Score Normalization Techniques. ILKOM J. Ilm. 2024, 16, 210–220. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of Entropy Weight Method in Decision-Making. Math. Probl. Eng. 2020, 1, 3564835. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, X.; Zhang, J.; Gao, Y.; Hong, J.; Zuo, J.; Liu, W. Assessment of the sustainable development capacity with the entropy weight coefficient method. Sustainability 2015, 7, 13542–13563. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, K.; Liu, L.; Xin, J.; Yang, H.; Gao, C. Application of the Entropy Weight and TOPSIS Method in Safety Evaluation of Coal Mines. Procedia Eng. 2011, 26, 2085–2091. [Google Scholar] [CrossRef]
- Saflor, C.S.; Mariñas, K.A.; Alvarado, P.; Baleña, A.; Tanglao, M.S.; Prasetyo, Y.T.; Tangsoc, J.; Bernardo, E. Towards Sustainable Internet Service Provision: Analyzing Consumer Preferences through a Hybrid TOPSIS–SEM–Neural Network Framework. Sustainability 2024, 16, 4767. [Google Scholar] [CrossRef]
- Chu, H.; Wu, C.; Wang, G.; Lang, Y.; Aynalem, M. Coupling Coordination Evaluation of Water and Soil Resource Matching and Grain Production, and Analysis of Obstacle Factors in a Typical Black Soil Region of Northeast China. Sustainability 2024, 16, 5030. [Google Scholar] [CrossRef]
- Liao, K.C.; Yue, M.Y.; Sun, S.W.; Xue, H.B.; Liu, W.; Tsai, S.B.; Wang, J.T. An evaluation of coupling coordination between tourism and finance. Sustainability 2018, 10, 2320. [Google Scholar] [CrossRef]
- Kristan, M.; Leonardis, A.; Skočaj, D. Multivariate online kernel density estimation with Gaussian kernels. Pattern Recognit. 2011, 44, 2630–2642. [Google Scholar] [CrossRef]
- Hashimoto, S.; Yoshiki, S.; Saeki, R.; Mimura, Y.; Ando, R.; Nanba, S. Development and application of traffic accident density estimation models using kernel density estimation. J. Traffic Transp. Eng. 2016, 3, 262–270. [Google Scholar] [CrossRef]
- He, Y.; Zheng, Y. Short-term power load probability density forecasting based on Yeo-Johnson transformation quantile regression and Gaussian kernel function. Energy 2018, 154, 143–156. [Google Scholar] [CrossRef]
- Dray, S.; Legendre, P.; Peres-Neto, P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 2006, 196, 483–493. [Google Scholar] [CrossRef]
- Shang, Y.; Pang, Q.; Li, H. Research on Spatial-temporal Coupling of Urban Competitiveness, Regional Innovation and Ecological Efficiency in Jiangsu Province. East China Econ. Manag. 2020, 34, 9–17. [Google Scholar]
- Chen, Y. An analytical process of spatial autocorrelation functions based on Moran’s index. PLoS ONE 2021, 16, e0249589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Lin, G. A decomposition of Moran’s I for clustering detection. Comput. Stat. Data Anal. 2007, 51, 6123–6137. [Google Scholar] [CrossRef]
- Bivand, R.; Müller, W.G.; Reder, M. Power calculations for global and local Moran’s I. Comput. Stat. Data Anal. 2009, 53, 2859–2872. [Google Scholar] [CrossRef]
- Yuan, Y.; Cave, M.; Zhang, C. Using Local Moran’s I to identify contamination hotspots of rare earth elements in urban soils of London. Appl. Geochem. 2018, 88, 167–178. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, G. Identification of local clusters for count data: A model-based Moran’s I test. J. Appl. Stat. 2008, 35, 293–306. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhou, W.X.; Ren, D.L. Coupling and coordinated development of ecological environment-economic development-urbanization in upper reaches of the Yellow River-basin: A case study of the Gansu section. J. Northwest Norm. Univ. 2024, 60, 64–73. [Google Scholar]
- Liang, L.; Chen, M.; Luo, X.; Xian, Y. Changes pattern in the population and economic gravity centers since the Reform and Opening up in China: The widening gaps between the South and North. J. Clean. Prod. 2021, 310, 127379. [Google Scholar] [CrossRef]
- Liu, Y.; Suk, S. Coupling and coordinating relationship between tourism economy and ecological environment—A case study of Nagasaki Prefecture, Japan. Int. J. Environ. Res. Public Health 2021, 18, 12818. [Google Scholar] [CrossRef]
- Yan, X.; Chen, M.; Chen, M.Y. Coupling and coordination development of Australian energy, economy, and ecological environment systems from 2007 to 2016. Sustainability 2019, 11, 6568. [Google Scholar] [CrossRef]
- Wan, L.; Zheng, Q.; Wu, J.; Wei, Z.; Wang, S. How does the ecological compensation mechanism adjust the industrial structure? Evidence from China. J. Environ. Manag. 2022, 301, 113839. [Google Scholar] [CrossRef] [PubMed]
Subsystem | Variables | Units | Direction | Weight |
---|---|---|---|---|
Economic Subsystem (ES) | Regional Per Capita GDP (RPCGDP) | CNY | + | 0.125 |
Growth Rate of GDP (GDPGR) | % | + | 0.014 | |
Total Retail Sales of Consumer Goods (CGTR) | CNY 100 Million | + | 0.208 | |
Growth Rate of Total Investment in Fixed Assets (FATIGR) | % | + | 0.009 | |
Total of International Trade in Goods (ITG) | USD Thousand | + | 0.512 | |
Per Capita Disposable Income of Urban Households (PCDUHI) | CNY | + | 0.132 | |
Ecological Environment Subsystem (EES) | Forest Coverage Rate (FCR) | % | + | 0.132 |
Per Capita Water Resources (PCW) | m3/Person | + | 0.333 | |
Public Recreational Green Space Per Capita (PCGS) | m2/Person | + | 0.066 | |
Green Covered Area as of Completed Area (GCA) | % | + | 0.031 | |
Rate of Domestic Garbage Harmless Treatment (DGHTR) | % | + | 0.020 | |
Integrated Reuse Rate of Industrial Solid Wastes (ISWIR) | % | + | 0.085 | |
Investment Completed the Treatment of Industrial Pollution (IPTI) | CNY 10,000 | + | 0.253 | |
SO2 Emission | 10 000 Tons | − | 0.026 | |
Common Industrial Solid Wastes Generated (ISWG) | 10,000 Tons | − | 0.035 | |
Particulate Matter Emission (PM) | 10,000 Tons | − | 0.020 |
D Value | Coordination Level |
---|---|
0~0.099 | Extremely uncoordinated |
0.1~0.199 | Seriously uncoordinated |
0.2~0.299 | Moderately uncoordinated |
0.3~0.399 | Slightly uncoordinated |
0.4~0.499 | On the verge of uncoordinated |
0.5~0.599 | Barely coordinated |
0.6~0.699 | Slightly coordinated |
0.7~0.799 | Moderately coordinated |
0.8~0.899 | Well coordinated |
0.9~1 | Quality coordination |
Year | C | T | D | Coordination Level |
---|---|---|---|---|
2011 | 0.823 | 0.169 | 0.366 | Slightly uncoordinated |
2012 | 0.830 | 0.181 | 0.380 | Slightly uncoordinated |
2013 | 0.837 | 0.198 | 0.401 | On the verge of uncoordinated |
2014 | 0.854 | 0.208 | 0.415 | On the verge of uncoordinated |
2015 | 0.878 | 0.199 | 0.411 | On the verge of uncoordinated |
2016 | 0.889 | 0.208 | 0.422 | On the verge of uncoordinated |
2017 | 0.912 | 0.211 | 0.431 | On the verge of uncoordinated |
2018 | 0.921 | 0.218 | 0.439 | On the verge of uncoordinated |
2019 | 0.932 | 0.221 | 0.445 | On the verge of uncoordinated |
2020 | 0.933 | 0.221 | 0.445 | On the verge of uncoordinated |
2021 | 0.941 | 0.235 | 0.459 | On the verge of uncoordinated |
2022 | 0.945 | 0.237 | 0.462 | On the verge of uncoordinated |
Regions | C | T | D | Coordination Level |
---|---|---|---|---|
Beijing | 0.973 | 0.283 | 0.524 | Barely coordinated |
Tianjin | 0.990 | 0.175 | 0.417 | On the verge of uncoordinated |
Hebei | 0.950 | 0.162 | 0.390 | Slightly uncoordinated |
Shanxi | 0.893 | 0.124 | 0.332 | Slightly uncoordinated |
Inner Mongolia | 0.908 | 0.163 | 0.383 | Slightly uncoordinated |
Liaoning | 0.983 | 0.161 | 0.397 | Slightly uncoordinated |
Jilin | 0.860 | 0.143 | 0.350 | Slightly uncoordinated |
Heilongjiang | 0.832 | 0.156 | 0.360 | Slightly uncoordinated |
Shanghai | 0.943 | 0.301 | 0.531 | Barely coordinated |
Jiangsu | 0.942 | 0.380 | 0.597 | Barely coordinated |
Zhejiang | 0.989 | 0.349 | 0.586 | Barely coordinated |
Anhui | 0.922 | 0.175 | 0.401 | On the verge of uncoordinated |
Fujian | 0.954 | 0.265 | 0.502 | Barely coordinated |
Jiangxi | 0.817 | 0.197 | 0.401 | On the verge of uncoordinated |
Shandong | 0.982 | 0.310 | 0.551 | Barely coordinated |
Henan | 0.972 | 0.181 | 0.418 | On the verge of uncoordinated |
Hubei | 0.956 | 0.186 | 0.422 | On the verge of uncoordinated |
Hunan | 0.916 | 0.194 | 0.422 | On the verge of uncoordinated |
Guangdong | 0.903 | 0.518 | 0.683 | Slightly coordinated |
Guangxi | 0.802 | 0.196 | 0.397 | Slightly uncoordinated |
Hainan | 0.743 | 0.180 | 0.365 | Slightly uncoordinated |
Chongqing | 0.908 | 0.179 | 0.403 | On the verge of uncoordinated |
Sichuan | 0.958 | 0.188 | 0.424 | On the verge of uncoordinated |
Guizhou | 0.787 | 0.154 | 0.347 | Slightly uncoordinated |
Yunnan | 0.799 | 0.182 | 0.381 | Slightly uncoordinated |
Shaanxi | 0.886 | 0.159 | 0.375 | Slightly uncoordinated |
Gansu | 0.864 | 0.094 | 0.285 | Moderately uncoordinated |
Qinghai | 0.604 | 0.262 | 0.397 | Slightly uncoordinated |
Ningxia | 0.866 | 0.113 | 0.312 | Slightly uncoordinated |
Xinjiang | 0.837 | 0.134 | 0.334 | Slightly uncoordinated |
Year | Moran’s I | Z | p-Value |
---|---|---|---|
2011 | 0.356 | 3.297 | 0.001 |
2012 | 0.372 | 3.432 | 0.001 |
2013 | 0.350 | 3.250 | 0.001 |
2014 | 0.343 | 3.163 | 0.002 |
2015 | 0.437 | 3.972 | 0.000 |
2016 | 0.465 | 4.165 | 0.000 |
2017 | 0.407 | 3.720 | 0.000 |
2018 | 0.400 | 3.661 | 0.000 |
2019 | 0.464 | 4.164 | 0.000 |
2020 | 0.468 | 4.212 | 0.000 |
2021 | 0.426 | 3.872 | 0.000 |
2022 | 0.504 | 4.495 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Pang, Q. Analysis of the Coupling Coordination and Spatial Difference Between Economic and Ecological Environment: A Case Study of China. Sustainability 2025, 17, 869. https://doi.org/10.3390/su17030869
Sun Y, Pang Q. Analysis of the Coupling Coordination and Spatial Difference Between Economic and Ecological Environment: A Case Study of China. Sustainability. 2025; 17(3):869. https://doi.org/10.3390/su17030869
Chicago/Turabian StyleSun, Yanan, and Qingsong Pang. 2025. "Analysis of the Coupling Coordination and Spatial Difference Between Economic and Ecological Environment: A Case Study of China" Sustainability 17, no. 3: 869. https://doi.org/10.3390/su17030869
APA StyleSun, Y., & Pang, Q. (2025). Analysis of the Coupling Coordination and Spatial Difference Between Economic and Ecological Environment: A Case Study of China. Sustainability, 17(3), 869. https://doi.org/10.3390/su17030869